
One-class classification

Concept-learning in the absence of counter-examples

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.F. Wakker,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 19 juni 2001 om 10.30 uur

door David Martinus Johannes TAX

doctorandus in de natuurkunde,
geboren te Ede.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. I.T. Young

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. I.T. Young, TU Delft, promotor
Dr. ir. R.P.W. Duin, TU Delft, toegevoegd promotor
Prof. J. Kittler, University of Surrey
Prof. dr. ir. E. Backer, TU Delft
Prof. dr. P. Groeneboom, TU Delft
Prof. dr. ir. F.C.A. Groen, Univerity of Amsterdam
Dr. T. Heskes, University of Nijmegen

Dr. ir. R.P.W. Duin heeft als begeleider in belangrijke mate aan de totstandkoming van
het proefschrift bijgedragen.
This work was partly supported by the Foundation for Applied Sciences (STW) and the
Dutch Organisation for Scientific Research (NWO).

Advanced School for Computing and Imaging

This work was carried out in graduate school ASCI. ASCI dissertation series number 65.

ISBN: 90-75691-05-x
c© 2001, David Tax, all rights reserved.

CONTENTS

Notation . ix

1. Introduction . 1
1.1 Learning from examples . 2
1.2 Generalization . 7
1.3 One-class classification . 13
1.4 One-class and two-class classification . 15
1.5 One-class classification methods . 17
1.6 Outlook of this thesis . 19

2. Support Vector Data Description . 21
2.1 Spherical data description . 21
2.2 Data description with negative examples 24
2.3 Flexible descriptions . 28
2.4 Target error estimate . 35
2.5 The ν-SVC . 39
2.6 Data description characteristics . 42

2.6.1 Rigid hypersphere . 43
2.6.2 Flexible descriptions . 45
2.6.3 Training with outliers . 46
2.6.4 Outliers in the target set . 47

2.7 Machine diagnostics experiments . 49
2.8 Conclusions . 55

3. One-class classification . 57
3.1 Considerations . 57

3.1.1 Volume estimation . 58
3.1.2 Error definition . 60

3.2 Characteristics of one-class approaches . 63
3.3 Density methods . 64

3.3.1 Gaussian model . 65
3.3.2 Mixture of Gaussians . 66
3.3.3 Parzen density estimation . 67

3.4 Boundary methods . 67

vi Contents

3.4.1 K-centers . 68
3.4.2 Nearest neighbor method . 69
3.4.3 Support vector data description . 72

3.5 Reconstruction methods . 72
3.5.1 k-means, LVQ, SOM . 73
3.5.2 Principal Component Analysis . 76
3.5.3 Mixtures of Principal Component Analyzers 77
3.5.4 Auto-Encoders and Diabolo networks 77

3.6 Robustness and outliers . 79
3.7 Number of parameters . 81
3.8 Discussion . 83

4. Experiments . 85
4.1 Parameter settings . 85
4.2 The datasets . 86

4.2.1 Artificial outlier distributions . 87
4.2.2 Well-sampled target distributions 88
4.2.3 Atypical training data . 91

4.3 The error for one-class classifiers . 91
4.4 Sample size . 94
4.5 Scaling . 97
4.6 Multimodality . 98
4.7 Non-convexity . 100
4.8 Subspace . 101
4.9 Atypical training set . 103
4.10 The presence of outliers . 104
4.11 Guaranteed performance and time consumption 106
4.12 Pump vibration data . 108
4.13 Handwritten digit data . 112
4.14 Conclusions . 114

5. Combining Descriptions . 117
5.1 Combining conventional classifiers . 117

5.1.1 Differences between averaging and multiplying 120
5.2 Combining one-class classifiers . 122

5.2.1 Combining rules . 124
5.2.2 Combining experiments . 126
5.2.3 Combining different feature sets . 129

5.3 Combining to include prior knowledge . 131
5.3.1 Image database retrieval . 131
5.3.2 Evaluation performance . 134
5.3.3 Original features . 135
5.3.4 Separating the feature sets . 137

Contents vii

5.4 Conclusion . 138

6. Conclusions . 141
6.1 What has been done in this thesis? . 142
6.2 What can be concluded from this thesis? 145
6.3 What can be done in the future? . 146

Appendix 149

A. Support Vector Data Description . 151

B. Nearest Neighbor Data Description . 155
B.1 1-dimensional data . 156
B.2 2-dimensional data . 158
B.3 Data in a subspace . 158
B.4 Empty areas . 160

C. Handwritten digits dataset . 161
C.1 Individual classifiers . 162
C.2 Combining classifiers . 165
C.3 Combining featuresets . 167

Bibliography . 171

Summary One-class classification . 179

Samenvatting One-class classification . 181

Curriculum vitae . 183

Acknowledgements . 185

Index . 187

NOTATION

Euclidean length of vector x will be written ‖x‖, thus the squared Euclidean length of a
vector becomes ‖x‖2.

a center of the hypersphere in the SVDD
αi(αj) a Lagrange multiplier in the SVDD for target object xi

(xj) to enforce data within the hypersphere
αl(αm) a Lagrange multiplier in the SVDD for outlier object xi

(xj) to enforce data outside the hypersphere
b bias
C regularization parameter in the SVC/SVDD which reg-

ulates the tradeoff between complexity and errors
or the number of classes in a multi-class classification
problem

d dimensionality of input patterns
dM(z) distance from object z to data description M
∆2 squared Mahanalobis distance
E[y|x] expection of y given x
EX tr [y] expectation of y over all possible instances of the train-

ing set X tr

ε(f(x), y) error or cost contribution of function f by one training
object (x, y)

E(f,w,X tr) total error or cost function for function f with weights
w over the complete training set

EI (EII) cost for an error of the first kind (second kind)
Eret retrieval error defined in the image database retrieval

application (formula (5.28))
Erank ranking measure to rank all images from an image

database based on their similarity to a one-class clas-
sifier (definitions on pages 136 and 137)

ε noise in the data, data which cannot be explained by
the model

η learning rate for LVQ
f(x), f(x;w) output of (one-class) classifier (with free parameters w)

given input x

x Contents

f(x|ωj) model for posterior probability of object x given class
ωj

fT user defined fraction of the target class which should be
accepted

fT+ fraction of the target objects which are accepted by a
one-class classifier

fT− fraction of the target objects which are rejected by a
one-class classifier

fO+ fraction of the outlier objects which are accepted by a
one-class classifier

fO− fraction of the outlier objects which are rejected by a
one-class classifier

fSV fraction of the training objects which become support
vectors in the SVDD or SVC (i.e. nSV

N
)

fbnd
SV fraction of the training objects which become support

vectors on the boundary of the SVDD (i.e.
nbnd

SV

N
)

f out
SV fraction of the training objects which become support

vector outside the boundary of the SVDD (i.e.
nout

SV

N
)

fNN/G ratio between the volumes of the feature space cov-
ered by the Gaussian and NN-d model (i.e. fNN/G =
vNN/vG)

Φ(x) mapping of vector x to a (higher dimensional) feature
space

Φµ mean of the mapped objects x into some feature space:
Φµ =

∑
i Φ(xi)

γi Lagrange multiplier in the SVDD to enforce positive er-
ror for a target object

γl Lagrange multiplier in the SVDD to enforce positive er-
ror for a outlier object

I indicator function (see definition (2.14), page 24)
I identity matrix
K(xi,xj) kernel function operating on objects xi and xj

K ′, K ′′ constants used in the comparison of the mean and the
product combination rule (used in inequality (5.12))

L Lagrangian, the combination of an error function and
constraints

λ regularization parameter (tradeoff parameter between
the empirical and structural error),
or regularization parameter for the inversion of covari-
ance matrix for Gaussian density

M number of images in the image database

Contents xi

m average rank of n images in a database containing M
images

µ mean vector of a data set
n degree of the polynomial kernel in the SVDD or SVC

or: the number of test images in the image database
application

N number of training objects
nfreef number of free parameters in model f
NN-d data description based on nearest neighbor distances

(see appendix B)
NNtr(x) (first) nearest neighbour of object x
NNtr

k (x) kth nearest neighbour of object x
nSV number of support vectors in the SVDD or SVC (these

are the objects xi with 0 < αi ≤ C)
nbnd

SV number of support vectors on the boundary of the
SVDD (these are the support vectors xi with 0 < αi <
C)

nout
SV number of support vectors outside the boundary of the

SVDD (these are the support vectors xi with αi = C)
ν user defined parameter in the ν-SVC indicating the frac-

tion of the data what should be captured (used in error
(2.54))

p(.) probability density
p(.|.) conditional probability density
pN (x; µ, Σ) normal or Gaussian distribution, characterized by mean

µ and covariance matrix Σ
ρ bias term in the ν-SVC
R number of combined classifiers

or radius of the hypersphere in the SVDD
s width of the Gaussian kernel in the SVDD
σ standard deviation
Σ full covariance matrix
SV support vector; object with αi > 0
SV bnd set of support vectors with Lagrange multipliers 0 <

αi < C
SV out set of support vectors with Lagrange multipliers αi = C
SVC Support Vector Classifier
SVDD Support Vector Data Description
θ threshold on a probability or a distance
θij angle between vectors xi and xj

V (r) volume of an hypersphere with radius r
vG, vNN volume of the feature space covered by the Gaussian and

NN-d model respectively

xii Contents

w weight vector
ωj class identifier, used in conditional probabilities p(x|ωj)
ωT , ωO target, outlier class
x column vector, most often representing an object
X feature space containing all possible objects x
XT area in feature space which contains all target objects
X tr training set containing N objects xi with their labels

yi; in one-class problems often just target objects are
present

ξi slack variables introduced in SVC/SVDD to account for
errors

χ2
d χ2-distribution with d degrees of freedom

ζk
j deviation of the output of one classifier fk

j (xk) for class
ωj from the average output f̄j(x) of a set of classifiers

yi output label for pattern xi, often y ∈ {−1, 1}
y(x), y(x|w) output of a classifier or combining rule, characterized by

w, after presenting pattern x
ycomb(x) combining rule for (one-class) classifiers (comb can be

one of: mv,mwv, pwv, mp, pp, see page 125 for explana-
tion)

z column vector, most often representing a test object
Z area in feature space which contains all outlier objects

1. INTRODUCTION

What would you do if you were given a collection of apples and pears and you were asked to
distinguish between the two types of fruit? This problem does not seem very complicated,
everyone can immediately separate them based on how they look and feel. Moreover, it is
not very hard to identify the rotten pieces, the dirt and all other objects which are neither
apples nor pears.

Although this problem of distinguishing apples and pears does not look very compli-
cated, automating this process turns out to be fairly complicated. After all, what should
be the basis for the decision to call an object ‘apple’, and another object ‘pear’? Is it the
weight of the object, the height or color? Perhaps the shape, smell or the flavor? Very
likely it is a combination of all of these properties. Assume for a moment we use measure-
ments of the color and the smell of an object, how should an apple with some mud on it
be classified? Is it an apple or is it dirt?

This is the problem of classification: to assign a new object to one of a set of classes
(in this case apples or pears) which are known beforehand. The classifier which should
perform this classification operation (or which assigns to each input object an output
label), is based on a set of example objects. This thesis will not focus on this classification
problem though, but on the next problem, the problem of one-class classification. Here an
object should be classified as a genuine object (apple or pear), or an outlier object (other
type of fruit, rotten fruit or dirt).

The one-class classification problem differs in one essential aspect from the conventional
classification problem. In one-class classification it is assumed that only information of one
of the classes, the target class, is available. This means that just example objects of the
target class can be used and that no information about the other class of outlier objects
is present. The boundary between the two classes has to be estimated from data of only
the normal, genuine class. The task is to define a boundary around the target class, such
that it accepts as much of the target objects as possible, while it minimizes the chance of
accepting outlier objects.

In this first chapter we will give the framework in which the research is placed. We
will start with a short introduction to statistical pattern recognition and we will give
the classical problems and some possible solutions to these problems. Then the topic
of this thesis, the problem of one-class classification, will be introduced and related to
the conventional classification. We will see that one-class classification suffers from the
same problems as conventional classification, and even worse, we will show that one-class
classification has some additional problems.

2 1. Introduction

1.1 Learning from examples

In many classification problems explicit rules do not exist (can you give explicit rules for
distinguishing apples from pears?), but examples can be obtained easily (ask your green
grocer). A classifier, i.e. a function which outputs a class label for each input object,
cannot be constructed from known rules. Therefore, in pattern recognition or machine
learning, one tries to infer a classifier from a (limited) set of training examples. The use
of examples thus elevates the need to explicitly state the rules for the classification by
the user. The goal is to obtain models and learning rules to learn from the examples and
predict the labels of future objects.

The notion of ‘object’ is taken very broadly, it can range from apples and pears to
handwritten digits, from speech signals to machine noise. In this thesis we assume that
objects are described by vectors containing a set of d real valued measurements, thus an
object i is represented by the feature vector xi = (xi,1, ..., xi,d), xi,j ∈ R (or shorter xi ∈ X =
R

d). Each object is thus represented as one point in a feature space X . Furthermore, we
assume that all components in the vector are known and that there are no missing values.
In practice it might happen that some measurements are not performed, due to costs in
time, money and effort or because it is expected that they provide too little information
(this can happen for instance in medical applications). The missing values introduce extra
complications and we will not consider them. We assume all objects are characterized with
the same set of measurements.

Further, we assume that the continuity assumption holds. This is a general assumption
in pattern recognition: two objects near in feature space should also resemble each other
in real life. When we are at one position in feature space, representing an example object,
and we change the position a bit, then this new position should represent a very similar
object. This means that we assume that the objects are not randomly scattered into some
feature space, but that they are distributed in cloud-like distributions. In particular, it
means that when we look in the neighborhood of an object, similar objects are represented.
When this continuity does not hold, we cannot expect to learn well from a few example
objects. The decision boundaries could be placed almost anywhere in the feature space.
Huge amounts of examples are required to find all these irregularities in the data. Only
for constant class membership, it is allowed to have really different objects nearby in
feature space.1 Obviously, to be able to make a distinction between objects and classes of
objects, the measurements should contain enough information to distinguish the objects.
In other words, they should have enough discriminative power such that a classifier will
show sensible generalization. When only noise measurements are available, we cannot
expect to infer a good classification.

A general multi-class classification problem can be decomposed in several two-class
classification problems [Fukanaga, 1990]. Therefore, the two-class problem is considered
as the basic classification problem. In a two-class classification problem, the two classes
ω1 and ω2 will be labeled by −1 and +1 respectively. A training set is a set of objects for

1 But then the objects are not really different as far as the classifier is concerned.

1.1. Learning from examples 3

One-Class Classifier

feature 1 (width)

feature 2 (weight)

Fig. 1.1: A conventional and a one-class classifier applied to an example dataset containing ap-
ples and pears, represented by 2 features per object. The solid line is the conventional
classifier which distinguishes between the apples and pears, while the dashed line de-
scribes the dataset. This description can identify the outlier apple in the lower right
corner, while the classifier will just classify it as an pear.

which for each object xi a label yi is attached (yi ∈ {−1, +1}):

X tr = {(xi, yi)|i = 1, .., N} (1.1)

For the classification, a function f(x) has to be inferred from the training set. This function
should be constructed such that for a given feature vector x an estimate of the label is
obtained, y = f(x):

f : R
d → {−1, +1} (1.2)

In figure 1.1 an example of a training dataset is given for the apple-pear problem from
the beginning of this chapter. Each object has two feature values (for instance the width
and the height of the object; the exact features are not important for this discussion).
Each training object x can therefore be represented as a point in a 2-dimensional feature
space. Here the apples are indicated by stars, the pears by pluses. In principle, objects
can be scattered all around the (2-dimensional) feature space, but due to the continuity
assumption, apples are near apples and pears near pears. Furthermore, there are physical
constraints on the measurement values (weights and sizes are positive, and are bounded
by some large number).

In the apple-pear example the two classes can be separated without errors by the
solid line in figure 1.1. Unfortunately, when the outlier apple in the right lower corner
is introduced, it cannot be distinguished from the pears. In the world of the two class

4 1. Introduction

2

x
1

x

f(x;w) = -1

f(x;w) = +1

f(x;w) = 0

Fig. 1.2: Scatterplot of the training set available for the apple-pear classification problem. A
simple (linear) classifier f(x;w) is shown. From the two measurements x1 and x2 per
object it estimates a label f(x;w) = +1 or f(x;w) = −1. The line f(x;w) = 0 is the
decision boundary (in this case linear).

classifier only apples and pears exist, and all objects are either apples or pears. Objects
cannot be something else, like an outlier. To identify the outlier, a one-class classifier
should be trained. An example of a one-class classification is given by the dashed line.

Most often the type of function f is chosen beforehand and just a few parameters of
the function have to be determined. The function can be denoted by f(x;w) to explicitly
state the dependence on the parameters or weights w (in a specific application in the
next chapter these parameters will be called α). Examples of these functions are linear
classifiers, mixtures of Gaussians, neural networks or support vector classifiers. In figure
1.2 a scatterplot of the training set of the apple-pear problem is shown again. Twentyfive
examples per class are available. A linear classifier f(x;w) is drawn (although this is not
the optimal linear classifier). For most objects it correctly estimates the labels. For three
apples and seven pears however a wrong label is assigned.

To find the optimal parameters w∗ for the function f on a given training set X tr, an
error function E(f,w,X tr) has to be defined. Most often the objects in the training data
are assumed to be independently distributed, and the total error of function f on a training
set is decomposed as:

E(f,w,X tr) =
1

N

∑
i

ε(f(xi;w), yi) (1.3)

Different definitions for the error function are possible, depending on the type of f(xi;w).
The first possibility is the 0-1−loss, for a discrete valued f(xi;w). This counts the number
of wrongly classified objects:

ε0-1(f(xi;w), yi) =

{
0, if f(xi;w) = yi,

1, otherwise.
(1.4)

1.1. Learning from examples 5

For instance, in our apple-pear example this error becomes E0-1 = 10.
The most common error for real-valued functions f(xi;w) ∈ [−1, 1] is the mean squared

error (MSE):

εMSE(f(xi;w), yi) = (f(xi;w)− yi)
2 (1.5)

and the cross entropy (where the labels should be rescaled to positive values yi = {0, 1}):

εce(f(xi;w), yi) = f(xi;w)yi (1− f(xi;w))1−yi (1.6)

By minimizing the error E on the training set, one hopes to find a good set of weights w
such that a good classification is obtained.

2

x
1

x

f(x;w) = -1

f(x;w) = +1

f(x;w) = 0

Fig. 1.3: Scatterplot of a small, atypical training set for the apple-pear classification problem.
A simple (linear) classifier f(x;w) is trained on this data. Because the training set
does not resemble the ‘true’ distribution, the generalization performance is poor.

This poses a new problem: the set of training examples might be a very uncharacteristic
set. If a limited sample is available, the inherent variance in the objects and noise in the
measurements might be too big to extract classification rules with high confidence. The
smaller the number of training examples, the more pronounced this problem becomes. This
is shown in figure 1.3, where a smaller training set for the apple-pear classification problem
is given. Instead of 25 examples per class, now just 5 examples per class are available. The
best classifier for this small set deviates significantly from the optimal linear classifier for
the complete, ‘true’ data distribution.

Even worse, in some cases it might be completely unclear if the training data distri-
bution resembles the distribution in real life. Sometimes only objects on the edges of
the data distribution are known or available, or the user has to guess what normal and
representative data are without much knowledge about the problem. Imagine the task of
composing a training set for the apple-pear classification problem. It is not hard to buy
some apples and pears at your green grocer, but it is very likely that they will not be a
representative sample of the complete class of apples and pears. The type of green grocer

6 1. Introduction

already influences the quality of the fruits, the sizes, the number of rotten pieces. Although
it is expected that the training data is distributed in the same area in the feature space as
the ‘true’ data, the exact data density might differ significantly.

In general, the larger the sample size, the better the characteristics of the data can
be determined. But even when a good, characteristic sample is available, the number of
functions which approximates or precisely fits the data is very big (perhaps even infinite!).
Therefore, good classification of the training objects is not the main goal, but good clas-
sification of new and unseen objects is. This is called good generalization. The main goal
in pattern recognition is to find classifiers that show good generalization.

To estimate how well a classifier generalizes, it should be tested with a new set of
objects which has not been used for training. By using a set of objects which has not
used during training (an independent set), one avoids an overly optimistic estimate of the
performance. The set which is not used in training but is used for estimating the error of
the classifier is called the (independent) test set. In pattern recognition holds: what you
see (on the training set) is not what you get (on an independent test set)!

In most cases correctly labeled data is scarce and expensive. From these objects both
a training objects as well as testing objects should be drawn. Leaving out a set of objects
from a small labeled set might leave out valuable information and therefore reduces the
generalization of the classifier. More advanced rotation or cross-validation methods can be
used to reduce this danger [Bishop, 1995].

The optimal parameters w∗ of the function f are the parameters which give the smallest
average error over all possible samples:

w∗ = argmin
w

Etrue(f,w,X) (1.7)

where the true error Etrue is defined as:

Etrue(f,w,X) =

∫
E(f(x;w), y)p(x, y)dxdy (1.8)

Note that the integration is over the whole ‘true’ data distribution p(x, y).
In (1.8) we have assumed that it is possible to define a probability density p(x, y) in the

complete feature space X . This p(x, y) contains everything that can be known about the
data in this representation.2 When we have to classify handwritten digits for instance, the
optimal f(x;w) (in terms of the error (1.8)) will be far different from the optimal function
that distinguishes natural textures, even when both the digits and the textures are coded
as a 16 × 16 vector of pixels (representing a 16 × 16 pixel image). Because the p(x, y) in
(1.8) differs, the optimal weight vector w∗ will differ as well.

In almost all classification problems this p(x, y) will be unknown. It is hoped that the
training set is a representative sample from this true distribution, but in most cases this

2 The optimal solution of the decision boundary will still depend on factors like the varying costs for
erroneous classifications, constraints on the type of decision boundary, the speed of the evaluation of the
classifier etc.

1.2. Generalization 7

might not be the case. In section 1.4, where we discuss the one-class classification problem,
we will encounter a situation where it is not possible anymore to define a probability density.
To find a solution, extra assumptions will have to be made.

1.2 Generalization

The classifier with the minimum error Etrue is called the Bayes decision rule [Duda and Hart, 1973].
This rule assigns an object x to the class with the largest posterior probability p(ωk|x).
When p(ω1|x) is the posterior probability of class ω1 for a given x, the Bayes rule assigns
labels:

fBayes(x) =

{
+1 if p(ω1|x) ≥ p(ω2|x),

−1 if p(ω1|x) < p(ω2|x).
(1.9)

The Bayes rule is the theoretical optimal rule; it has the best classification performance
over all possible classifiers [Bishop, 1995] (assuming that all erroneously classified objects
are equally weighted). The problem is that the Bayes rule requires the true posterior
probabilities of all the classes for all x. In practice the true distribution is not known
and only examples (perhaps only atypical examples) from the distribution are available.
Except for artificially generated data, where the class distributions are known, the optimal
Bayes rule cannot be calculated in practice. The Bayes rule is only useful when artificial
data distributions are used, to investigate the performance of classifiers f(x;w) and how
well they approach the optimal Bayes rule.

In the computation of the true error Etrue (1.8) of a user defined function f(x;w)
on some data, the same problems as for the use of the Bayes rule appear. It requires an
integration over the complete probability density of all possible objects x and labels y. This
probability density is unknown and we are only given a limited set of training examples.
An induction principle has to be adopted to approximate the true error [Vapnik, 1995]. In
practice error Etrue is often approximated by the empirical error on the training set:

Eemp(f,w,X tr) =
1

N

∑
i

ε(f(xi;w), yi) (1.10)

This error gives an approximation of the true error, which becomes accurate when the
training data is distributed like the true data distribution and the sample size is very large.
Unfortunately, when it is used to optimize f(x;w), a low empirical error Eemp does not
guarantee a low true error Etrue (a low error on an independent test set) [Vapnik, 1998].
The phenomenon that a function f(x;w) minimizes the empirical error (1.10) very well on a
training set but still shows a large true error Etrue (1.8) on an independent test set, is called
overtraining or overfitting. A sufficiently flexible function f(x;w) can always perfectly fit
the training data and thus show zero empirical error. The function then completely adapts
to all available information, including noise, in the given examples.

The overfitting of a function f(x;w) is shown in figure 1.4. Here a very flexible function
is trained on the apple-pear example. Because the function is far too flexible for this data,

8 1. Introduction

2

x
1

x

Fig. 1.4: A heavily overtrained classifier, trained on the training set available for the apple-pear
classification problem. The classifier shows zero empirical error, but high true error.

it finds structure in the data which is not really there. The overtrained classifier suggests
that the left class (the apple class) actually consists of two separate clusters. Objects
placed in between these two clusters will be classified as pears! Testing this classifier with
independent test data, will reveal that the generalization performance is not very high.

This overfitting problem becomes more severe when a large number of features per
object is used. Because the function f(x;w) should be defined for all possible x (i.e. the
complete feature space), the volume that should be described increases exponentially in
the number of features d. This is called the curse of dimensionality [Duda and Hart, 1973,
Bishop, 1995]. By decreasing the number of features per object, the number of degrees of
freedom in the function f(x;w) decreases and the generalization performance increases.
This means that increasing the number of features per object can harm the classification
performance!

One solution to the curse of dimensionality and overfitting is to use feature reduc-
tion or feature selection and retain only the few best features [Devijver and Kittler, 1982,
Pudil et al., 1994]. It is also possible to compute a small number of new features from the
set of old features (for instance a linear combination of old features), which is called feature
extraction. But when a complex function f(x;w) (with a large number of free parameters
w) is used, these methods will still not be sufficient to guarantee good generalization.

An important quantity is the number of objects, the sample size N , with respect to
the dimensionality of the feature space d. When we speak about small sample sizes, we
mean that the number of example objects is not sufficient to estimate all free parameters
w in the function f(x;w) with enough accuracy. In this case probably low generalization
performance are obtained [Raudys and Jain, 1991].

When a function f(x;w) is overtrained on some data, it depends on both the flexibility
of the function as well as on how well the error is minimized. When a very flexible function

1.2. Generalization 9

is trained on a new training sample X tr of the same size from the same distribution,
a completely different solution for w is obtained. This will happen in the apple-pear
classification problem for the classifier shown in figure 1.4. Then the weights w and thus
function f(x;w) show a large variance over different training samples.

When we introduce the average of the function f over all training sets X tr: EX tr [f(x;w)],
it is to be expected that the variance of the individual functions f(x;w) around EX tr [f(x;w)]
will be large. (Note that in the term EX tr [f(x;w)] the weight vector w will have a different
optimum over the different training sets X tr.) Only by using a very large training set will
the noise contributions cancel out and the function will follow the true data characteristics.
The empirical error will then approach the true error [Vapnik, 1998]. This classifier is said
to have high complexity.

The opposite problem of underfitting also occurs. Here the function or model f(x;w) is
not flexible enough to follow all characteristics in the data. The model then shows a large
bias (or has non-zero bias). Even an infinite amount of data cannot correct the systematic
errors. On average the difference between the results of the model EX tr [f(x;w)] and what
the data labels y show, does not vanish. This classifier is said to have low complexity.
This is what has been shown in figure 1.2. Although a reasonable amount of training data
for the apple-pear classification problem was available, the chosen model was not flexible
enough to capture the characteristics in the data. Another classifier, more flexible than the
linear one, should have been used in this example. But in practice, because in most cases
the amount of available data is limited and flexible functions are used, the underfitting
problem is considered less important than the overfitting problem.

Complexity

E
rr

or

Bias
Variance
Total

Fig. 1.5: The bias-variance tradeoff. For increasing complexity of the model, the bias component
of the error decreases, but the variance component increases. For a certain model
complexity, the total error is minimal. Different models show different bias-variance
tradeoff curves.

The best fitting function for a given sample is therefore a tradeoff between the bias
and the variance contributions [Geman et al., 1992, Friedman, 1997] (see figure 1.5). A
good fitting function should have both a small bias and a small variance. The function

10 1. Introduction

should be flexible enough to capture the data, but it should also be simple enough to
avoid overfitting. This is called the bias-variance dilemma. In our apple-pear classification
problem, the classifier with the optimal bias-variance tradeoff will be the classifier from
figure 1.1. The classifier is capable of closely following the optimal Bayes classifier (small
bias) but it is also robust against small changes in the training set (small variance).

These bias and variance contributions can directly be observed in a decomposition of
the mean squared error EMSE. To simplify the notation, we assume that the labels in the
training set yi are noise-free.3 Then we can compute the expected mean squared error
EX tr [EMSE(f,w,X tr)] over all training sets X tr and we can expand to [Geman et al., 1992,
Haykin, 1999]:

EX tr [EMSE(f,w,X tr)] = EX tr

[
1

N

∑
i

(f(xi;w)− yi)
2

]

= EX tr

[
1

N

∑
i

(f(xi;w)− EX tr [f(xi;w)] + EX tr [f(xi;w)]− yi)
2

]

= EX tr

[
1

N

∑
i

(f(xi;w)− EX tr [f(xi;w)])2

]
+ EX tr

[
1

N

∑
i

(EX tr [f(xi;w)]− yi)
2

]

+ EX tr

[
1

N

∑
i

2 (f(xi;w)− EX tr [f(xi;w)]) (EX tr [f(xi;w)]− yi)

]
(1.11)

Here EX tr [f(x;w)] is the expectation of the output of the classifier f(x;w) over all possible
training sets (with the same sample size N).

We computed the expected mean square error over all possible training sets X tr to
investigate the average behavior. It might happen that we are lucky and we have a very
good training set, which results in a very good generalization performance. On the other
hand, for a very atypical training set, we can only expect poor generalization results. To
investigate how well a function fits the data, we have to average out these contributions.

Because we averaged over all the training sets, we can remove the second part of the
last term (EX tr [f(xi;w)] − yi) from the expectation since this does not depend on X tr.
Then the first part of the last term becomes zero: EX tr [f(xi;w)−EX tr [f(xi;w)]] = 0 and

3 If that is not the case, we have to decompose the observed labels into a model and a noise contribution:
yi = E[y|xi] + ε. The first term E[y|xi] represents the deterministic part of the data which we try to
model. The second term ε contains all stochastic contributions and is often assumed to have zero mean.
The bias-variance decomposition considers the difference between what a function f can represent and the
deterministic part of the data E[y|x]. When yi contains some stochastic elements, replace yi by E[y|xi] in
the coming decomposition.

1.2. Generalization 11

therefore the third term in equation (1.11) vanishes:

EX tr

[
EMSE(f,w,X tr)

]
= EX tr

[
1

N

∑
i

(f(xi;w)− EX tr [f(xi;w)])2

]
+ EX tr

[
1

N

∑
i

(EX tr [f(xi;w)]− yi)
2

]
= variance + (bias)2 (1.12)

Also for other types of errors, like the loglikelihood [Heskes, 1998], a bias-variance decom-
position can be made. This indicates that the bias-variance dilemma is a fundamental
problem in fitting a model to some data.

The bias-variance dilemma can be suppressed by introducing prior knowledge into the
design of the function f(x;w). By including prior knowledge, e.g. constraints on the form
of f to the problem at hand, the complexity of the function is decreased while still the
required flexibility is retained. So the bias contribution will stay small and the variance is
limited. Unfortunately, either prior knowledge is not often available or it is very hard to
include the specific knowledge in the design of f(x|w). A few examples of including prior
knowledge in a function f are the number of clusters in k-means clustering, the intrinsic
dimensionality in a diabolo network, the rotation and translation invariance in a support
vector classifier [Schölkopf, 1997] and the same invariances in a neural network, i.e. the
shared weight networks [Le Cun et al., 1989].

In practice, when no extra prior knowledge is available, a (relatively) complex function
(or model) is taken and an extra error term Estruct(f,w) is added to the empirical error
(1.10). This structural error tries to measure the complexity of the function f(x;w). So
instead of minimizing just Eemp, we have to minimize the total error:

Etot(f,w,X tr) = Eemp(f,w,X tr) + λEstruct(f,w) (1.13)

The regularization parameter λ indicates the relative influence of the structural error with
respect to the empirical error. By setting λ = 0 the structural error will be ignored, while
for a very large λ a very simple function is obtained which completely ignores the data.
This parameter has to be set by the user. It is hoped that with this extended error, a
classifier with higher generalization is obtained. 4

In most cases the form of the structural error function is based on the continuity
assumption of the data: two objects that are near in feature space also resemble each other
in real life, imposing a smoothness on the function. The function should change smoothly
over the feature space and highly fluctuating solutions are discouraged. The smoother the
function, the lower the complexity. This thus assumes that the underlying data can be
described by a simple function and that very irregular f(x;w)’s are unlikely. This is the
expression of the belief in the principle of Occam’s razor: you should not introduce extra
complexity when it is not necessary [Bishop, 1995].

4 It is also possible to use this Etot as an estimate for the true error the model f is going to make on
the classification problem. This poses stronger constraints on the Estruct, and we will not consider it in the
coming discussion. We focus on the engineering problem of training a classifier with high generalization.

12 1. Introduction

Therefore, the minimization of the structural error should suppress high complexity
solutions for the function f(x;w). It has been shown that when complexity constraints are
enforced, the empirical error Eemp approaches the true error Etrue better and the function
f(x;w) can be applied with greater confidence to new objects [Smolensky et al., 1996].

Numerous approaches have been developed to approximate or model the structural
error Estruct (see [Wolpert, 1994] for an extended discussion about this topic). The sim-
plest methods just count the number of free parameters in the function. Minimizing this
number can be done by starting with a very simple model. A somewhat more advanced
method is to use weight decay. Here a term Estruct(f,w) = ||w||2 is introduced which
minimizes the norm of w. By minimizing the norm of w it is hoped that unimportant
or redundant parameters are minimized to 0. Similar effects can be obtained when a
number of weights in a neural network is shared to reduce the number of free parame-
ters [LeCun et al., 1990, Rumelhart and McClelland, 1986]. It is also possible to remove
the least important weights after training. Different approaches to the selection of these
weights are possible, like ’optimal brain damage’ [LeCun et al., 1990] or the ’optimal brain
surgeon’ [Hassibi and Stork, 1993].

In the training of neural networks, it is also possible to apply early stopping. In neural
networks often sigmoidal transfer functions are used. When small parameter values are
used, these transfer functions can be approached well by linear functions. This results in a
simple linear combination of inputs for the output of the network, instead of a complex non-
linear function of the inputs. This drastically reduces the complexity of the network. Before
training the free parameters are initialized with small random values and during training
the parameters grow. By stopping the training early, it is avoided that the parameters
reach too large values and that the network develops too wild non-linearities and thus,
that it overtrains on the data.

Another way to encourage smooth functions f is to directly minimize the curvature in
the function. Large fluctuations in the function are therefore actively discouraged. This is
done in regularization theory [Smolensky et al., 1996]. A complexity term in regularization
is, for instance, the Tikhonov stabilizer:

Estruct =
K∑

k=0

∫ x1

x0

∥∥∥ ∂k

∂xk
f(x;w)

∥∥∥2

µkdx (1.14)

Here µk ≥ 0 for k = 0, ..., K − 1 and µk > 0 for k = K is some weighting function
which indicates how smooth the kth derivative of function f(x;w) should be [Haykin, 1999,
Bishop, 1995].

In the Bayesian approach the weights w are not optimized to one particular optimum.
Here it is not only assumed that the data is a sample from a data distribution, but also that
the weights are a sample from a theoretical weight distribution [MacKay, 1992]. When a
classification (or regression) task has to be solved, one tries to find a complete probability
density for the weights. For weights w with a high probability, the function f(x;w) gives
a good approximation to the data. When a model is fitted to some data, not only are
the most likely weights used in the prediction (the model with the weights with maximal

1.3. One-class classification 13

probability), but the rest of the weight probability density is (in principle) used as well.
An important ingredient in the Bayesian approach is the use of a prior probability over
the weight space. This results in the regularization of the models (the prior probability of
large weights is set small) and this prevents from severe overtraining.

In minimum message length [Wallace and Dowe, 1999] and minimum description length
[Rissanen, 1978] one tries not only to minimize the size of the weights w, but tries to
directly implement Occam’s razor by minimizing the total encoding length of the output
given the dataset. To make a short encoding of the output, the output is split into a model
and a noise part. The model encodes all regularities in the data. All deviations from the
model (which is then considered noise) are encoded separately. To make a short encoding
of the model, the model should contain few parameters and these parameters should also
have easily encodable values.

Finally, a way of measuring the complexity Estruct of a classifier is by looking at the
worst-case performance of the classifier. When a certain number of arbitrary labeled ob-
jects with an arbitrary spatial placing can always be classified without errors by a classifier,
the classifier has not learned anything from the data. Only when more and more data is
available, the classifier really has to model the characteristics in the data. The maxi-
mum number of objects which can be learned without error for any arbitrary labelings,
gives an indication about the complexity of the classifier, measured by the VC-dimension
[Vapnik, 1998]. The VC-dimension measures the complexity of a classifier by counting the
maximum number of objects for all possible labelings in a certain feature space that a
classifier can separate [Vapnik, 1995].

Although numerous classification functions, errors and optimization routines are avail-
able, the ‘true’ structure in the data is often hard to model completely. One model cannot
handle all the ’delicate’ details of the data. It appears that the classification performance
can often be improved by extending one classifier to a combination of classifiers. Using
just the optimal classifier to solve a classification problem often disregards valuable infor-
mation contained in the other, suboptimal classifiers. They may be superior in specific
areas in the feature space. It has been shown that when a set of R classifiers is aver-
aged, the variance contribution in the bias-variance decomposition (1.12) decreases by 1

R

[Tumer and Ghosh, 1996] (the presence of bias in the individual classifiers might still have
large negative influence). Finally, this smaller variance contribution results in a smaller
expected error.

1.3 One-class classification

Much effort has been expended to solve classification tasks. Numerous methods have been
proposed which differ in the function (or model) f(x;w), the definition of the empirical and
structural error Etrue and Estruct, the optimization routine for minimizing (1.10) or (1.13)
and the choice of the regularization parameter λ. Although the problem of classification
is far from solved in practice, the problem of data description or one-class classification is
also of interest.

14 1. Introduction

Basically, the second task is the problem posed at the beginning of this chapter: identify
all objects which are neither apples nor pears. The problem in one-class classification is to
make a description of a target set of objects and to detect which (new) objects resemble this
training set. The difference with conventional classification is that in one-class classification
only examples of one class are available. The objects from this class will be called the target
objects. All other objects are per definition the outlier objects. In figure 1.6 a one-class

2

x
1

x

target (y = +1)

outliers (y = -1)

i

i

Fig. 1.6: Scatterplot of the apple-pear classification problem. A one-class classifier is shown
which distinguishes apples and pears from all other possible objects.

classifier is applied to our small example. The examples of apples and pears are now the
target objects and are labeled y = +1. All other possible objects (neither apples nor pears)
are the outliers y = −1. No examples of outlier objects are available. The solid line shows
a possible one-class classifier which distinguishes between the apple-pear objects and the
outliers.

In the literature a large number of different terms have been used for this problem.
The term one-class classification originates from Moya [Moya et al., 1993], but also outlier
detection [Ritter and Gallegos, 1997], novelty detection [Bishop, 1994b] or concept learning
[Japkowicz, 1999] are used. The different terms originate from the different applications
to which one-class classification can be applied.

Obviously, the first application for data description is outlier detection, to detect un-
characteristic objects from a dataset, examples which do not resemble the bulk of the
dataset in some way. These outliers in the data can be caused by errors in the measurement
of feature values, resulting in an exceptionally large or small feature value in comparison
with other training objects. In general, trained classifiers or regressors only provide reliable
estimates for input objects resembling the training set. Extrapolations to unknown and
remote regions in feature space are very uncertain [Roberts and Penny, 1996]. Neural net-
works, for instance, can be trained to estimate posterior probabilities [Richard and Lippmann, 1991],
[Bishop, 1995], [Ripley, 1996] and tend to give high confidence outputs for objects which
are remote from the training set. In these cases an outlier detection should first be used
to detect and reject outliers to avoid unfounded confident classifications.

1.4. One-class and two-class classification 15

Secondly, data description can be used for a classification problem where one of the
classes is sampled very well, while the other class is severely undersampled. The mea-
surements on the undersampled class might be very expensive or difficult to obtain. For
instance, in a machine monitoring system where the current condition of a machine is exam-
ined, an alarm is raised when the machine shows a problem. Measurements on the normal
working conditions of a machine are very cheap and easy to obtain. On the other hand, mea-
surements of outliers would require the destruction of the machine in all possible ways. It is
very expensive, if not impossible, to generate all faulty situations [Japkowicz et al., 1995].
Only a method trained on just the target data can solve the monitoring problem.

The last possible use of the outlier detection is the comparison of two data sets. Assume
that a classifier has been trained (in a long and difficult optimization process) on some
(possibly expensive) data. When a resembling problem has to be solved, the new data set
can be compared with the old training set. In case of non-comparable data, the training
of a new classifier is needed.

1.4 One-class and two-class classification

The problems we encountered in the conventional classification problems, such as the
definition of the error, atypical training data, measuring the complexity of a solution,
the curse of dimensionality, the generalization of the method, also appear in one-class
classification. Some problems become even more prominent. Because in conventional
classification, data from two classes are available, the decision boundary is supported from
both sides by example objects. Most conventional classifiers assume more or less equally
balanced data classes and do not work well when one class is severely undersampled or even
completely absent. Because in one-class classification only one class of data is available,
only one side of the boundary can be determined. It is hard to decide on the basis of just
one class how tightly the boundary should fit in each of the directions around the data. It
is even harder to decide which features should be used to find the best separation of the
target and outlier class.

For the computation of the true error Etrue, (definition (1.8)) the complete probability
density p(x, y) should be known. In case of one-class classification only p(x|ωT) (the
probability density of the target class, ωT) is known. This means that only the number
of target objects which are not accepted by the description, the false negatives, can be
minimized. This is called the error of the first kind, EI. This is trivially satisfied when the
data description captures the complete feature space. Without example outlier objects, or
an estimate of the outlier distribution p(x|ωO), it is not possible to estimate the number
of outlier objects which will be accepted by the description. This number, the number of
false positives, is called the error of the second kind EII.

In table 1.1 all possible situations of classifying an object in one-class classification,
are shown. A target object which is accepted by the classifier, is classified correctly. The
fraction of target objects which is accepted by the classifier, will be called fT+. When a
target object is rejected, it is (erroneously) classified as an outlier object. This contributes

16 1. Introduction

Table 1.1: The four situations of classifying an object in one-class classification. The true pos-
itive and the true negative objects do not contribute to the error because they are
classified correctly. The false positive and false negative objects are classified wrong.
The fraction of target objects which will be classified as target and outlier will be
called fT+ and fT− respectively. The fraction of the outlier objects which will be
classified as target and outlier object, will be called fO+ and fO− respectively.

object from target class
object from outlier
class

classified
as a
target
object

true positive, fT+
false positive, fO+

EII

classified
as an
outlier
object

false negative, fT−
EI

true negative, fO−

to the error EI. The fraction of target objects which is rejected, will be called fT−. The
fraction of outlier objects which is classified as target and outlier object will be called fO+

and fO− respectively. Error EII contains all false positives. Further, note that fT++fT− = 1
and that fO− + fO+ = 1. Thus, the main complication in one-class classification is, that
only fT+ and fT− can be estimated and nothing is known about fO+ and fO−.

To avoid the trivial solution of accepting all data, an assumption about the outlier
distribution has to be made. In this thesis we will therefore assume that, when no example
outliers are available, the outliers are uniformly distributed around the target data. Using
the Bayes rule, the posterior probability for the target class can be computed by:

p(ωT |x) =
p(x|ωT)p(ωT)

p(x)
=

p(x|ωT)p(ωT)

p(x|ωT)p(ωT) + p(x|ωO)p(ωO)
(1.15)

When it is assumed that p(x|ωO) is independent of x, i.e. it is uniformly distributed
in the area of the feature space that we are considering, p(x|ωT) can be used instead of
p(ωT |x). The p(ωT |x) is transformed into p(x|ωT) by a strictly increasing function. So
when p(ωT |x1) < p(ωT |x2) also p(x1|ωT) < p(x2|ωT) holds. The values of p(ωT) and p(ωO)
have to be assumed a priori.

Using a uniform outlier distribution also means that when EII is minimized, the data
description with minimal volume is obtained. So instead of minimizing both EI and EII, a
combination of EI and the volume of the description can be minimized to obtain a good
data description. Of course, when the true outlier distribution deviates from the uniform
distribution, another data description will show better generalization performance, but this

1.5. One-class classification methods 17

cannot be checked without the use of example outliers. Therefore, the generalization of a
method can only be given on the target data.

So, without example outliers, the empirical error Eemp can only be defined on the
target data. To define the empirical error on the outlier data, outlier objects have to be
created artificially or a measure of the volume of the data description has to be used.
The next problem is to define the structural error Estruct for a one-class classifier. In
conventional classification, smoothness constraints on f(x;w) are often imposed. For one-
class classifiers not only smoothness should be enforced, but also constraints for a closed
boundary around the data. In general, these extra constraints (which might be a harmful
bias for conventional classifiers) make the problem harder, and make other problems, like
the curse of dimensionality, more prominent. In one-class classification a boundary should
be defined in all directions around the data. In particular when the boundary of the data
is long and non-convex, the required number of training objects might be very high. So it
is to be expected that one-class classification will require a larger sample size in comparison
with conventional classification.

1.5 One-class classification methods

For one-class classification several models f(x;w) have been proposed. Most often the
methods focus on outlier detection. Conceptually the most simple solution for outlier
detection is to generate outlier data around the target set. Then an ordinary classifier
is trained to distinguish between the target data and outliers [Roberts et al., 1994]. Koch
[Koch et al., 1995] used ART-2A and a Multi-Layered Perceptron for the detection of (par-
tially obscured) objects in an automatic target recognition system. Unfortunately this last
method requires the availability of a set of near-target objects (possibly artificial) belong-
ing to the outlier class. The methods scale very poorly in high dimensional problems,
especially when the near-target data has to be created and is not readily available. In this
thesis we will not use this approach, but we will focus on solutions of one-class classification
without the creation of artificial outliers for training. Artificial outliers will be used in the
evaluation of the different models though.

In classification or regression problems a more advanced Bayesian approach can be
used for detecting outliers ([Bishop, 1995], [MacKay, 1992], [Roberts and Penny, 1996]).
Instead of using the most probable weights for a classifier (or regressor) to compute the
output, the output is weighted by the probability that the weights for the classifier or
regressor is correct, given the data. The classifier outputs are automatically moderated
for objects remote from the training domain. These methods are not optimized for outlier
detection and they require a classification (or regression) task to be solved. They are
therefore very suitable to detect the outlier objects in a classification or regression task.
When just a set of objects is available, these methods cannot be used. They also tend to
be computationally expensive.

Another possible approach is to use a density method which directly estimates the
density of the target objects p(x|ωT) [Barnett and Lewis, 1978]. By assuming a uni-

18 1. Introduction

form outlier distribution and by the application of Bayes rule (1.15) the description of
the target class is obtained. Only the prior probabilities of the target and outlier class,
p(ωT) and p(ωO) should be chosen beforehand. This directly influences the choice where
the probability p(ωT |x) should be thresholded to obtain a target and an outlier region.
For instance, in [Bishop, 1994b] and [Tarassenko et al., 1995] the density is estimated
by a Parzen density estimator. In [Parra et al., 1996] one Gaussian model is used. In
[Ritter and Gallegos, 1997] not only the target density is estimated, but also the outlier
density. Unfortunately, this procedure requires a complete density estimate in the complete
feature space. Especially in high dimensional feature spaces this requires huge amounts
of data. Furthermore, it assumes that the training data is a typical sample from the true
data distribution. In most cases the user has to generate or measure training data and he
(she) might not know beforehand what the true distribution might be. He can only hope
to cover the ‘normal state’ area in the feature space. This makes the application of the
density methods problematic. On the other hand, when a large sample of typical data is
available, the density method is expected to work well.

In some cases, prior knowledge might be available and the generating process for the
objects can be modeled. When it is possible to encode an object x in the model and to
reconstruct the measurements from this encoded object, the reconstruction error can be
used to measure the fit of the object to the model. It is assumed that the smaller the
reconstruction error, the better the object fits to the model and the more likely that it is
not an outlier. These methods will therefore be called the reconstruction methods. Due
to the introduction of prior knowledge, it is expected that these methods will work well,
and that they will suffer less from poor generalization and low sample size. On the other
hand, when the model does not fit the data well, a large bias might be introduced which
completely destroys all good characteristics.

Finally, boundary methods have been developed which only focus on the boundary of
the data. They try to avoid the estimation of the complete density of the data (which might
be impossible from small sample sizes) and therefore also work with an uncharacteristic
training data set. These pure one-class classification methods are relatively new and are
completely focused on the problem of one-class classification (the other methods were
mainly used in conventional classification problems). The main advantage of these methods
is that they avoid the estimation of the complete probability density. This not only gives
an advantage when just a limited sample is available, it is even possible to learn from data
when the exact target density distribution is unknown. A user might be able to sample the
feature space just very sparsely, without knowledge as to, what more typical examples are
and what the exceptions are. For the boundary methods, it is sufficient that the user can
indicate just the boundary of the target class by using examples. The user does not have
to model or sample the complete distribution. An attempt to train just the boundaries of
a data set is made in [Moya and Hush, 1996], [Moya et al., 1993]. Here neural networks
are trained with extra constraints to give closed boundaries. Unfortunately, this method
inherits the weak points in neural network training, i.e. the choice of the size of the network,
weight initialization and the stopping criterion.

Although in principle the boundary methods are more efficient than the density esti-

1.6. Outlook of this thesis 19

mation, it is not directly clear how one should define a boundary around a target set X tr,
how to define the resemblance of an object x to a target set X tr and where to put the
threshold. In most cases a distance d(x) to the target set is defined which is a function
of (Euclidean) distances between objects, between the test object and the target objects,
and between the target objects themselves (for instance in [Knorr et al., 2000], where it
is used for finding outliers in large databases). This requires well defined distances in the
feature space and thus well-scaled features. We will encounter this type of method in the
next chapter of this thesis.

1.6 Outlook of this thesis

In this chapter we introduced the problem of one-class classification and how it relates to
conventional two-class classification. In the rest of this thesis we will discuss the problems
in the construction and the training of one-class classifiers in more detail. We will present
some possible one-class models and we will compare them as well. In chapter 2 we start
with a new one-class classification method which directly finds a boundary around the
data and which minimizes the volume of the description. It does not depend on a density
estimate of the data, thus making it more resistant to the curse of dimensionality and able
to cope with atypical training data.

In chapter 3 several other (simple) models for one-class classification are investigated.
Most models are well-known in pattern recognition, but are sometimes adapted to cope
with the one-class classification problem. The three types of models will be treated: the
density estimators, the reconstruction methods and the boundary methods. The methods
differ in the definition of the function f(x;w) and the error E and in the minimization
method. The functions implicitly assume different characteristics in the data, and might
therefore show different generalization, different biases over different one-class problems
and different overfitting behavior. Their performance will be investigated and compared
in chapter 4 on several simple artificial datasets and some real world datasets.

Finally, in chapter 5 the possibilities of combining several one-class classifiers will be
investigated. It is well known that combining the results of conventional classifiers can
significantly improve performance in conventional classification problems. Due to the dif-
ferent nature of one-class classifiers, it will be investigated how far these characteristics are
preserved in the combination of one-class classifiers.

2. SUPPORT VECTOR DATA
DESCRIPTION

In this chapter we present and examine a method for directly obtaining the boundary
around a target data set. In the most simple case a hypersphere is computed which
contains all target objects. To minimize the chance of accepting outliers, the volume of
this hypersphere is minimized. The model can be rewritten in a form comparable to the
support vector classifier (SVC)[Vapnik, 1995], and it will therefore be called the support
vector data description (SVDD). It offers the ability to map the data to a new, high
dimensional feature space without much extra computational costs. By this mapping more
flexible descriptions are obtained. It will be shown how the outlier sensitivity can be
controlled in a flexible way. Finally, an extra option is added to include example outliers
into the training procedure (when they are available) to find a more efficient description.

In sections 2.1, 2.2 and 2.3 we present the basic theory, which is already partly presented
in [Tax and Duin, 1999]. It contains the normal data description, the description using
negative examples and an introduction to the use of kernels. In section 2.4 we discuss
some special properties of the SVDD which makes it possible to estimate the expected
error on the target set and which makes it possible to determine the values of some free
parameters in the method. In section 2.5 we will show that the SVDD gives solutions
similar to the hyperplane approach of [Schölkopf et al., 1999]. Other characteristics, like
the required number of examples, and the efficiency of the removal of outliers, will be
shown in section 2.6. In section 2.7 the method will be applied to a real life problem and
will be compared with some other (simple) one-class classification methods. Section 2.8
contains some conclusions.

2.1 Spherical data description

To start, we define a model f(x;w) which gives a closed boundary around the data: a
hypersphere. The sphere is characterized by a center a and radius R (figure 2.1) and we
demand that the sphere contains all training objects X tr.1 When we demand that the
sphere contains all training objects X tr the empirical error is set to 0. So, analogous to

1 This is identical to the approach which is used in [Burges, 1998] to estimate the VC-dimension of a
classifier which is bounded by the diameter of the smallest sphere enclosing the data.

22 2. Support Vector Data Description

xi

ξi

R

a

Fig. 2.1: The hypersphere containing the target data, described by the center a and radius R.
Three objects are on the boundary, the support vectors. One object xi is outside and
has ξi > 0.

the support vector classifier [Vapnik, 1998], we define the structural error:

Estruct(R, a) = R2 (2.1)

which has to be minimized with the constraints:

‖xi − a‖2 ≤ R2, ∀i (2.2)

To allow the possibility of outliers in the training set, and therefore to make the method
more robust, the distance from objects xi to the center a should not be strictly smaller
than R2, but larger distances should be penalized. This means that the empirical error
does not have to be 0 by definition. In figure 2.1 an example of a data description is given.
It shows one object which is rejected by the description. The error now contains both a
structural and an empirical error contribution. We introduce slack variables ξ, ξi ≥ 0,∀i

and the minimization problem changes into:

E(R, a, ξ) = R2 + C
∑

i

ξi (2.3)

with constraints that (almost) all objects are within the sphere:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i (2.4)

The parameter C gives the tradeoff between the volume of the description and the errors.
The free parameters, a, R and ξ, have to be optimized, taking the constraints (2.4) into

account. Constraints (2.4) can be incorporated into formula (2.3) by introducing Lagrange
multipliers and constructing the Lagrangian [Strang, 1988]:

L(R, a, ξ, α, γ) = R2 + C
∑

i

ξi

−
∑

i

αi{R2 + ξi − (xi · xi − 2a · xi + a · a)} −
∑

i

γiξi

(2.5)

2.1. Spherical data description 23

with the Lagrange multipliers αi ≥ 0 and γi ≥ 0, and where xi · xj stands for the inner
product between xi and xj. Note that for each object xi a corresponding αi and γi are
defined. L has to be minimized with respect to R, a and ξ, and maximized with respect
to α and γ.

Setting partial derivatives to 0 gives the constraints:∑
i

αi = 1 (2.6)

a =
∑

i

αixi (2.7)

C − αi − γi = 0, ∀i (2.8)

The last constraint can be rewritten into an extra constraint for α (see appendix A on
page 151 for a more elaborate explanation):

0 ≤ αi ≤ C, ∀i (2.9)

This results in the final error L:

L =
∑

i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (2.10)

with 0 ≤ αi ≤ C.
The minimization of this error with the constraints is a well-known problem; it is called

a quadratic programming problem. For the optimization of (2.10) with constraints (2.9)
standard algorithms exist. These find the optimal values for the Lagrange multipliers α.

By the Lagrange formulation of the problem, further interpretation of the values of α
can be given. When an object xi satisfies the inequality in constraint (2.4), the correspond-
ing Lagrange multiplier will be equal to 0 (αi = 0). For objects satisfying the equality
‖xi−a‖2 = R2 +ξi (the object is located at or outside the boundary), the constraint has to
be enforced and the Lagrange multiplier will become unequal 0 (i.e. positive, αi > 0). The
upper bound in inequality (2.9) limits the influence of objects on the final solution. When
an object obtains αi = C, the object is regarded as an outlier and will not be accepted by
the data description. An object with αi > 0 can therefore be on the boundary or outside
the boundary.

In equation (2.7), the center of the sphere a is expressed as a linear combination of
objects with weights αi. Therefore, for the computation of a objects with 0 weight (αi = 0)
can be disregarded. Only objects with positive weight αi > 0 are needed in the description
of the data set. It turns out that in the minimization of (2.10), often a large fraction
of the weights becomes 0. The sum in equation (2.7) is then over just a few objects xi

with non-zero αi. These objects will be called the support objects of the description or the
support vectors (SVs).

Because we are able to give an expression for the center of the hypersphere a, we can
test if a new object z is accepted by the description. For that, the distance from the object

24 2. Support Vector Data Description

z to the center of the hypersphere a has to be calculated. A test object z is accepted when
this distance is smaller than or equal to the radius:

‖z− a‖2 = (z · z)− 2
∑

i

αi(z · xi) +
∑
i,j

αiαj(xi · xj) ≤ R2 (2.11)

By definition, R2 is the (squared) distance from the center of the sphere a to one of the
support vectors on the boundary:

R2 = (xk · xk)− 2
∑

i

αi(xi · xk) +
∑
i,j

αiαj(xi · xj) (2.12)

for any xk ∈ SV bnd, i.e. the set of support vectors for which 0 < αk < C.
We will call this one-class classifier the support vector data description (SVDD). It can

now be written as:

fSV DD(z; α, R) = I
(
‖z− a‖2 ≤ R2

)
= I

(
(z · z)− 2

∑
i

αi(z · xi) +
∑
i,j

αiαj(xi · xj) ≤ R2

)
(2.13)

where the indicator function I is defined as:

I(A) =

{
1 if A is true,

0 otherwise.
(2.14)

Note that in formulae (2.10), (2.12) and (2.13) objects x only appear in the form of inner
products with other objects y: (x ·y). Analogous to [Vapnik, 1998] the inner products can
be replaced by a kernel function to obtain more flexible descriptions. We will investigate
this further in section 2.3.

The figure 2.2 shows a SVDD for a small 2-dimensional banana-shaped data set. The
objects are plotted with pluses, the gray value indicates the distance to the center of the
sphere (dark is close, light is remote). The solid circles indicate the support vectors, the
dashed line is the boundary of the data description. Only the 3 support objects are required
to describe the complete data set.

In this section we have shown the basic hypersphere model of the SVDD. How can we
optimize the placing of the center of the hypersphere, and how can we evaluate a novel
object. In the next section we expand this hypersphere model to include example outlier
objects in the training.

2.2 Data description with negative examples

When negative examples (objects which should be rejected) are available, they can be used
during the training to improve the description (i.e. to obtain a tighter boundary around the

2.2. Data description with negative examples 25

−5 0 5

−8

−6

−4

−2

0

2

4

6

Fig. 2.2: Example of a data description.

data in the areas where outlier objects are present). In contrast with the target examples,
which should be within the sphere, the negative examples should be outside it.

Assume that we train a SVDD on examples of two classes. One of the classes is
considered the target class (and thus the other class is the outlier class). It is possible to
train both a SVDD and a traditional (two-class) classifier on this data. The SVDD differs
from a conventional classifier because the SVDD satisfies the constraint that it always
obtains a closed boundary around one of the classes (the target class). Furthermore, it
does not require a strict representative sample of the target distribution; a sample with
(in some way) extreme objects is also acceptable. This is made explicit in the definition of
the error of the SVDD: the SVDD minimizes the volume of the description plus the sum
of the distances ξi the objects xi are outside the description.

A conventional classifier, on the other hand, distinguishes between two (or more) classes
without special focus on any of the classes. A classifier minimizes the probability of clas-
sification error. The conventional classifier is expected to perform very poorly when just a
few outlier examples are available and the outlier class is extremely undersampled. When
both a representative sample from the target class and a large amount of example out-
liers is available and when it is assumed that these objects are independently drawn from
the same target and outlier distributions,2 an ordinary two-class classification problem is
obtained. In that case the conventional classifier will work better than the SVDD. The
SVDD is then limited by the constraint of a closed boundary around the data.

The choice between a SVDD and an ordinary classifier is therefore influenced by both
the number of outlier objects available for training and how well they represent the target
and the outlier distributions. In the rest of the thesis we will assume that just a few
outliers are present in the training set (let’s say less than 5% of the training objects). Only
in section 2.6.4 extra outliers are introduced to measure the robustness against outliers.

In this section the target objects are enumerated by indices i, j and the negative exam-

2 This is called i.i.d. data: independent and identically distributed data.

26 2. Support Vector Data Description

ples by l,m. For further convenience we assume that target objects are labeled yi = 1 and
outlier objects are labeled yi = −1. Again we allow for errors in the target and the outlier
set and introduce slack variables ξi ≥ 0 and ξl ≥ 0:

E(R, a, ξ) = R2 + C1

∑
i

ξi + C2

∑
l

ξl (2.15)

and the constraints

‖xi − a‖2 ≤ R2 + ξi, ‖xl − a‖2 > R2 − ξl, ξi ≥ 0, ξl ≥ 0 ∀i, l (2.16)

(note that objects with ξi > 0 are the false negatives, objects with ξl > 0 are false positives.)

These constraints are incorporated in formula (2.15) and by introducing the Lagrange
multipliers αi, αl, γi, γl, we obtain:

L(R, a, ξ, α, γ) = R2 + C1

∑
i

ξi + C2

∑
l

ξl −
∑

i

γiξi −
∑

l

γlξl

−
∑

i

αi

[
R2 + ξi − ‖xi − a‖2

]
−
∑

l

αl

[
‖xl − a‖2 −R2 + ξl

]
(2.17)

with αi ≥ 0, αl ≥ 0, γi ≥ 0, γl ≥ 0.
As in equations (2.6), (2.7) and (2.8), the partial derivatives of L with respect to R, a

and ξi (ξl) are set to 0. This results in the new constraints:∑
i αi −

∑
l αl = 1 (2.18)

a =
∑

i αixi −
∑

l αlxl (2.19)

0 ≤ αi ≤ C1, 0 ≤ αl ≤ C2 ∀i, l (2.20)

When formulae (2.18), (2.19) and (2.20) are resubstituted into (2.17) we obtain

L =
∑

i

αi(xi · xi)−
∑

l

αl(xl · xl)−
∑
i,j

αiαj(xi · xj)

+ 2
∑
l,j

αlαj(xl · xj)−
∑
l,m

αlαm(xl · xm)
(2.21)

The notation can now be simplified when new variables αi
′ are defined which include

the labels yi = ±1:

αi
′ = yiαi (2.22)

Index i now enumerates both target and outlier objects. Using αi
′ the SVDD with negative

examples becomes identical to the original SVDD (formula (2.10)). The first two terms in
(2.21) collapse to the first term in (2.10), the last three terms become the second term in
(2.10). The constraints given in formulae (2.18) and (2.19) change into

∑
i αi

′ = 1 and a =

2.2. Data description with negative examples 27

∑
i αi

′xi and again function fSV DD (2.13) can be used. Therefore, when outlier examples
are available, we will use αi

′ instead of αi in the optimization and the evaluation. So, it
appears that the introduction of example outliers does not result in extra computational
complications for the SVDD. Only the sample size increases, which slows the quadratic
optimization.

In the optimization routine different regularization values C1 and C2 can be given for
the target and the outlier objects. Choosing different values for C1 and C2 incorporates
different costs for false negatives (target objects which are rejected or ’error of the first
kind’) and false positives (outlier objects which are accepted, also ’error of the second
kind’). Then by the ratio:

C1

C2

=
error kind I

error kind II
=
EI

EII

(2.23)

the relative values of C1 and C2 can be obtained. In section 2.4 a method to obtain absolute
values for C1, C2 will be given.

−5 0 5

−8

−6

−4

−2

0

2

4

6

Fig. 2.3: Example of a data description with one outlier indicated by the arrow.

In figure 2.3 the same data set is shown as in figure 2.2, extended with one outlier
object (indicated with the arrow). This outlier lies within the original data description on
the left. A new description has to be computed to reject this outlier. When the outlier
would is outside the original data description, the corresponding αl becomes 0 and the
computation of the center a (2.19) becomes identical to that of the SVDD without outlier
objects (2.7). Thus introducing an outlier in the training, which is remote from the target
data, does not change or harm the solution.

When a new outlier object is placed within the original data description (a data descrip-
tion not trained with this outlier), the outlier is placed on the boundary of the description.
This will require a minimal adjustment to the old description and to minimize the volume
of the description. This is shown in figure 2.3. Except for this single object, this dataset
is identical to the data in figure 2.2. This object now becomes a support vector for the

28 2. Support Vector Data Description

outlier class and it cannot be distinguished from the support vectors from the target class
on the basis of (2.13).

In this section we extended the SVDD to reject also some example outlier objects.
Although the description is adjusted to reject the outlier objects, it does not fit tightly
around the rest of the target set anymore. A more flexible description is therefore required.
This is what we will show in the next section.

2.3 Flexible descriptions

The hypersphere is a very rigid model of the boundary of the data. In general, it cannot
be expected that this model will fit the data well. If we can map the data to a new
representation, we might obtain a better fit between the actual data boundary and the
hypersphere model. Assume we are given a mapping Φ of the data which improves this fit:

x∗ = Φ(x) (2.24)

We can apply this mapping in (2.10) and (2.13) and we obtain:

L =
∑

i

αiΦ(xi) · Φ(xi)−
∑
i,j

αiαjΦ(xi) · Φ(xj) (2.25)

and

fSV DD(z; α, R) =

I

(
Φ(z) · Φ(z)− 2

∑
i

αiΦ(z) · Φ(xi) +
∑
i,j

αiαjΦ(xi) · Φ(xj) ≤ R2

)
(2.26)

It can be recognized that in these formulae all mappings Φ(x) occur only in inner
products with other mappings. It is possible to define a new function of two input variables,
called a kernel function:

K(xi,xj) = Φ(xi) · Φ(xj) (2.27)

and replace all occurrences of Φ(xi) · Φ(xj) by this kernel. Because this kernel can be
written as an inner product of two functions, it is called a Mercer kernel. This results in:

L =
∑

i

αiK(xi,xi)−
∑
i,j

αiαjK(xi,xj) (2.28)

and

fSV DD(z; α, R) = I

(
K(z, z)− 2

∑
i

αiK(z,xi) +
∑
i,j

αiαjK(xi,xj) ≤ R2

)
(2.29)

2.3. Flexible descriptions 29

In this formulation, the mapping Φ is never used explicitly, but it is only defined
implicitly by the kernel K. A good kernel function should be defined, i.e. a kernel which
maps the target data onto a bounded, spherically shaped area in the feature space and
outlier objects outside this area. Then the hypersphere model fits the data and good
classification performance is obtained.

The technique to replace Φ(xi) · Φ(xj) by K(xi,xj) is found by Vapnik [Vapnik, 1998]
and is called the ‘kernel trick’. The trick is used in the support vector classifier when
the classes are not linearly separable. Then the data is mapped to another feature space
where the data is, in fact, linearly separable. The advantage of the ‘kernel trick’ is that
the introduction of the kernels does not introduce much extra computational costs. The
optimization problem remains identical in the number of free parameters. The only extra
cost is in the computation of the kernel functions K(xi,xj).

3

−5 0 5 10

−5

0

5

n = 1

−5 0 5 10

−5

0

5

n = 3

−5 0 5 10

−5

0

5

n = 10

Fig. 2.4: Data description trained on a banana-shaped data set. The kernel is a polynomial
kernel with different degrees, n = 1, n = 3 and n = 10. Support vectors are indicated
by the solid circles; the dashed line is the description boundary.

3 Although we have stated the problem in terms of inner products between objects, it is also possible to
rephrase it in terms of distances between the objects. The squared (Euclidean) between two objects can
be written as:

‖xi,xj‖2 = xi · xi + xj · xj − 2xi · xj = ‖xi − 0‖2 + ‖xj − 0‖2 − 2xi · xj (2.30)

where ‖xi − 0‖2 is the squared distance from object xi to the origin. Using this equation we can give
xi · xj in terms of distances ‖.‖2. For the SVDD this means that (2.28) and (2.29) can be rewritten to:

L =
∑

i

αiαj‖xi − xj‖2 (2.31)

fSV DD(z;α, R) = I

∑
i

αi‖z− xi‖2 − 1
2

∑
i,j

αiαj‖xi − xj‖2 ≤ R2

 (2.32)

Thus, instead of changing the definition of the inner product by introducing the kernel function (which
might not be very intuitive), the distance definition is changed. The reader is free to choose either of these
interpretations.

30 2. Support Vector Data Description

Several kernel functions have been proposed for the support vector classifier [Smola et al., 1998].
For some of the kernels K, explicit mappings Φ can be reconstructed. It appears that, for
the support vector data description, not all kernel functions are equally useful. We will in-
vestigate the two most important kernel functions, the polynomial kernel and the Gaussian
kernel.

The polynomial kernel is given by:

K(xi,xj) = (xi · xj + 1)n (2.33)

where the free parameter n gives the degree of the polynomial kernel. This kernel creates
extra features with terms in xi and xj of all orders from 0 up to n. For the polynomial
kernel the mapping Φ can be given explicitly (for small dimensionalities d and degrees n).
For instance, for d = 3 and n = 2:

Φ(x) = (1, x1, x2, x3, x1 · x2, x1 · x3, x2 · x3, x
2
1, x

2
2, x

2
3)

T (2.34)

Then Φ(xi) · Φ(xj) reduces to expression in (2.33). All orders from 0-th to n-th order are
included. Already for these very small values for d and n, a total of 10 features appear.
In general, the number of features becomes [Burges, 1998] (for homogeneous polynomial
kernels (xi · xj)

n):

n∗ =
(n + d)!

d! n!
(2.35)

which explodes for larger n and d. The introduction of the kernel avoids the explicit com-
putation of all these features, while still retaining the characteristics of the representation.

One of the characteristics of the polynomial kernel greatly influences the performance
of the support vector data description. Recall that xi · xj = cos(θij)‖xi‖ · ‖xj‖, where θij

is the angle between the object vectors xi and xj. When data is not centered around the
origin, object vectors become large and the angles between them become small. Then for
larger degrees n, cos(θij) ∼ 1 and the polynomial kernel can be approximated by:

(xi · xj)
n = cosn(θij)‖xi‖n · ‖xj‖n ' ‖xi‖n · ‖xj‖n (2.36)

Equation (2.36) looses the sensitivity for θij in the neighborhood of the training data (where
θij becomes small). The objects with the largest norm in the training set will overwhelm
all other terms in the polynomial kernel.

In figure 2.4 the influence of large norm objects is shown. For a simple 2-dimensional
data set descriptions are obtained using a polynomial kernel with different degrees, for
n = 1 (left), n = 3 (middle) and n = 10 (right). Again the solid circles indicate the
support vectors; the dashed line is the description boundary mapped in the input space.
The rigid spherical description is obtained for n = 1. For degree n = 10 the description is
a 10-th order polynomial. The training objects most remote from the origin (the objects
on the right) become support objects and the data description only distinguishes on the
basis of the norm of the vectors. Large regions in the input space without target objects
will still be accepted by the description.

2.3. Flexible descriptions 31

What can be done to suppress this divergence of the training objects by this polynomial
mapping? Centering the data in the original input space, or in the new feature space, by
subtracting the averaged mapped x (as explained in [Schölkopf, 1997]) does not resolve the
problem of the large differences in vector norms. Assume that the explicit mapping Φ is
available, we can compute the mean Φµ in the feature space and map the data as follows:

x∗ = Φ(x)− 1

N

∑
i

Φ(xi) = Φ(x)− Φµ (2.37)

This can directly be substituted into (2.28) and rewriting gives (liberally using (2.6) or
(2.18)):

L =
∑

i

αi(x
∗
i · x∗i)−

∑
i,j

αiαj(x
∗
i · x∗j) (2.38)

=
∑

i

αi

[
Φ(xi) · Φ(xi)− Φ(xi)Φµ − Φµ

∑
i

Φ(xi) + Φ2
µ

]

−
∑
ij

αiαj

[
Φ(xi) · Φ(xj)− Φ(xi)Φµ − Φµ

∑
j

Φ(xj) + Φ2
µ

]
(2.39)

=
∑

i

αiΦ(xi) · Φ(xi)− Φµ

∑
i

Φ(xi)− Φµ

∑
j

Φ(xj) + Φµ · Φµ

−

[∑
ij

αiαjΦ(xi) · Φ(xj)− Φµ

∑
i

αiΦ(xi)− Φµ

∑
j

αjΦ(xj) + Φµ · Φµ

]
=

∑
i

αiK(xi,xi)−
∑
i,j

αiαjK(xi,xj) (2.40)

Also in the computation of the distance to the center of the sphere, the original formu-
lation reappears:

‖z∗ − a∗‖2 = ((Φ(z)− Φµ)− (Φ(a)− Φµ))2 = (Φ(z)− Φ(a))2

This shows that the centered SVDD (both in the original input space and in the high
dimensional feature space introduced by Φ) is equivalent to the original SVDD.

Although shifting of the dataset does not suppress the influence of the large norms
(which was introduced by the polynomial kernel), rescaling all feature directions in the
data to unit variance can help. In figure 2.5 the rescaled version of the data from figure 2.4
is shown. For n = 1 identical solutions are obtained. For higher n, especially for n = 10,
a tighter description is obtained then in figure 2.4, but still the objects with largest norm
determine the description.

Note also that rescaling to unit variance might magnify the influence of noise. High
dimensional data often contains some singular directions in which the variance of the

32 2. Support Vector Data Description

−2 0 2

−1

0

1

2

n = 1

−2 0 2

−1

0

1

2

n = 3

−2 0 2

−1

0

1

2

n = 10

Fig. 2.5: Data description trained on a banana-shaped data set. The kernel is a polynomial
kernel with three different degrees, n = 1, n = 3 and n = 10. Support vectors are
indicated by the solid circles; the dashed line is the description boundary. The data is
the same as presented in figure 2.4, only it is scaled to unit variance.

data is very small. The only contribution to the variance in these directions is due to
noise. Rescaling to unit variance might therefore deteriorate the data enormously. We can
conclude that, because the polynomial kernel stretches the data in the high dimensional
feature space, the data is very hard to describe by a hypersphere. We either have to scale
the data very carefully, or we have to use another kernel definition.

Next, we investigate the Gaussian kernel, given by:

K(xi,xj) = exp

(
−‖xi − xj‖2

s2

)
(2.41)

This kernel is independent of the position of the data set with respect to the origin, it only
utilizes the distances ‖xi−xj‖ between objects. For the Gaussian kernel no finite mapping
Φ(x) of object x can be given. The fact that K(xi,xi) = Φ(xi) ·Φ(xi) = 1 means that the
mapped object x∗i = Φ(xi) has norm equal to 1. When objects xi and xj are far apart in
the original input space (with respect to s) K(xi,xj) = (x∗i · x∗j) = 0, and this means that
in the high dimensional feature space the object vectors are perpendicular. Because an
infinite number of new objects can be added (with K(xi,xj) ' 0), the kernel space can be
infinitely extended (and thus can be infinitely large). It appears that the data is mapped
on a unit hypersphere in an infinite dimensional feature space.

Because K(xi,xi) = 1, both the Lagrangian (2.28) and the evaluation function (2.29)
simplify. Now we have to maximize the Lagrangian (ignoring constants):

L = −
∑
i,j

αiαjK(xi,xj) (2.42)

still retaining the constraints
∑

i αi = 1 and 0 ≤ αi ≤ C.

To evaluate if an object z is accepted by the data description, formula (2.29) can be

2.3. Flexible descriptions 33

rewritten as:

fSV DD(z; α, R) = I

(∑
i

αi exp

(
−‖z− xi‖2

s2

)
>

1

2
(B −R2)

)
(2.43)

where B = 1 +
∑

i,j αiαjK(xi,xj) only depends on the support vectors xi and not on
the object z. Note that this evaluation function is basically a thresholded mixture of
Gaussians (the left side in the inequality in (2.43) is a weighted sum of Gaussians). The
character of the data description heavily depends on the value which is chosen for the
width parameter s. We can distinguish three types of solution, for very small s, very large
s and for intermediate values.

For small values of s, i.e. for values smaller than the average nearest neighbor distance
in the data (or in the order mini,j ‖xi − xj‖), all cross terms in formula (2.42) become
small:

K(xi,xj) = exp

(
−‖xi − xj‖2

s2

)
→ 0, ∀i6=j (2.44)

For sufficiently small s, differences between K(xi,xj) for different i and j can be ignored,
and taking into account the constraint that

∑
i αi = 1, Lagrangian (2.42) is minimized

when all objects become support objects with equal αi = 1
N

. 4 Each individual object
now supports a small, equally weighted Gaussian, and the total model is a sum of all these
Gaussians. This is identical to a Parzen density estimation with a small width parameter
[Duda and Hart, 1973].

For very large s, i.e. values in the order of the maximum distance between objects
(maxi,j ‖xi − xj‖), the SVDD solution (2.43) approximates the original spherically shaped
solution (polynomial kernel with degree n = 1). This can be seen from a Taylor expansion
of the Gaussian kernel:

K(xi,xj) = exp(−‖xi − xj‖2/s2)

= 1− x2
i /s

2 − x2
j/s

2 + 2(xi · xj)/s
2 + ... (2.45)

Substituting this into Lagrangian (2.42) we obtain:

L = −
∑
i,j

αiαj

(
1− x2

i /s
2 − x2

j/s
2 + 2(xi · xj)/s

2 + ...
)

= −1 + 2
∑

i

αix
2
i /s

2 − 2
∑
i,j

αiαj(xi · xj)/s
2 + ... (2.46)

4 The solution αk = 1 and αi = 0,∀i 6=k has an even smaller error, but this is an unstable optimum.
Computing the first derivative of L (2.42) shows that ∂L

∂αi
= −2

∑
j αjK(xi,xj) < 0,∀i. If we start with

αk = 1 and αi = 0, ∀i 6=k, then ∂L
∂αi

= −2K(xi,xk) ' 0 and ∂L
∂αk

= −2K(xk,xk) = −2. The derivatives
show that for the maximization of L the value of αk should decrease while the values of αi should stay
the same. The constraint

∑
i αi = 1 will then increase the values of αi a bit, and significantly decrease

αk. On the other hand, when we consider αi = 1
N , ∀i, all derivatives are equal to ∂L

∂αi
= − 2

N

∑
j K(xi,xj)

and all αi are decreased by the same amount. Because the solution is constrained by
∑

i αi = 1, the αi

cannot be decreased further than 1
N and the solution is obtained.

34 2. Support Vector Data Description

This is equal to (2.10) up to a scaling factor 2/s2 and an offset −1 (ignoring higher orders).

Finally, for moderate values of s, the minimization of (2.42) gives a weighted Parzen
density as the description of the data (left hand side of the inequality in (2.43)). In the
maximization of (2.42) the Lagrange multipliers αi and αj tend to become 0 for large
values of K(xi,xj). These large K(xi,xj) are obtained when objects xi and xj are near.
Only for the smallest K(xi,xj) the corresponding αi and αj become larger than 0. The
corresponding xi and xj are then the most dissimilar objects found at the boundary of the
data set. These are the objects which become support vectors (αi > 0). The dissimilarity
is measured with the distance s. Both the number of kernels and their weights are obtained
automatically by the quadratic optimization procedure.

0 5 10

−5

0

5

s = 1.0

0 5 10

−5

0

5

s = 5.0

0 5 10

−5

0

5

s = 25.0

Fig. 2.6: Data description trained on a banana-shaped data set. The kernel is a Gaussian kernel
with different width sizes s. Support vectors are indicated by the solid circles; the
dashed line is the description boundary.

These three situations, ranging from a Parzen density estimation to the rigid hyper-
sphere, can be observed in figure 2.6. On the left, a small s = 1.0 width parameter is
used, and on the right a large s = 25.0 is used. This distance should be compared with
the average nearest neighbor distance in the target objects, which is in this case 1.1. In all
cases, except for the limiting case where s becomes huge, the description is tighter than
the original spherically shaped description or the description with the polynomial kernels.
Note that with increasing s the number of support vectors decreases (this fact will be used
in the next section).

Using the Gaussian kernel instead of the polynomial kernel results in tighter descrip-
tions, but it requires more data to support the more flexible boundary. In figure 2.7 the
banana-shaped data set is shown with a SVDD with a Gaussian kernel, using s = 7.0.
The left plot contains just the target objects. It already is tighter than the description in
figure 2.2. Using one outlier in the training can tighten the description even further. This
is shown in the right plot in figure 2.7.

In this section we showed how the rigid hypersphere model in the SVDD can be made
more flexible by introducing kernel functions. We looked at two kernel functions, the poly-
nomial and Gaussian kernel. Although the polynomial kernel function does not result in

2.4. Target error estimate 35

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

Fig. 2.7: An example of a data description without outliers (left) and with one outlier (right).
A Gaussian kernel with s = 7.0 is used.

tighter descriptions, the Gaussian kernel does. By changing the value of the free param-
eter s in the Gaussian kernel, the description transforms from a solid hypersphere, via a
mixture of Gaussians to a Parzen density estimator. Because of these favorable features of
the Gaussian kernel, we will use this kernel for the SVDD in the rest of the paper (except
when indicated otherwise).

2.4 Target error estimate

In section 2.1 we have seen that the SVDD is described by just a few objects, the support
vectors. It not only gives a speed-up of the evaluation of a test object z, but surprisingly
enough, it is also possible to estimate the generalization of a trained SVDD. When it is
assumed that the training set is a representative sample from the true target distribution,
then the number of support vectors is an indication of the expected error made on the
target set. When the training set is a sample which only captures the area in feature
space, but does not follow the true target probability density, it is expected that the error
estimate is far off.

This estimate can be derived by applying leave-one-out estimation on the training set
[Vapnik, 1998, Bishop, 1995]. For that the notion of essential support vectors has to be
introduced. The expansion of the center of the hypersphere description a =

∑
i αixi is not

unique. In some unfortunate cases, more objects are on the boundary of the sphere than
is necessary for the description of the sphere (for instance, when 4 objects are on a circle
in a 2-dimensional feature space where 3 objects are sufficient). Several expansions are
possible where different objects become support vectors. The essential support vectors are
these objects which appear in all possible expansions.

To estimate the leave-one-out error, we distinguish 4 cases:

1. When one of the internal points (for which αi = 0) is left out during training and the

36 2. Support Vector Data Description

data description is computed, the same solution is obtained as with the training set
including this training object. During testing this object will therefore be accepted
by the description.

2. When an essential support object on the boundary (a support vector with 0 < αi <
C) is left out, a smaller description is found. This support point will be rejected by
the new solution.

3. When a non-essential support vector is left out during training (also an object on
the boundary, with 0 < αi < C), the original solution is still obtained, using the re-
maining support vectors in the expansion. During testing, this non-essential support
object will still be accepted.

4. The support objects with αi = C, SV bnd, are already outside the sphere. When they
are left out of the training set, they will again be rejected during testing.

When we ignore, for the moment, the non-essential support vectors (they are pretty
rare), the fraction of objects which become support objects and outliers, is the leave-one-
out estimate of the error on the target set. When non-essential support vectors are present,
this becomes an over-estimate for the error. If we define:

nbnd
SV the number of support vectors on the boundary, i.e. ob-

jects with 0 < αi < C
nout

SV the number of support vectors outside the boundary, i.e.
objects with αi = C

nSV the number of support vectors, i.e. objects with 0 <
αi ≤ C

fbnd
SV fraction of the training objects which become support

vectors on the boundary, i.e.
nbnd

SV

N

f out
SV fraction of the training objects which become support

vectors outside the boundary, i.e.
nout

SV

N

fSV fraction of the training objects which become support
vectors, i.e. nSV

N

The error estimate then becomes:

Ẽ ≤ fbnd
SV + f out

SV = fSV (2.47)

When the support vector data description is trained on a set with both target and outlier
objects present, only the fraction of support vectors on the target set should be considered.
The fraction on the outlier class can be used for estimating the error on the outlier set, but
only when the outliers are drawn independently from the true outlier distribution. Because
most often the outlier class is sampled very sparsely, a true representative data set is not
available and no confident estimate can be obtained.

2.4. Target error estimate 37

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

s

fr
ac

tio
n

banana

fraction SV
fraction rejected

Fig. 2.8: Fraction of support vectors fSV and fraction of target data rejected fT− versus the
width parameter of the Gaussian kernel. Fifty objects are drawn from a 2-dimensional
banana-shaped distribution. The description is tested on 250 test objects. The exper-
iment is repeated 10 times. No errors are allowed (C = 1).

This target error estimate opens the possibility to optimize the regularization parameter
C and the width of the kernel s in the Gaussian kernel.5 The value of the regularization
parameter C can be chosen by using the fact that for objects outside the hypersphere
αi ≡ C. Recall the constraint that

∑
i αi = 1. When nout

SV objects are outside the sphere,
we still have to satisfy nout

SV C ≤ 1. This means for the value of C that:

C ≤ 1

Nfout
SV

(2.48)

When a training data set without outliers is expected, C can be set to 1.0 (or larger),
indicating that all training data should be accepted.

In section 2.2 (page 24) we treated the SVDD with negative examples. When outlier
objects are available during training, both C1 and C2 have to be specified (see (2.15)).
C1 can directly be found by using the estimate of formula (2.48). C2 can now be derived
by using an estimate of the error of the second kind, thus directly applying (2.48) on the
outlier data. It is also possible to use a priori defined costs for false positives and false
negatives and to apply (2.23).

Secondly, when the value of C (or C1 and C2) is determined, the kernel width s can be
optimized on the basis of the required target acceptance rate. Assume that a minimum for
Lagrangian (2.42) is found for a certain s1. For a second width value s2 > s1:

K(xi,xj; s2) ≥ K(xi,xj; s1) ∀i,j, s2 > s1 (2.49)

5 Or the degree n in case of the polynomial kernel. We will disregard the optimization of the degree n
here because we will only use the Gaussian kernel for the SVDD in the rest of the thesis. The optimization
for the Gaussian kernel deserves therefore more attention.

38 2. Support Vector Data Description

For large enough s2, (2.42) is maximized when the αi and αj corresponding to the larger
terms of K(xi,xj) become 0. The constraint

∑
i αi = 1 prevents all αi from becoming 0,

just a few αi stay large. This means that the most isolated objects become support vectors
and that the number of support vectors tends to decrease with increasing s (until we have
obtained the solid hypersphere solution, see page 33). By the use of formula (2.47) this
also means a decrease of the expected error on the target set. How many and which objects
become support vectors depends on the relative sizes of K(xi,xj), and thus on the target
data distribution.

The s can now be optimized to a prespecified target error. The minimization of La-
grangian (2.42) requires s to be specified beforehand, so s cannot be optimized directly.
An iterative scheme is therefore used. The scheme starts by computing a data description
for small s, in the order of the minimum nearest neighbor distances in the training set:

sstart = min
i
‖xi − NNtr(xi)‖ (2.50)

where NNtr(xi) is the nearest neighbor object of xi in the training set. When the fraction
of support vectors fSV is larger than the predefined target error rate, s is increased and
a new data description is trained. This is repeated until the fSV is smaller than the
desired fraction. s can be increased up to the maximum inter-object distance present in
the training set. For distances larger than the maximum distance in the dataset the rigid
hypersphere solution is obtained:

send = max
i,j

‖xi − xj‖ (2.51)

In figure 2.8 the fSV and the fT− are shown for several values of the width parameter s
(using C = 1). For this dataset sstart = 0.62 and send = 12.7. A SVDD has been trained 10
times on a sample of 50 objects drawn from a 2-dimensional banana-shaped distribution
(this is the same distribution which has been used in figure 2.2). The performance is checked
using an independent test sample of 250 objects from the same target distribution. For
small s all objects become support vectors and all test objects are rejected. For large s
on average 3 objects become support vectors (6%) and also about 6% of the test set is
rejected. The error on the test set closely follows fSV , as argued by (2.47).

The difference between optimizing s and C in a SVDD with the Gaussian kernel is
shown in figure 2.9. In the left subplot s is optimized to obtain fbnd

SV = 0.5 (we keep
C = 1). About half of the objects are now on the boundary, but a very noisy solution is
found. Because in this dataset far less than 50% of the data is on the ’true’ data boundary,
the SVDD is severely overtrained or overfitted. In most datasets, fbnd

SV = 0.5 is already
too much. In the right subplot of figure 2.9 the regularization parameter C is optimized
to f out

SV = 0.5. The width parameter s is now optimized to find fbnd
SV = 0.1. The solution

is far smoother than in the left plot. This smoothness is largely enforced by the fraction
of support vectors on the boundary, and therefore by the width parameter s. Thus, when
large fractions of the target set should be rejected, i.e. more than what is expected to lie
on the boundary of the dataset, the C should be adapted. In practice, when a limited
number of objects is rejected, adjusting s is sufficient.

2.5. The ν-SVC 39

−10 0 10

−15

−10

−5

0

5

10

15

−10 0 10

−15

−10

−5

0

5

10

15

Fig. 2.9: The difference between the SVDD after optimizing over s (left) and optimizing over C
(right). In both cases a 50% target rejection rate is optimized.

A general constraint for the SVDD is that enough data are available. In the previous
example with 50 objects in a 2-dimensional data set, it appears that the minimum number
of support vectors is 2 to 3. When a target error lower than 6% is requested, more data
is required. The accuracy of the target error estimate, the required number of training
objects and some other characteristics will be investigated in section 2.6.

In this section we showed that, when the SVDD is trained with a representative dataset,
an estimate of the error on the target set can be obtained by looking at the the number of
support vectors. Using this estimate, we can determine values for the free parameters in
the SVDD (s and C). With this, the complete SVDD is specified. In the next section we
will compare the SVDD with a resembling one-class classifier from literature, the ν-SVC.

2.5 The ν-SVC

This chapter started with the assumption of a hypersphere around the data as the basis for
the SVDD. The hypersphere is chosen because it gives a closed boundary around the data.
Schölkopf proposed another approach [Schölkopf et al., 1999], which is called the ν-support
vector classifier. Here a hyperplane is placed such that it separates the dataset from the
origin with maximal margin (the parameter ν will be explained in the coming sections).
Although this is not a closed boundary around the data, it gives identical solutions when
the data is preprocessed to have unit norm. In this section we will show how the SVDD
applied to data with unit norm, is equivalent to the hyperplane approach.

For a hyperplane w which separates the data xi from the origin with maximal margin
ρ, the following holds:

w · xi ≥ ρ− ξi, ξi ≥ 0, ∀i (2.52)

40 2. Support Vector Data Description

ρ

R

Fig. 2.10: Data descriptions by the ν-SVC (left) and the SVDD (right) without the introduction
of kernels K(xi,xj).

and the function to evaluate a new test object z becomes:

fν−SV C(z;w, ρ) = I (w · z ≤ ρ) (2.53)

Schölkopf now minimizes the structural error Estruct of the hyperplane, measured by
‖w‖ and some errors, encoded by the slack variables ξi, are allowed. This results in the
following minimization problem:

min

(
1

2
‖w‖2 − ρ +

1

νN

∑
i

ξi

)
(2.54)

with the constraints given by formulae (2.52). The regularization parameter ν ∈ (0, 1) is
a user defined parameter indicating the fraction of the data that should be accepted by
the description. It can be compared with the parameter C in the SVDD, formula (2.48)
with comparable bounds. This method is therefore called the ν-support vector classifier,
or ν-SVC.

An equivalent formulation of (2.52) and (2.54) is

max

(
ρ− 1

νN

∑
i

ξi

)
, subject to w · xi ≥ ρ− ξi, ξi ≥ 0∀i, ‖w‖ = 1 (2.55)

An extra constraint on ‖w‖ is introduced, and the optimization is now over ρ instead of
‖w‖. Again it is possible to introduce kernel functions for the inner products. Using the
appropriate kernels, especially the Gaussian kernel, data descriptions comparable with the
SVDD are again obtained.

When all data is normalized to unit norm vectors, the equivalence between the SVDD
and the ν-SVC can be shown. To normalize the data without the loss of information, an
extra bias term of 1 is introduced and the extended vector is normalized:

x′ =
(x, 1)

‖(x, 1)‖
(2.56)

2.5. The ν-SVC 41

We start again with a hypersphere around data (see also (2.3) and (2.4)):

min

(
R2 + C

∑
i

ξi

)
subject to ‖xi − a‖2 ≤ R2 + ξi, ∀i (2.57)

We transform all our data by substituting definition (2.56) into the constraints (2.57). x′

R

ρ

Fig. 2.11: Data descriptions by the ν-SVC and the SVDD where the data is normalized to unit
norm.

and a′ become normalized vectors:

min

(
R′2 + C ′

∑
i

ξi
′

)
subject to ‖x′i − a′‖2 ≤ R′2 + ξi

′, ∀i (2.58)

The constraints are rewritten as:

‖x′i‖2 − 2a′ · x′i + ‖a′‖2 ≤ R′2 + ξi
′

1− 2a′ · x′i + 1 ≤ R′2 + ξi
′

a′ · x′i ≥ 1

2
(2−R′2 − ξi

′) (2.59)

When the signs are changed in (2.57) and an extra constant 2 is introduced, we get:

max

(
2−R′2 − C ′

∑
i

ξi
′

)
subject to a′ · x′i ≥

1

2
(2−R′2 − ξi

′), ∀i (2.60)

Now we redefine:

w = a′, ρ =
1

2
(2−R′2),

1

νN
= C ′, ξi =

1

2
ξi
′, ∀i (2.61)

and the following optimization problem is obtained:

max 2

(
ρ− 1

νN

∑
i

ξi

)
with w · xi ≥ ρ− ξi, ∀i (2.62)

42 2. Support Vector Data Description

which is equal to (2.55) up to a factor 2 in the error function.

In the case of a Gaussian kernel, the data is implicitly rescaled to norm 1 (section 2.3).
Therefore, the solutions of the SVDD and the ν-SVC are identical when the Gaussian
kernel width equals s and C = 1

νN
is used. In their practical implementation the ν-SVC

and SVDD operate comparably. Both perform best when the Gaussian kernel is used. In
the SVDD, the width parameter s is optimized to find a prespecified fraction of support
vectors. The parameter C is set at a prespecified value indicating the fraction of objects
which should be rejected. In the ν-SVC the ν directly gives the fraction of objects which
is rejected. Although it is not specified explicitly in [Schölkopf, 1997], the s in the ν-SVC
can be optimized in the same way as in the SVDD.

2.6 Data description characteristics

In the previous sections we have seen some (theoretical) properties of the SVDD; the
influence of the parameters s and C. The next question is how it behaves in practical
situations. How well does the SVDD capture the target set, how many support vectors
does it need, how well is the target error estimated and how well can outliers be rejected?
In this section these and other characteristics of the SVDD will be investigated.

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

−2 0 2
−2

−1

0

1

2

−5 0 5
−4

−2

0

2

4

−10 0 10
−10

−5

0

5

10

Fig. 2.12: Two dimensional versions of 4 data sets, uniform spherical, elliptical, Gaussian and
banana-shaped.

We consider 4 artificial data sets, shown from left to right in figure 2.12. The first
dataset is a spherical data set sphere where objects are uniformly distributed in a unit
hypersphere. The second set is an ellipse dataset ellipse in which the data is drawn from
the same uniform distribution, but in which one of the feature values has been multiplied by
2. The third data set is a Gaussian distribution with unit standard deviation, Gauss. The
last data set is a 2-dimensional banana-shaped set, banana. Higher dimensional versions
are created by drawing new samples from the same distribution and by using the new
feature values as the extra features.

For measurements on real world data, conventional classification problems are taken
from the UCI repository [Blake et al., 1998]. We will use the Iris, sonar, glass and imox

datasets. A data description is trained on each of the classes separately. Thus for the
three-class Iris dataset three different one-class classification problems are obtained.

2.6. Data description characteristics 43

2.6.1 Rigid hypersphere

First, how much data are required to find a good description of a data set in some feature
space? This question cannot be answered beforehand. It not only depends on the shape
of the target data set, but also on the distribution of the (unknown) outlier set. We
will assume uniformly distributed outlier data, and when a rigid, spherically-shaped data
description is considered, a lower limit for the number of support vectors, nSV , can be
obtained. For a strictly spherically shaped model, the coordinates of the center of the
sphere and the radius of the sphere are required (in total, the values of N+1 free parameters
have to be determined). In theory 2 objects are sufficient to determine the free parameters
for the sphere (2 objects determine 2N parameters). However, the center of the sphere is
described as a linear combination of the objects xi (equation (2.7)) with the constraint that∑

i αi = 1. The center can then only be described by 2 objects when the 2 objects are the
most remote and diametrically placed with respect to the center of the sphere. Due to the
construction of the SVDD, the objects should then be on the boundary of the description.
Therefore, the required number of objects is, in general, d+1, for d-dimensional data with
non-zero variance in all directions. For data in a subspace, the number becomes less (down
to 2 if the data is placed on a 1-dimensional line).

Ten different samples are drawn for each of the data sets for several dimensionalities,
each sample containing 250 examples. On each of the data sets a SVDD with polynomial
kernel, n = 1, is trained (this means that a rigid hypersphere is used). In the left plot of

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

dimensionality

nu
m

be
r

of
 S

V

sphere
ellipse
Gauss
banana

0 2 4 6 8 10 12 14
0

5

10

15

dimensionality

le
ng

th
 r

ad
iu

s

sphere
ellipse
Gauss
banana

Fig. 2.13: The left plot shows the number of support vectors, for several artificial data sets using
polynomial kernel with degree 1, while the right plot the length of the radius of the
hypersphere. All datasets contain 250 training objects.

figure 2.13 we investigate the number of support vectors nSV for different dimensionalities
and different (artificial) data sets. The first observation which can be made from the
left plot in figure 2.13 is that for the sphere data set the nSV = d + 1 where d is the
dimensionality. For higher dimensionalities the variance of the number increases and the
average decreases somewhat. When one of the feature space axes is stretched, nSV drops.
In particular, in the ellipse dataset the higher dimensionalities allow for more economical

44 2. Support Vector Data Description

use of objects; often d/2 objects are enough. nSV never drops to the minimum of 2, though.
In the Gauss and the banana datasets, nSV is between the worst case sphere dataset and
the most efficient ellipse dataset.

With increasing dimensionality not only the nSV increases, but also the variance of
nSV over different samples. These experiments show that the SVDD cannot completely
escape the curse of dimensionality. Using a larger number of features requires more training
objects to ensure the same target class error.

In the right plot of figure 2.13, the radius of the rigid hypersphere is shown. We see
that for the sphere data the radius of the SVDD remains in all cases 1.0, even for higher
dimensionalities, indicating that a tight description is obtained. For lower dimensionalities
the radius of the SVDD on the ellipse data is almost 2.0, but for higher dimensionalities
it decreases somewhat. In the ellipse dataset, the description is ultimately dependent on
the two extreme tips in their distribution. It appears that these tips of the ellipse are not
filled completely with samples and therefore the description can become smaller. In the
spherical distribution the description cannot become smaller, because no tips are present,
and all directions in the data are important. For the Gauss and especially for the banana

data set, the radii increase significantly with the growing dimensionality. This is mainly
caused by a few objects with large feature values, which results in large distances in higher
dimensional feature spaces. This effect is largely induced by the fact that no target objects
are allowed outside the description (C = 1). Rejecting a few of these outliers (by adjusting
C) will tighten the description again and will reduce the influence of these outliers on the
final data description.

Table 2.1: Minimum number of support vectors for the SVDD with a polynomial kernel with
n = 1 (i.e. the rigid hypersphere solution) applied to different datasets and different
target classes. The experiments on the artificial datasets are averaged 25 times, while
for the real world datasets 5-fold cross-validation is applied. The dimensionality of
the data is reduced (when possible) by PCA.

dataset class orig 2-D 5-D 10-D 25-D

Gauss 2.75 4.94 6.78 11.28
banana 2.87 4.95 8.67 13.65
ellipse 2.03 2.42 2.69 3.23
Iris 1 2.10 2.10
(4D) 2 3.10 2.00

3 3.00 2.20
sonar 1 5.90 2.10 2.20 5.40 5.70
(60D) 2 6.70 3.00 4.10 4.40 6.70

dataset class orig 2-D 5-D

glass 1 3.90 2.80 3.70
(9D) 2 2.90 2.70 2.20

3 2.20 2.20 2.20
4 4.00 3.00 4.00

imox 1 4.10 3.00 4.10
(8D) 2 2.30 2.10 2.20

3 3.80 2.10 3.00
4 4.70 3.00 3.40

The number of support vectors, nSV , is shown in table 2.1 for the other datasets and
varying dimensionalities. Still the rigid hypersphere solution is used (a polynomial kernel
with degree n = 1). The Gauss and banana sets have non-zero variance in all feature
directions, the ellipse mainly in the first direction. nSV in the original feature space is

2.6. Data description characteristics 45

shown in the third column (except for the artificial datasets). In the next columns the
results are shown for datasets which are reduced to the first few principal components. For
the Gauss and banana datasets nSV increases with increasing dimensionality, but remains
in the order of d/2. In the ellipse dataset the single large variance direction causes nSV

to stay very low. For the other data sets nSV is bounded by the subspace in which the data
is distributed. For the sonar database nSV hardly changes above 25 dimensions, for the
other datasets this already happens with 5-dimensional data. Finally, note that nSV for
different classes can differ, e.g. in the imox dataset it ranges from 2 to almost 5. When a
limited amount of data is available, this minimum number of support vectors immediately
gives an upper bound on the error (by formula (2.47)).

Note that in these experiments a polynomial kernel with degree 1 is used (definition
(2.33)). When more flexible kernels are used (for instance, the Gaussian kernel, definition
(2.41)) more support vectors are required and the SVDD suffers more from high dimensional
feature spaces.

2.6.2 Flexible descriptions

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6
banana, 2D

s

fr
ac

tio
n

outlier accepted
#SV target set
target rejected

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

s

fr
ac

tio
n

banana, 5D

outlier accepted
#SV target set
target rejected

Fig. 2.14: The fraction of outliers which is accepted fO+, the fraction of the target data which
becomes support vectors fSV and the fraction of target data rejected fT− versus
the width parameter s for 2-dimensional (left) and 5-dimensional (right) data. The
training set size is 50.

From now on, we will use the SVDD with the Gaussian kernel (definition (2.41)). In
figure 2.14 the outlier acceptance rates on the banana distribution are investigated. The
fraction of outliers which is accepted fO+, the fraction of training objects which become
support vectors fSV and the error on the target set fT− is shown for data with two different
dimensionalities (2- and 5-dimensional). For varying width parameter s a SVDD is trained
in the same way as in figure 2.8. fT− is then estimated by drawing a new independent
test set, containing 200 objects. 1000 testing outliers are drawn from a square block
around the data. Note that by changing the dimensionality of the dataset, the one-class

46 2. Support Vector Data Description

problem changes considerably. Most importantly, the difference between the area covered
by the target and outlier data in feature space increases (we will have a more thorough
discussion about this subject in section 3.1.1). Because distances between objects increase
with increasing dimensionality, the error on the outlier set will decrease.

By increasing s, nSV decreases, closely followed by fT−. For large s, the error is bounded
by the minimum number of support vectors which is needed for the description. In this
case about 3 support vectors for 2-dimensional data and about 5 for 5-dimensional data are
required, which results in a minimum error of about 6% or 10%. The maximal fraction of
outliers accepted is the ratio of the volume of the hypersphere to the volume of the outlier
data block. This fraction is bigger in 2- than in 5-dimensional data. Also the distances
between objects are significantly smaller in 2 dimensions than in 5. For s > 20 in the 2-
dimensional data and for s > 40 in the 5-dimensional data both fractions remain constant,
indicating that the maximum scale in the data is reached. In this situation effectively the
rigid hypersphere solution is obtained.

2.6.3 Training with outliers

Table 2.2: Classification error of conventional classifiers and one-class classifiers, trained on each
class separately. Testing is done on an independent test set. Numbers in bold indicate
the best performance for the conventional classifiers and the one-class classifiers.

dataset class Bayes Parzen SVC-p3 SVDD SVDD-p3 SVDD-neg SVDD-n-p3

Iris 1 0.000 0.000 0.000 0.047 0.033 0.013 0.020
2 0.267 0.033 0.080 0.087 0.067 0.067 0.073
3 0.073 0.033 0.060 0.067 0.340 0.107 0.093

glass 1 0.219 0.187 0.220 0.271 0.364 0.327 0.299
2 0.326 0.206 0.196 0.402 0.617 0.285 0.416
3 0.084 0.089 0.117 0.286 0.369 0.117 0.089
4 0.071 0.052 0.070 0.150 0.748 0.145 0.752

sonar 1 0.250 0.145 0.115 0.403 0.515 0.428 0.519
2 0.250 0.145 0.115 0.307 0.447 0.312 0.442

imox 1 0.088 0.041 0.046 0.129 0.656 0.108 0.561
2 0.047 0.005 0.016 0.068 0.672 0.094 0.677
3 0.063 0.005 0.062 0.088 0.083 0.098 0.123
4 0.114 0.041 0.104 0.167 0.459 0.145 0.392

To compare data descriptions with conventional two-class classifiers, both are trained on
the classification problems mentioned in the previous section. One class is the target class,
and all other data are considered as outlier data. 10-fold cross validation is used to find the
classification error. To investigate the influence of the norms of the vectors in real world
applications, not only the Gaussian kernel, but also the polynomial kernel is considered.

2.6. Data description characteristics 47

Three conventional classifiers are used: a linear classifier based on normal densities (called
Bayes), a Parzen classifier and the support vector classifier with polynomial kernel of degree
3 (abbreviated by SVC-p3).

Furthermore, we consider four versions of the SVDD. The first two versions do not
use example outlier data in their training. The first data description is a SVDD with
polynomial kernel and degree n = 3, SVDD-p3. The second method is a SVDD with a
Gaussian kernel, where s is optimized for a target rejection rate of 10%. The last two
methods use negative examples in their training, and again the polynomial and Gaussian
kernel is used, SVDD-neg and SVDD-n-p3. When the polynomial kernel was used, the
data is rescaled to unit variance.

The results are shown in table 2.2. Numbers in bold indicate the best performance
for the conventional classifiers and the one-class classifiers. In most cases the classifiers,
especially the Parzen classifier and the SVC-p3, outperform the data descriptions. Also, the
data descriptions using outliers perform somewhat better than without example outliers,
but in some cases it requires careful optimization of the C1 and C2 parameters (for instance,
for the imox dataset which has much overlap between the classes). In most cases the data
descriptions with the polynomial kernel (SVDD-p3 and SVDD-n-p3) perform much worse
than with the Gaussian kernel, except for the Iris dataset where the performances are
comparable.

Note that here one-class classifiers are compared with conventional multi-class clas-
sifiers. Although the former appear to perform somewhat worse, they obtain a closed
boundary around the data in all cases. The latter classifiers are optimized for distinguish-
ing between the target and outlier data in the training set, but in the case of atypical target
data, or very sparsely sampled outlier data, it cannot be expected that the conventional
classifiers will work well. This experiment just shows that using the more restricted one-
class classifiers, the performance is not much worse in comparison with the conventional
multi-class classifiers.

2.6.4 Outliers in the target set

Finally, we investigate how well outliers in the target set can be rejected. Artificial outliers
are added to a target set, and a SVDD with Gaussian kernel is trained on this dataset.
Because the set of outlier objects is known, the performance on this artificial outliers can
be computed. The outliers are drawn from a rectangular uniform distribution around the
target set. The edges of the box are 6 times the standard deviation of the training set.
Objects within 3 times the standard deviation from the center of the target set will not
be used as outliers. The training set contains 100 objects, the target objects are drawn
from a normal distribution. An example of this target and outlier distribution is shown
in figure 2.15. Parameter s will be optimized to obtain fSV = 0.15 (which includes both
target objects and outlier objects). The fraction outliers is varied from 0 to 30%.

In section 2.4 we showed that outliers in the training set can be rejected by adjusting
the regularization parameter C ≤ 1

nout
SV

= 1
N ·fout

SV
. In order to make a direct connection with

48 2. Support Vector Data Description

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 2.15: The scatter plot of 500 artificial outlier objects (indicated by ’+’) created around a
Gaussian distributed target set (indicated by ’o’).

the fraction outliers in the dataset, we consider the parameter:

ν =
1

NC
(2.63)

This is the direct analog of the ν parameter in the ν-SVC as introduced in section 2.5.
Note that this parameter is set by the user. The fraction of objects of the target class
which is rejected by the SVDD, fT− (and fO− if outliers are present in the training set), is
measured after the SVDD is fitted.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1
banana

v

fr
ac

tio
n

target
outliers
total

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gaussian

v

fr
ac

tio
n

target
outliers
total

Fig. 2.16: fT− and fO− for banana target set (left) and the Gaussian target set (right). The
results are averaged over 10 runs.

In figure 2.16 the fT− and fO− are shown for different values of ν. In the left plot the
banana target distribution is used, where 10% of the objects are outliers. In the right plot
the Gauss shaped data set is used, with 30% outlier objects. The results are averaged
over 10 runs. When from the 100 training objects 10% are outliers, ν should be bounded
ν > 0.1 (such that for C < 0.1). When ν < 0.1 some outliers have to be accepted in

2.7. Machine diagnostics experiments 49

the description. For ν = 0.05 just 75% of the outliers are rejected (which is about 5%
of the training data). Because the outliers, in general, do not completely surround the
target data, some target objects also become support vectors. Most outliers are rejected
for ν > 0.1, but sometimes outliers are near the target data and are still accepted. Also
’true’ target objects are now rejected. This is the classic tradeoff between false positive
and false negative.

In summary, in this section we investigated how the SVDD operates on some artificial
and some real world data. The experiments show that it is possible to train well-fitting
data descriptions when a sufficient number of examples is available. The higher the di-
mensionality of the data and the more complex the distribution, the more training data is
required. Furthermore, example outlier objects can be used to improve the classification
performance. When a large number of outlier examples is available, conventional two-class
classifiers outperform the SVDD. In the next chapter we apply the SVDD to a real one-class
classification problem: the problem of machine diagnostics.

2.7 Machine diagnostics experiments

In the next chapter a more extensive comparison between different one-class classification
methods will be given. The methods and the error measure will be discussed in more detail.
In this section we mainly focus on the performance of the SVDD in real life problems.
The SVDD will be applied to a machine diagnostics problem: the characterization of a
submersible water pump [Ypma and Pajunen, 1999, Ypma et al., 1999, Tax et al., 1999].

The task is to detect when the pump deviates from its normal operation conditions.
Both target objects (measurements on a normal operating pump) and negative examples
(measurements on a damaged pump) are available.

To characterize the condition of a pump, vibration sensors are mounted on the machine.
From the recorded time series subsamples are taken and the power spectrum of these signals
is calculated. These high dimensional spectrum features are reduced in dimensionality by
taking the first few principal components of the data. In a test bed several normal and
outlier situations can be simulated. Several normal situations consist of situations with
different loads and speeds of the pump. The outlier data contain pumping situations
with a loose foundation, an imbalance and a bearing failure. The special feature of this
setup is that, beforehand, a set of operating modes has to be considered. When one-
class classification methods are compared, we can not only investigate the case in which
the training data is sampled according to the test data (which should represent the ’true’
distribution), but it is also possible to use just a few load and speed settings for the training
set and see how the behavior is on the test data.

To see how well the SVDD and the SVDD with negative examples (SVDD-neg) perform,
we compare them with three other, simple one-class classification methods. The first two
methods estimate the probability density of the target class. The first method assumes a
normal density where the mean and the covariance matrix Σ of the target data have to be
estimated. In high-dimensional feature spaces the covariance matrix of the target set can

50 2. Support Vector Data Description

become singular. The covariance matrix is then regularized by adding a small term λ to
the diagonal terms in the covariance matrix, i.e.: Σ′ = Σ + λI [Raudys and Jain, 1991].
The regularization parameter is optimized for the problem at hand and is in most cases
between 10−3 and 10−6. The second method is the Parzen density where the width of the
Parzen kernel is estimated using leave-one-out optimization [Duin, 1976].

The last method is based on nearest neighbor distances, and will be called the nearest
neighbor method, NN-d. It compares the local density of an object z with the density
of the nearest neighbor in the target set [Tax and Duin, 2000]. The distance between the
test object z and its nearest neighbor in the training set NNtr(z) is compared with the
distance between this nearest neighbor NNtr(z) and its nearest neighbor in the training
set NNtr(NNtr(z)). When the first distance is much larger than the second distance, the
object will be regarded as an outlier. We use the quotient ρNNtr between the first and the
second distance as indication of the resemblance of the object to the training set:

ρNNtr(z) =
‖z− NNtr(z)‖

‖NNtr(z)− NNtr(NNtr(z))‖
(2.64)

For more details, see [Tax and Duin, 1998], the next chapter, page 69 or appendix B.
To compare different methods, the tradeoff between fT− versus fO+ is investigated. For

all methods we try to set the thresholds such that a fraction of 0.01, 0.05, 0.1, 0.2, 0.25 and
0.5 of the target class is rejected. The fO− is measured afterwards. In the next chapter we
will discuss a scalar error measure based on these target acceptance and outlier rejection
rates.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

 atypical 64D, 356 tr.

Gauss
Parzen
NN−d
SVDD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

 atypical 5D, 356 tr.

Gauss
Parzen
NN−d
SVDD

Fig. 2.17: ROC curve for the 4 one-class methods trained on all available operation conditions
(vibration dataset 1). The left plot shows the results in 64 dimensions, the right plot
in 5 reduced dimensions. The measurements from 5 sensors are used.

The plots in figure 2.17 show the results in the form of the Receiver-Operating Charac-
teristic (ROC) curves [Metz, 1978], where fT+ is plotted versus fO− for the power spectrum
features (a more elaborate treatment of ROC curves will be given in section 3.1.2, page 60).

2.7. Machine diagnostics experiments 51

From all pump operation conditions, vibration signals are measured and used in training
and testing. Measurements on 5 different vibration sensors are used. This resulted in a
training set of 356 target objects, represented in a 64-dimensional feature space. In the
left plot we have the results in the complete feature space, on the right we have used just
the first 5 principal components of the training set.

In these datasets the training set is identically distributed as the testing data. All
one-class methods perform about the same on the 64-dimensional dataset. The good
performance by the normal density model indicates that the target class is a nice unimodal
cluster. In the reduced 5-dimensional case the estimation of the normal density is still
possible, as shown in the right plot of figure 2.17, but performance is worse. All methods
show about equal performance for low target acceptance rates fT+. But for high fT+, the
SVDD starts suffering from the fact that not enough data are available to find a description
more flexible than a sphere. The Parzen density describes the target data very well, which
is not very surprising, given the fact that we have 356 objects in a 5-dimensional feature
space. All methods have problems in distinguishing between target and outlier objects,
though. Even when 50% of the target objects are rejected, only 80% of the outlier objects
can be rejected. When it is not allowed to reject more than 5% of the target data, we have
to accept about 50 to 60% of the outlier data.

From these experiments we can conclude that it is possible to distinguish between target
and outlier objects, but that there is some overlap between the two classes. The target and
outlier objects cannot be distinguished without errors. To improve the performance, we
will use domain knowledge about the placing of the vibration sensors. In this experiment,
all measurements of all sensors are used, but next we will show that some sensors are
placed in a position where they are not very sensitive to the failures that might occur.
Because their information content might be not significant, their noise contribution might
be large enough to decrease the representational power of the dataset. By removing the
measurements of these sensors, the class overlap might thus decrease.

In figure 2.18 the results of all one-class methods are shown for the data from 3 of
the 5 sensors (thus removing the most noisy measurements). Again, all available pump
operation conditions are used. In the left plot the original 64-dimensional data is used, in
the right plot only the first 3 principal components of the data. It appears that by using
the original 64-dimensional representation of this data, the outliers can be distinguished
far better than in the previous case where the measurements of all 5 vibration sensors were
used. It is now possible to accept all target objects, while more than 80% of the outlier
objects is rejected. This is a significant improvement, since in the previous case less than
40% of the outliers objects is rejected. When the first 5 principal components are used,
performance again decreases to about the same level as in the previous case. It appears
that here about 30 features are necessary to obtain a good separation between target and
outlier objects.

In the 64-dimensional dataset the best performance is obtained using the NN-d. This
indicates that the sample size might be a bit too small. It appears that the NN-d is
especially apt in operating in low sample size situations; see appendix B. The fact that
we are dealing with a small sample size situation, is also visible in the performance of

52 2. Support Vector Data Description

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atyp, all situations 64D, 216 tr.

Gauss
Parzen
NN−d
SVDD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atyp, all situations 5D, 216 tr.

Gauss
Parzen
NN−d
SVDD

Fig. 2.18: ROC curve for the 4 one-class methods trained on all available operation conditions
(vibration dataset 1). The left plot shows the results in 64 dimensions, the right plot
in 5 dimensions. The measurements from 3 sensors are used.

the Parzen density estimator, which is incapable of correctly classifying more than 80%
of the data. The poor performance of the Gaussian model on the data in 5 dimensions,
shows that now the target class is less normally distributed than in 64 dimensions. The
SVDD performs well, but again suffers for high values of fT+. In these datasets, where
the training data is distributed identically to the testing set, the SVDD does not improve
much over the normal density estimators (especially the Parzen density estimators). This
will change when we consider the case in which we train with an atypical training sample.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atypical 64D, 83 tr.

Gauss
Parzen
NN−d
SVDD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atypical 64 tr.

Gauss
Parzen
NN−d
SVDD

Fig. 2.19: ROC curve for the 4 one-class methods trained on subsets of the operation conditions.
The left plot shows the results of 6 situations in 64 dimensions (vibration dataset 2),
the right plot just 4 situations are used (vibration dataset 3).

In the setup used in the experiments two parameters determined the operation mode
of the pump. These were the speed and the load of the pump. The speed of the pump can

2.7. Machine diagnostics experiments 53

be changed from 46 Hz to 54 Hz, the loads from 29 to 33 (in 0.1 kW, i.e. from 2.9 to 3.3
kW, the load of the pump is controlled by closing or opening a membrane which controls
the water flow). The combination of all the 5 speeds and 3 loads is used as the complete,
true data distribution. For all combinations of speeds and loads both the normal running
condition vibration data as well as the faulty conditions are measured. Several subsets
with different loads and speeds are created and used as training sets. The testing is done
on the complete set of loads and speeds. Clearly, the training and testing distribution
are not the same. It is hoped that by sampling just the extreme situations in the normal
working conditions of the water pump, a description of the complete operating area in the
feature space can be obtained. This stresses the importance of the boundary of the target
data instead of the density of these objects.

Table 2.3: The training and testing sample sizes for the different vibration datasets with their
settings. A speed setting of 46, 50, 54 Hz and a load setting of 29, 33 (0.1 kW)
mean that all measurements with these settings are used (i.e. 6 situations in total).
Measurements from 3 sensors are used.

dataset settings training set testing set
number speeds (Hz) loads (0.1 kW) target objects target objects outlier objects

1 46,48,50,52,54 25,29,33 216 234 666
2 46,50,54 29,33 83 215 685
3 46,54 25,33 64 213 687
4 50 25,29,33 41 223 677
5 46,48,50,52,54 29 78 215 685

In table 2.3 the sample sizes of 5 different datasets are shown. Different combinations
of loads and speeds are considered, which results in different training datasets. The first
dataset contains all available situations (all combinations of all measured speeds and loads)
and has the highest number of training objects. The training set in the third vibration
dataset in table 2.3 consists of just 4 combinations: 46 + 25, 46 + 33, 54 + 25 and 54 +
33, which are the extrema in the pump operation modes. Here just 64 training objects
are available. For testing 213 target objects and 687 outlier objects are available. The
testing sets are comparable, because they contain all speeds and loads measurements from
a damaged pump.

Vibration set 1 is the set which is used in figure 2.18 and which contains all loads and
speeds in the training set. In the second set, the situations are subsampled. Situations
with speeds of 48 and 52 Hz and with loads of 25 are not considered, but the extreme
and some intermediate situations are retained. In vibration set 3 only the extreme values
are used. In the last two vibration sets one of the parameters is varied over the complete
range, while the other parameter is set at one specific value. The loads are varied in set 4
and the speeds in set 5.

In figure 2.19 the results on vibration sets 2 and 3 are shown. Using just a subsample

54 2. Support Vector Data Description

of the data severely hurts the performance of the one-class methods, with the exception of
the SVDD. The Gaussian model completely fails by accepting the complete feature space
(thus accepting all target and outlier objects). Performance of the NN-d is somewhat
better than the Parzen density, but neither of them is capable of interpolating between the
individual clusters of the different speeds and loads. Even when they (try to) accept all
target objects, they just accept 50% of the testing target objects.

Using just 4 instead of 6 situations (in the right plot of figure 2.19), the performance
of the Parzen and the NN-d deteriorates even more, while the SVDD still shows good
performance. The Gaussian model again fails. So, it appears that using just the extreme
situations for training are sufficient for the SVDD to give a complete characterization of
the normal operation of the water pump.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atypical 5D, 41 tr.

Gauss
Parzen
NN−d
SVDD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

atypical 64D, 78 tr.

Gauss
Parzen
NN−d
SVDD

Fig. 2.20: ROC curve for the 4 one-class classifiers trained on subsets for which one of the
settings is not varied. In the left plot only a speed of 50 Hz is used (vibration dataset
4), while in the right plot a load of 29 is used (vibration dataset 5).

Finally, in figure 2.20 the results on vibration sets 4 and 5 is shown. Because vibration
set 4 just contains 41 objects, the data is mapped onto the first 5 principal components.
The left plot shows that using just one speed for training (but retaining all possible loads)
severely deteriorates the performance of the one-class classifiers. The SVDD has a slight
edge over the other methods, but the performance of all methods is poor. In the right plot
we see that using all speeds, but with one load, the data is characterized far better. Best
performance here is obtained using the NN-d. This indicates that we are working with a
low sample size dataset. The relatively poor performance of the SVDD confirms this.

The characteristics of the dataset, mentioned in the previous section, can also be vi-
sualized in a scatter plot. In figure 2.21 a scatter plot of the first 2 principal components
of the training set of vibration set 5 is shown. The training objects are marked by a dark
circle, the testing objects are shown by light circles. The data is clearly clustered, with 2
large clusters, and 3 subclusters in the right cluster. The difficulty in this dataset is that
the 3 subclusters contain just a few training objects each.

2.8. Conclusions 55

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

Fig. 2.21: Scatter plot of the first 2 principal components of vibration dataset 5.

In this section we applied the SVDD to a machine diagnostics problem, to characterize
the normal operation condition of a water pump. For representative datasets (in which the
training set gives a good indication of the ’true’ target distribution) and sufficiently large
sample sizes conventional density estimators (for instance, Parzen estimation) work well.
For high target acceptance rates, the SVDD can be hampered by the fact that it requires
a minimum number of support vectors for its description. It will never be able to accept
all target objects because there will always be some objects (the support objects) on the
decision boundary. For non-representative data (in which the training data is completely
different from the ’true’ target distribution), the SVDD profits from the fact that it only
models the boundary of the data. While the density methods completely fail, shows the
SVDD good performance.

2.8 Conclusions

In this chapter we introduced a new method – the support vector data description (SVDD)
– to solve the one-class classification problem. It fits a closed boundary around the data
set, without estimating a complete probability density. By avoiding the estimation of a
complete probability density, it can obtain a better data boundary from a limited data set.
The boundary is described by a few training objects, the support vectors. The SVDD has
the ability to replace normal inner products by kernel functions to obtain more flexible
data descriptions. In contrast to the support vector classifier, the support vector data
description using a polynomial kernel suffers from the large influence of the norms of the
object vectors. On the other hand, the SVDD gives encouraging results for the Gaussian
kernel. Using the Gaussian kernel, descriptions are obtained that are comparable to the
hyperplane solution by Schölkopf et al.

An extra feature of the SVDD is, that it offers a direct estimate of the error it makes
on the target set. The fraction of the target objects which become support vectors is an

56 2. Support Vector Data Description

estimate of the fraction of target objects rejected by the description. When the maximum
desired error on the target set is known beforehand, the width parameter s in the Gaussian
kernel can be set to give the desired number of support vectors. When an insufficient
number of objects is available, the number of support vectors remains high for any width
parameter s used. This is an indication that more data is necessary. Therefore, for very
small sample sizes the SVDD breaks down due to its requirement for support vectors.
Extra data in the form of outlier objects can also be used to improve the support vector
data description.

When the support vector data description is compared to other outlier detection meth-
ods, as normal density estimation, Parzen density estimation and a nearest neighbor
method (NN-d), not many differences can be observed for identically distributed train-
ing and testing data. It appears that the support vector data description is especially
useful when the training data distribution differs from the testing distribution and just
the boundary of the data has to be found. In these cases the SVDD finds far better de-
scriptions than the other methods. It is also very capable of describing the area in feature
space where the target class is located. In the next chapter a more thorough comparison
between different one-class classification methods will be presented.

3. ONE-CLASS CLASSIFICATION

Several methods have been proposed to solve the one-class classification problem. Three
main approaches can be distinguished: the density estimation, the boundary methods and
the reconstruction methods. For each of the three approaches, different concrete models
can be constructed. In this chapter we will present and discuss some of these methods
and their characteristics. In section 3.1 some important considerations for the one-class
classification problem and for the comparison between one-class classification methods
will be discussed. In section 3.2 we give some characteristics of one-class classifiers (and
classifiers in general) which are of interest when a choice between classifiers have to be made.
Section 3.3 describes three density methods, the Gaussian model, mixture of Gaussians
and the Parzen density estimators and in section 3.4 the boundary methods containing
the k-centers method, the NN-d and the SVDD. Finally, in section 3.5 the reconstruction
methods such as k-mean clustering, self-organizing maps, PCA and mixtures of PCA’s and
diabolo networks are discussed.

These one-class classification methods differ in their ability to cope with or to exploit
different characteristics of the data. Important characteristics are the scaling of features in
the data, the grouping of objects in clusters, convexity of the data distribution and their
placing in subspaces. In this chapter we will just discuss the characteristics of the one-class
classifiers, and no experiments will be performed. Experiments to compare these one-class
classifiers will be done in the next chapter (chapter 4).

3.1 Considerations

In all one-class classification methods two distinct elements can be identified.The first
element is a measure for the distance d(z) or resemblance (or probability) p(z) of an object
z to the target class (represented by a training set X tr).1 The second element is a threshold
θ on this distance or resemblance. New objects are accepted by the description when the
distance to the target class is smaller than the threshold θd:

f(z) = I(d(z) < θd) (3.1)

or when the resemblance is larger than the threshold θp:

f(z) = I(p(z) > θp) (3.2)

1 Strictly speaking, we should say p(z|ωT) or d(z|ωT), the chance of object z given target set ωT , to
indicate that we only model the target set and do not use any information about the outlier distribution.

58 3. One-class classification

where I(.) is the indicator function (2.14). The one-class classification methods differ in
their definition of p(z) (or d(z)), in their optimization of p(z) (or d(z)) and thresholds with
respect to the training set X tr. In most one-class classification methods the focus is on the
optimization of the resemblance model p or distance d. The optimization of the threshold
is done afterwards. Only a few one-class classification methods optimize their model p(z)
or d(z) to an a priori defined threshold (in particular, the SVDD proposed in the previous
chapter).

I
EIIE

ZXT

Fig. 3.1: Regions in one-class classification. Around a banana-shaped training set, a spherically
shaped one-class boundary is trained. The outliers are uniformly distributed in the
rectangular block. The gray areas represent the error of the first and second kind, EI

and EII respectively.

The most important feature of one-class classifiers is the tradeoff between the fraction
of the target class that is accepted, fT+, and the fraction of outliers that is rejected, fO−
(or equivalently the tradeoff between the error of the first kind and the second kind, EI and
EII). The fT+ can easily be measured using an independent test set drawn from the same
target distribution. To measure the fO− on the other hand, an outlier density has to be
assumed. In the experiments on artificial data, performed in this chapter, we assume that
the outliers are drawn from a bounded uniform distribution covering the target set and
the description volume. This region will be indicated by Z. The fraction of the objects
which is accepted by the methods is then an estimate of the covered volume.

This general setup is shown in figure 3.1. The banana-shaped area is the target distri-
bution XT . The circular boundary is the data description which should describe the data.
It makes some errors: a part of the target data is rejected and some outliers are accepted.
Note that a tradeoff between fO+ and fT− cannot be avoided. Increasing the volume of the
data description in order to decrease the error EI, will automatically increase the number
of accepted outliers, and therefore increase the error EII.

3.1.1 Volume estimation

To obtain an estimate of the volume captured by the description, objects can randomly be
drawn from a uniform distribution over the target data. The fO+ then gives the fraction

3.1. Considerations 59

0 5 10 15 20
0

5

10

15

20

25

30

35

40

dimensionality

vo
lu

m
e

volume hypersphere
volume hypercube

Fig. 3.2: The volume of a unit hypersphere, compared with the volume of a hypercube.

of the outlier volume that is covered by the data description. Unfortunately, the required
number of test objects can become prohibitively large, especially in high dimensional fea-
ture spaces. To illustrate this, assume the target class is distributed in a hypersphere in
d dimensions with radius R centered around the origin: X = {x : ‖x‖2 ≤ R2}. Assume
further that the outliers are restricted to a hypercube in d dimensions: Z = [−R,R]d. The
corresponding volumes become:

VZ = (2R)d (3.3)

and

VX =
2Rdπd/2

dΓ(d/2)
(3.4)

where Γ(n) is the gamma function:

Γ(n) = 2

∫ ∞

0

e−r2

r2n−1dr (3.5)

In figure 3.2 the volumes of both the hyperbox and the hypersphere are shown as a function
of the dimensionality and for R = 1.2 For 1- and 2-dimensional data the respective volumes
are almost equal (for d = 1 they are equal: VX = VZ = 2). When d is small (d < 6), the
volumes are of the same order, but for higher dimensionalities vX decreases to zero, while
VZ exponentially increases. Consequently, outlier objects drawn from the hypercube will
fall with zero probability within the hypersphere. No matter how many outlier objects are
drawn from the cube, all objects will be rejected by the hypersphere.

2 Note that, strictly speaking, no continuous graph can be shown, because for each dimensionality the
units of the volume change. This graph is given to show the difference in volumes for the hypercube and
the hypersphere.

60 3. One-class classification

In practice, X and Z will have more complex shapes, but when the volumes of the
two differ (which means that the outlier set contains the target set, X ⊂ Z) their volumes
will still diverge with increasing dimensionality d. Consequently, most artificial datasets
in this paper will be placed in a reasonably small feature space, with dimensionalities up
to d = 10. For non-artificial data sets, higher dimensionalities are sometimes investigated,
but for these datasets also example outlier objects are available. The volume of the data
description will not be measured, but rather the overlap between a more specific outlier
distribution (given by the example outliers) and the target distribution.

3.1.2 Error definition

Choosing different thresholds for the distance d(z) or resemblance p(z) results in different
tradeoffs between fT+ and fO−. To make a comparison between methods, which differ in
definitions of p(z) (or d(z)), for instance fT+, should be fixed for the methods and the fO−
should be measured. A method which obtains the lowest outlier rejection rate, fO−, is then
to be preferred.

For some one-class classification methods the distance measure is optimized with respect
to a given threshold θ: different thresholds will give a different definition of p(z) or d(z).
For most one-class classification methods just one distance or resemblance measure to
the training set X tr is obtained though, independent of the threshold. In this thesis the
threshold is derived directly from the training set. It is adjusted to accept a predefined
fraction of the target class. For a target acceptance rate fT+, the threshold θfT+

is defined
as:

θfT+
:

1

N

∑
i

I
(
p(xi) ≥ θfT+

)
= fT+, where xi ∈ X tr, ∀i (3.6)

For a distance based method using d(z), an equivalent threshold is defined. To avoid
overfitting on the training set, a better estimate might be obtained by using an independent
validation set, but this requires more data. Because some methods do not require a separate
validation set and are able to find the boundary on the target set immediately, we will use
the target set for both the determination of p(z) or d(z) and the threshold θfT+

. Only
in one case, in the NN-d, a leave-one-out estimation has to be performed. In the NN-d
all training objects have, per definition, a distance zero to the data description. When
all objects have the same distance to the data description, it is not possible to reject a
fraction of the data. Using leave-one-out estimation, it is possible to obtain a histogram
of the resemblances of the training data to the description and to obtain a threshold for
several values of fT+.

Using (3.6) we can, for varying fT+, compute a threshold θfT+
on the training set and

we can measure the fO− on a set of example outliers. When for all values of fT+, the
fO− is measured, we obtain the Receiver-Operating Characteristic curve [Metz, 1978]. A
graphical representation is given in figure 3.3, where the solid line A-B gives the fT+ and
fO− for varying threshold values θfT+

. In all methods the fT+ is changed from (almost)

3.1. Considerations 61

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

upper and lower

error
area

fO-

f

integration bounds

T
+

A

D

C

B

outliers rejected,

ta
rg

et
 a

cc
ep

te
d,

0

1

1

Fig. 3.3: Receiver-Operating Characteristic (ROC) curve with integrated error area.

100% acceptance down to no acceptance. A perfect data description would obtain a vertical
ROC curve with fO− = 1.0, while still accepting the predefined fT+ (the dashed line C-
D). In practice the methods will always accept some outliers, depending on the fit of the
method onto the data and the volume of the target class (when a uniform distribution of
the outliers is assumed, there will always be some outliers falling within the target class).
The fO− will therefore be smaller than 1.0 and a curve A-B will be obtained.

Methods will perform differently for different thresholds. A method might have a very
tight description for a high fT+, but might fail when large parts of the target class should
be rejected (which means a low fT+). To find one error measure for the fit of one-class
classifiers to the data, a 1-dimensional error measure is derived from the ROC curves. We
set EI = 1 − fT+ and EII = 1 − fO−, so no special weightings of the errors is used (where
fT+ and fO− could be weighted differently). Now EII is integrated over varying thresholds
(i.e. all possible errors of the first kind EI) [Bradley, 1997].3 This gives the error:

EM =

1∫
0

EII(EI)dEI =

1∫
0

∫
Z

I (p(z) ≥ θf) dzdθf (3.7)

where θf is measured on the target set. This error is the grey area shown in figure 3.3. This
error measure does not evaluate the one-class classifiers on the basis of one single threshold
value, but integrates their performances over all threshold values. (This ’integrating out’ of
free parameters is more common in the Bayesian treatment of classifiers [MacKay, 1992]).

A practical problem with this ’integrating out’ of the threshold, is that the methods
might have different effective ranges for fT+ (so the positions of A and B in figure 3.3
differ). In the previous chapter (section 2.4) it was shown that the SVDD does not work
well in situations with high fT+ when limited target data is available. The SVDD requires

3 Bradley called this error the ’Area Under the (ROC) Curve’, AUC.

62 3. One-class classification

a minimum number of objects to support the description. When a small number of tar-
get objects is available (with respect to the dimensionality and the shape of the target
distribution) the fT+ in situation A in figure 3.3 will be low (i.e. much smaller than one).

Therefore, the basic method in [Bradley, 1997] is extended to obtain a standard integra-
tion range for all methods. Again we consider the ROC curve A-B shown in figure 3.3. Two
extreme situations can always be identified. In the first situation (fO−, fT+) = (1, 0). This
is a description with zero volume where both the complete target and outlier data are re-
jected. In the second situation, the complete feature space is accepted, (fO−, fT+) = (0, 1).
Given a ROC curve A-B, it is not clear though, how this curve can be extrapolated to these
two extreme situations. Here we will set fO− pessimistically to zero, for fT+ larger than
the fT+ of situation A. At the other end of the curve, for very low fT+ (for fT+ lower than
that of situation B), the best fO− over larger target acceptance rates is copied (very likely
this is the fO− of situation B). This assumes the worst case scenario in which rejecting
more target data does not decrease the fO−.

In the error definition (3.7), the error EII is weighted equally over all thresholds. In a
practical application, the EII might be limited to a tighter range or might be weighted by
a weighting function w(θf) [Adams and Hand, 2000]:

EM =

1∫
0

∫
Z

I (p(z) ≥ θf) w(θf)dzdθf (3.8)

We integrate in this chapter from 0.05 to 0.5 with equal weight over the complete range
(thus w(θf) = I(0.05 < θf < 0.5), with I again the indicator function, formula (2.14)).

By this weighting we exclude the extreme cases. For θf < 0.05, less than 5% of the
target data can be rejected. This means that for sample sizes lower than 20 objects, no
target object can be rejected and that the threshold on d or p is completely determined by
the most dissimilar target object in the training set. We avoid this by taking θf > 0.05.
The other extreme case is when we use θf > 0.5. In that case, more than half of the target
objects is rejected. Because our primary goal is to make a description of the target class,
and we assume a low density of outlier data, the rejection of more than 50% of our target
data is considered too much. We assume we have to describe at least 50% of our target
data.

In this section we identified two elements in one-class classifier, namely the distance d
or resemblance p to the target set, and a threshold value θ. For one-class classifiers the d
or p is often completely defined, but for the determination of θ the performance on both
target and outlier data is required. We showed, that when no example outlier objects are
available, they can be created artificially, but this becomes extremely inefficient in high
dimensional feature spaces. When we have target and outlier data available, we can give
the performance of a one-class classifier by an ROC curve or we can measure a scalar
quantity: the integrated error of the ROC curve (by definition 3.8). These observations
and definitions hold for all one-class classifiers. In the next section we investigate in what
one-class classifiers can differ.

3.2. Characteristics of one-class approaches 63

3.2 Characteristics of one-class approaches

To compare different one-class classification methods, not only the fT+ and fO− are im-
portant, but also other features. We will consider the following characteristics:

Robustness to outliers: It has been assumed that the training set is a characteristic
representation for the target distribution. It might happen that this training set is
already contaminated by some outliers. Although a one-class classification method
should accept objects from the target set as much as possible, these outliers should
still be rejected. In most methods a more or less strict model of the data is assumed.
When in a method only the resemblance or distance is optimized, it can therefore
be assumed that objects near the threshold are the candidate outlier objects. For
methods where the resemblance is optimized for a given threshold, a more advanced
method for outliers in the training set should be applied.

Incorporation of known outliers: When some outlier objects are available, they might
be used to further tighten the description. To incorporate this information into the
method, the model of the data and the training procedure should be flexible enough.
For instance, when one Gaussian distribution is used as the model of the target set,
the model and training procedure are not flexible enough to reject the single outlier.
Other methods on the other hand, like the Parzen density, can incorporate this outlier
in its probability estimate. Ultimately, it should be possible to add a parameter in
the one-class classifier which regulates the tradeoff between a target and an outlier
error.

Magic parameters and ease of configuration: One of the most important aspects for
easy operation of a method by the user, is the number of free parameters that have
to be chosen beforehand, as well as their initial values. When a large number of free
parameters is involved, finding a good working set might be very hard. This becomes
even more prominent when the parameters involved are not intuitive quantities which
can be assumed, derived or estimated a priori. When they are set correctly, good
performances will be achieved, but when they are set incorrectly, the method might
completely fail. These parameters are often called the ’magic parameters’ because
they often have a big influence on the final performance and no clear rules are given
how to set them. For instance, in the training of neural networks, the number of
hidden layers and the number of neurons per layer should be chosen by the user.
These numbers cannot be intuitively given beforehand, and only by trial and error
a reasonable network size is found. Other methods, like the SVDD, require a value
for fT− beforehand. This number is directly related to the problem the user tries to
solve, and is thus easier to set.

Computation and storage requirements: A final consideration is the computational
requirements of the methods. Although computers offer more power and storage
every year, methods which require several minutes for the evaluation of a single test

64 3. One-class classification

object might be unusable in practice. Since training is often done off-line, training
costs are often not very important. However, in the case of adapting the method to
a changing environment, these training costs might become very important.

We mentioned some important features for (one-class) classifiers. In the next sections
we will compare the three main approaches to one-class classification, namely the density
methods, the boundary methods and the reconstruction methods. We will discuss the
methods and what their characteristics are with respect to robustness to outliers, incor-
poration of known outliers, magic parameters and computation requirements. Note that
in each of the approaches various methods exist. Most of them are already well known in
traditional pattern recognition, so they will be discussed only briefly. One exception is the
NN-d, which is a new approach. This method is discussed in more detail in appendix B
(and has already been mentioned in section 2.7).

Of course several other one-class classification methods exist, but we have chosen to
use just this set of methods because it covers a broad range of possible models. This list
has to give an idea of the various approaches under several circumstances, but does not
pretend to be an exhaustive enumeration of all possibilities.

3.3 Density methods

The most straightforward method to obtain a one-class classifier is to estimate the den-
sity of the training data [Tarassenko et al., 1995] and to set a threshold on this den-
sity. Several distributions can be assumed, such as a Gaussian or a Poisson distribu-
tion, and numerous tests, called discordancy tests, are then available to test new objects
[Barnett and Lewis, 1978]. In this thesis we will consider three density models, the normal
model,4 the mixture of Gaussians and the Parzen density.

When the sample size is sufficiently high and a flexible density model is used (for
example a Parzen density estimation), this approach works very well. Unfortunately,
it requires a large number of training samples to overcome the curse of dimensionality
[Duda and Hart, 1973]. If the dimensionality of the data and the complexity of the density
model are restricted, this can be avoided, but then a large bias may be introduced when
the model does not fit the data very well. Finding the right model to describe the target
distribution and the given sample size is a typical incarnation of the bias-variance dilemma
(see chapter 1).

When a good probability model is assumed (one for which the bias is small) and the
sample size is sufficient, this approach has a very big advantage. When one threshold
is optimized, automatically a minimum volume is found for the given probability density
model. By construction, only the high density areas of the target distribution are included.
Superfluous areas in Z will, therefore, not be accepted by the description. In this chapter

4 In this thesis we will use the terms ‘normal model’ or ‘Gaussian model’ interchangeably for a normal
density that is fitted to some target data.

3.3. Density methods 65

the threshold will be determined by using the empirical target distribution (definition
(3.6)).

3.3.1 Gaussian model

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

region

region

volume

accepted

rejected

Fig. 3.4: Threshold on a 1-dimensional Gaussian distribution.

The most simple model is the normal or Gaussian density [Bishop, 1995], as shown in
figure 3.4. According to the Central Limit Theorem [Ullman, 1978], when it is assumed
that objects from one class originate from one prototype and are additively disturbed by a
large number of small independent disturbances, then this model is correct. The probability
distribution for a d-dimensional object x is given by:

pN (z; µ, Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(z− µ)T Σ−1(z− µ)

}
(3.9)

where µ is the mean and Σ is the covariance matrix. The method is very simple and it
imposes a strict unimodal and convex density model on the data.

Thus, the number of free parameters in the normal model is

nfreeN = d +
1

2
d(d− 1) (3.10)

with d parameters for the mean µ and d(d − 1)/2 for the covariance matrix Σ. The
main computational effort in this method is the inversion of the covariance matrix. In
case of badly scaled data or data with singular directions, the inverse of the covariance
matrix Σ cannot be calculated and should be approximated by the pseudo-inverse Σ+ =

ΣT
(
ΣΣT

)−1
[Strang, 1988] or by applying some regularization (adding a small constant λ

to the diagonal, i.e. Σ′ = Σ + λI). In the last case the user has to supply a regularization
parameter λ. This is then the only magic parameter present in the normal model. Because

66 3. One-class classification

this model utilizes the complete covariance structure of the data, this method is insensitive
to scaling of the data (assuming that a reasonable regularization parameter is chosen).

Another advantage of the normal density is, that when we assume that the data is
normally distributed, it is possible to compute analytically the optimal threshold for a
given fT+. It is known that for d independent normally distributed random variables xi,
the new variable x′ =

∑
i(xi − µi)

2/σi is distributed with a χ2
d distribution (where d is

the degrees of freedom) [Ullman, 1978]. When we consider the (squared) Mahanalobis
distance, the variable

∆2 = (x− µ)T Σ−1(x− µ) (3.11)

(for given µ and Σ) should also be distributed like χ2
d. The threshold θfT+

on ∆2 should
be set at the prespecified fT+:

θfT+
:

∫ fT+

0

χ2
d(∆

2)d(∆2) = fT+ (3.12)

Because in most cases the target data is not normally distributed, this threshold will not be
used and we would rely on a threshold on the empirical distribution (using definition (3.6)).
We will only use this threshold when we do some experiments on an artificial Gaussian
target set and we want to compare the results of the one-class classifiers with the ‘true’
normal distribution and the ‘true’ threshold θfT+

.

3.3.2 Mixture of Gaussians

The Gaussian distribution assumes a very strong model of the data. It should be unimodal
and convex. For most datasets these assumptions are violated. To obtain a more flexi-
ble density method, the normal distribution can be extended to a mixture of Gaussians
(MoG) [Duda and Hart, 1973]. A mixture of Gaussians is a linear combination of normal
distributions [Bishop, 1995]:

pMoG(x) =
1

NMoG

∑
j

αjpN (x; µj, Σj) (3.13)

where αj are the mixing coefficients. It has a smaller bias than the single Gaussian distribu-
tion, but it requires far more data for training (and thus shows more variance when a limited
amount of data is available). When the number of Gaussians NMoG is defined beforehand by
the user, the means µj and covariances Σj of the individual Gaussian components can effi-
ciently be estimated by an expectation minimization routine [Bishop, 1995, Bishop, 1994a].

The total number of free parameters in the mixture of Gaussians is:

nfreeMoG =

(
d +

d(d + 1)

2
+ 1

)
·NMoG (3.14)

3.4. Boundary methods 67

that is one mean µj, one covariance matrix Σj and one weight αj for each component. To
reduce the number of free parameters, often just diagonal covariance matrices are assumed,
i.e. Σj = diag(σj). The number of free parameters then drops to:

nfreeMoG = (2d + 1) ·NMoG (3.15)

In the experiments in the next chapter the covariance matrix will be restricted even fur-
ther. Because there the sample sizes are sometimes very low (down to 10 objects in 10
dimensions), only one variance for all features can be estimated in order to avoid numerical
instabilities, i.e. Σj = σjI. The number of free parameters is therefore:

nfreeMoG = (d + 2) ·NMoG (3.16)

3.3.3 Parzen density estimation

The third method is the Parzen density estimation [Parzen, 1962], which is again an exten-
sion of the previous method. The estimated density is a mixture of, most often, Gaussian
kernels centered on the individual training objects, with (often) diagonal covariance ma-
trices Σi = hI.

pp(x) =
1

N

∑
i

pN (x;xi, hI) (3.17)

The equal width h in each feature direction means that the Parzen density estimator
assumes equally weighted features and it will, therefore, be sensitive to the scaling of the
feature values of the data, especially for lower sample sizes.

Training a Parzen density consists of the determination of one single parameter, the
optimal width of the kernel h. Thus:

nfreep = 1 (3.18)

Here the h is optimized using the maximum likelihood solution [Kraaijveld and Duin, 1991].
Because just one parameter is estimated, and there are no magic parameters to set by the
user, the data model is very weak (i.e. a non-parametric model). A good description totally
depends on the representativity of the training set. The computational cost for training a
Parzen density estimator is almost zero, but the testing is expensive. All training objects
have to be stored and, during testing, distances to all training objects have to be calculated
and sorted. This might severely limit the applicability of the method, especially when large
datasets in high dimensional feature spaces are considered.

3.4 Boundary methods

Vapnik argued in [Vapnik, 1998] that when just a limited amount of data is available,
one should avoid solving a more general problem as an intermediate step to solve the

68 3. One-class classification

original problem. To solve this more general problem more data might be required than
for the original problem. In our case this means that estimating a complete data density
for a one-class classifier might also be too demanding when only the data boundary is
required. In the boundary methods, therefore, only a closed boundary around the target
set is optimized. In this thesis we consider the k-centers method, the NN-d and the SVDD.

Although the volume is not always actively minimized in the boundary methods, most
methods have a strong bias towards a minimal volume solution. How small the volume is,
depends on the fit of the method to the data. In most cases distances or weighted distances
d to an (edited) set of objects in the training set are computed. Due to their focus on the
boundary, the threshold on the output is always obtained in a direct way.

Because the boundary methods heavily rely on the distances between objects, they tend
to be sensitive to scaling of the features. On the other hand, the number of objects that is
required, is smaller than in case of the density methods. So, although the required sample
size for the boundary methods is smaller than the density methods, a part of the burden
is now put onto well-defined distances.

Note that the output of these boundary methods cannot be interpreted as a probability.
Assume that a method is trained such that a fraction f of the target set is rejected. It
obtains a threshold θf for this rejection rate on its particular resemblance measure d (which
is the replacement of p(x) in (3.6)). Decreasing the threshold θ now tightens the description,
but does not guarantee that the high density areas are captured. Changing the f might
therefore require the retraining of the method. This is most prominent in the SVDD. The
other methods can be adapted by just adjusting their thresholds.

3.4.1 K-centers

The first boundary method is the k-center method which covers the dataset with k small
balls with equal radii [Ypma and Duin, 1998]. This description has a resemblance to the
covering numbers of Kolmogorov [Kolmogorov and Tikhomirov, 1961] and it is used to
characterize the complexity of an (unlabeled) dataset. Unlike with the covering numbers,
here the ball centers’ µk are placed on training objects such that the maximum distance
of all minimum distances between training objects and the centers is minimized. In the
fitting of the method to the training data, the following error is minimized:

Ek-centr = max
i

(
min

k
‖xi − µk‖2

)
(3.19)

The k-centers method uses a forward search strategy starting from a random initialization.
The radius is determined by the maximum distance to the objects that the corresponding
ball should capture. By this construction the method is sensitive to the outliers in the
training set, but it will work well when clear clusters are present in the data.

When the centers have been trained, the distance from a test object z to the target set
can be calculated. This distance is now defined as:

dk−centr(z) = min
k
‖z− µk‖2 (3.20)

3.4. Boundary methods 69

To avoid a suboptimal solution during training, several random initializations are tried
and the best solution (in terms of the smallest Ek-centr) is used. The number of parameters
which is optimized in the minimization of error (3.19) may seem to be kd at first sight, for
the k centers µk in d dimensions. But the centers of the balls are constrained to training
objects, and therefore only k indices out of N indices have to be selected. The number of
free parameters is therefore:

nfreek−c = k (3.21)

The user has to supply both the number of balls k and the maximum number of retries.

3.4.2 Nearest neighbor method

The second method is a nearest neighbor method, NN-d. It can be derived from a local
density estimation by the nearest neighbor classifier [Duda and Hart, 1973]. The method
avoids the explicit density estimation and only uses distances to the first nearest neighbor.
It is comparable (but not identical) to the method presented in [Knorr et al., 2000] and
[Breunig et al., 2000], where an outlier detector is applied to large databases. In the nearest
neighbor density estimation a cell, often an hypersphere in d dimensions, is centered around
the test object z. The volume of this cell is grown until it captures k objects from the
training set. The local density is then estimated by:

pNN(z) =
k/N

Vk(‖z− NNtr
k (z)‖)

(3.22)

where NNtr
k (z) is the k nearest neighbor of z in the training set and Vk is the volume of

the cell containing this object.

In the one-class classifier NN-d, a test object z is accepted when its local density
is larger or equal to the local density of its (first) nearest neighbor in the training set
NNtr(z) = NNtr

1 (z). For the local density estimation, k = 1 is used:

fNNtr(z) = I

(
1/N

V (‖z− NNtr(z)‖)
≥ 1/N

V (‖NNtr(z)− NNtr(NNtr(z))‖)

)
(3.23)

This is equivalent to:

fNNtr(z) = I

(
V (‖z− NNtr(z)‖)

V (‖NNtr(z)− NNtr(NNtr(z))‖)
≤ 1

)
(3.24)

When we now use a d-dimensional cell, its volume becomes (compare to formula (3.4)):

V (r) = Vdr
d (3.25)

70 3. One-class classification

Fig. 3.5: NN-d applied to the artificial 2D banana dataset. The boundary is indicated by the
dashed line. The gray values indicate the distance to the boundary, measured by the
quotient in (3.26).

where Vd is the volume of a unit hypersphere in d dimensions. This can be substituted
into (3.23) and rewriting gives:

fNNtr(z) = I

(
V (‖z− NNtr(z)‖)

V (‖NNtr(z)− NNtr(NNtr(z))‖)
≤ 1

)
= I

(
Vd‖z− NNtr(z)‖d

Vd‖NNtr(z)− NNtr(NNtr(z))‖d
≤ 1

)
= I

(
‖z− NNtr(z)‖

‖NNtr(z)− NNtr(NNtr(z))‖
≤ 1

)
(3.26)

This means that the distance from object z to its nearest neighbor in the training set
NNtr(z) is compared with the distance from this nearest neighbor NNtr(z) to its nearest
neighbor. Although this rule can be derived from two local density estimates (one around
the test object z and one around the first nearest neighbor NNtr(z)), the fact that we take
k = 1 and use the quotient of the densities, makes it possible to apply several simplifi-
cations. This then avoids the explicit computation of densities and only the boundary is
approximated.

Figure 3.5 shows an example where the NN-d is applied to a banana-shaped target
distribution. The data is plotted using pluses; the boundary of the data set is indicated
by the dashed line and the gray values give the distance to the boundary measured by the
quotient in formula (3.26). When two objects are near, the boundary becomes very tight,
but for a uniform sparse distribution the method extrapolates and larger regions around
the data are accepted.

3.4. Boundary methods 71

In [Breunig et al., 2000] a comparable measure is introduced, the Local Outlier Factor
(LOF), which is constructed to find outliers in large databases. Here, all the distances
to the k nearest neighbors are averaged, and furthermore, the distance of an object z to
its k nearest neighbors is replaced by a more robust distance definition. When objects
are very near the target data, the k-th nearest neighbor distance is used, instead of the
first nearest neighbor distance. This robust measure makes it hard to distinguish between
objects which are near the boundary or which are deep within a tight cluster of objects.
Furthermore, this algorithm requires that the user defines the number of neighbors k, which
is taken in the range from 10 to 50. Although the LOF method is very well suited to find
outliers in large data sets, it is hard to compare with the other methods on small data sets
without clear outliers (objects on the boundary are not rejected, and large rejection rates
are therefore not possible).

A characteristic of the NN-d is that it also rejects parts of the feature space which
are within the target distribution. To illustrate this, assume we have a uniform target
distribution. When we generate training objects from this distribution, by definition, all
these target objects should be accepted. When we leave one object x out of the training,
it would only be accepted by the description when it would become the nearest neighbor
of its nearest neighbor in the training set. Thus, only the fraction of objects which are
mutual nearest neighbors will be consistently accepted. This rate is independent of the
sample size, but does depend on the dimensionality of the data. This can be observed in
table 3.1 where the fraction of the target data (drawn from a uniform distribution) is shown
which is accepted by the NN-d. For instance, when we consider a uniform distribution in
2 dimensions and we use k = 1, only 64% of the target data will be accepted by the NN-d.

Table 3.1: Fraction of objects drawn from a uniform distribution accepted by the NN-d. The
results are averaged over 1000 runs; the standard deviation is shown between brack-
ets.

dimensionality
1 2 3 5 10

k = 1 0.67 (0.09) 0.64 (0.09) 0.62 (0.09) 0.62 (0.09) 0.61 (0.09)
k = 2 0.89 (0.06) 0.86 (0.07) 0.85 (0.07) 0.84 (0.06) 0.83 (0.07)
k = 3 0.97 (0.03) 0.94 (0.03) 0.94 (0.04) 0.93 (0.04) 0.91 (0.04)

Obviously, the method can easily be extended to a larger number of neighbors k. Instead
of taking the first nearest neighbor into account, the kth neighbor should be considered.
This increases the acceptance rate both inside and outside the target set. For low sample
sizes the local character of the method will, however, be lost.

Finally, the NN-d does not have any free parameters, neither user defined ’magic’
parameters, nor free parameters to optimize (we have chosen k = 1 in the definition of
NN-d, beforehand) and thus it completely relies on the training samples. Because the
NN-d explicitly uses the distances in the evaluation of a test object (formula (3.26), this
method is scale sensitive. For a more elaborate treatment of the NN-d, see appendix B.

72 3. One-class classification

3.4.3 Support vector data description

Finally, the support vector data description is considered. The SVDD has been described in
detail in the previous chapter. In the experiments in this chapter the Gaussian kernel will be
used. The free width parameter s is optimized for a specified target rejection rate fT− using
the procedure sketched in section 2.4, page 37. Thus, error (2.42) is minimized and the
resulting α are used in formula (2.43) to evaluate a test object z. After the optimization
of (2.42) the threshold value for the SVDD (1

2
(B − R2)) is completely determined and,

therefore, the empirical threshold as given in (3.6) is not used. This also means, that for
each different value of fT− (= 1− fT+) the SVDD has to be optimized again.

When the width parameter s is optimized for small fT+ rates, we have to take care we
do not overtrain. For small fT+ the parameter s tends to be very small with respect to
distances between objects in the training set. Such situations are shown in the left subplot
of figure 2.4 and 2.9. To avoid overfitting, the tradeoff parameter between the volume of
the description and the number of errors on the target set, C (error (2.3)) will be set to
reject up to half of the user specified fT−. This will result in descriptions as shown in the
right plot of figure 2.9. This means that when the user requests for fT− = 0.5, 25% of the
target objects will be outside the description, and 25% will become support vectors on the
decision boundary (or f out

SV = 0.25 and fbnd
SV = 0.25).

The free parameters in the SVDD are the Lagrange multipliers α. From these Lagrange
multipliers, the center a and the threshold value R can be computed. Thus, the number
of free parameters in the SVDD is:

nfreeSV DD = N (3.27)

The user only has to supply fT− and a fraction of objects which might be incorrectly
classified f out

SV . The fact that the SVDD uses fT− in its optimization is unique for this one-
class classifier. All other one-class classifiers require this value afterwards to set a threshold
on p or d. We therefore chose not to count fT− as a user defined magic parameter. The
only true magic parameter in the SVDD is the f out

SV .
Finally, it is expected that the SVDD is sensitive to the scaling of the feature values (by

the use of the Gaussian kernel; definition (2.41)) and that it requires a certain minimum
number of training objects, see section 2.6.2.

3.5 Reconstruction methods

The reconstruction methods have not been primarily constructed for one-class classifica-
tion, but rather to model the data. By using prior knowledge about the data and making
assumptions about the generating process, a model is chosen and fitted to the data. New
objects can now be described in terms of a state of the generating model. We assume that
a more compact representation of the target data can be obtained and that in this en-
coded data the noise contribution is decreased. This representation then simplifies further
processing without harming the information content.

3.5. Reconstruction methods 73

Most of these methods make assumptions about the clustering characteristics of the
data or their distribution in subspaces. A set of prototypes or subspaces is defined and a
reconstruction error is minimized. We will consider the following examples of reconstruc-
tion methods: the k-means clustering, learning vector quantization, self-organizing maps,
PCA, a mixture of PCAs, diabolo networks and auto-encoder networks. The methods
differ in the definition of the prototypes or subspaces, their reconstruction error and their
optimization routine.

With the application of the reconstruction methods, it is assumed that outlier objects
do not satisfy the assumptions about the target distribution. The outliers should be
represented worse than true target objects and their reconstruction error should be high.
The reconstruction error of a test object by the data compression methods is therefore used
as a distance to the target set. Because these methods were not developed for one-class
classification, the empirical threshold θfT+

has to be obtained using the training set.

3.5.1 k-means, LVQ, SOM

The simplest reconstruction methods are the k-means clustering [Bishop, 1995] and the
Learning Vector Quantization (LVQ) [Carpenter et al., 1991]. In these methods it is as-
sumed that the data is clustered and can be characterized by a few prototype objects or
codebook vectors µk. Most often the target objects are represented by the nearest proto-
type vector measured by the Euclidean distance. The prototype vectors define a Voronoi
tessellation of the complete feature space. In the k-means clustering, the placing of the
prototypes is optimized by minimizing the following error:

Ek-m =
∑

i

(
min

k
‖xi − µk‖2

)
(3.28)

Different errors are minimized in the LVQ and the SOM, but we will come to that later.
First we explain the differences between k-means clustering and the k-center method (from
section 3.4.1).

The k-means clustering method resembles the k-center method (from section 3.4.1), but
the important difference is the error which is minimized. The k-center method focuses on
the worst case objects (i.e. the objects with the largest reconstruction error) and tries to
optimize the centers and the radii of the balls to accept all data. In the k-means method
the distances to the prototypes of all objects are averaged, and therefore the method is
more robust against remote outliers. Furthermore, in the k-center method the centers are
placed, per definition, on some of the training objects, while in the k-means method, all
center positions are free.

In figure 3.6 examples of the boundaries of the k-means method and the k-center method
are shown. The boundaries are set to reject 20% of the target data. The placing of the
centers of the hyperspheres by both methods is very similar. The exact positions are
determined by the extreme objects for the k-centers and by the means of the different data
clusters for the k-means clustering. The most appealing difference is that the k-center

74 3. One-class classification

kmeans
kcenter

Fig. 3.6: Comparison between the boundary obtained by the k-means method and the k-center
method. The threshold is set such that 20% of the target objects is rejected.

method places a hypersphere on the object in the lower right of the dataset, while the
k-means method treats it as an outlier.

The distance d of an object z to the target set is then defined as the squared distance
of that object to the nearest prototype:

dk−m(z) = min
k
‖z− µk‖2 (3.29)

Different minimization routines exist for minimizing the k-means error (3.28). Here we
will use a batch algorithm, which optimizes the prototypes µk with an algorithm compa-
rable to the EM-algorithm of the mixture of Gaussians, in section 3.3.2. The algorithm
starts with a random placement of the prototypes. All objects x are then assigned to the
nearest prototype and the prototype is updated to the mean of this set of objects. The
re-estimation continues until the prototype places are stable. It appears that this k-means
algorithm is the limiting situation for the EM optimization in a mixture of Gaussians
[Bishop, 1995].

The LVQ algorithm is a supervised version of the k-means clustering and is mainly used
for classification tasks.5 For each of the training objects xi an extra label yi is available,
indicating to which cluster it should belong. The LVQ is trained as a conventional neural
network, with the exception that each hidden unit is a prototype, where for each prototype
µk a class label yk is defined. It basically minimizes the classification error (error (1.4)),
and not the error Ek-m (3.28). The training algorithm is such that it only updates the

5 In [Roweis and Ghahramani, 1997] it is shown that the LVQ and the Mixture of Gaussians (and the
Principal Component Analysis which we will encounter in the next section) can be unified to one single
basic model. We will treat these methods separately to highlight the differences between them.

3.5. Reconstruction methods 75

prototype nearest to the training object xi:

∆µk =

{
+η (xi − µk) if yi = yk

−η (xi − µk) otherwise
(3.30)

where η is the learning rate. This update rule is iterated over all training objects, until
convergence is reached.6 When just one class of objects is available, this is the direct
derivative of the error function (3.29).

In both the k-means clustering and the LVQ the k means µ have to be estimated.
Therefore, the number of free parameters becomes:

nfreek−m = nfreeLV Q = kd (3.31)

In both the LVQ and the k-means method, the user should supply the number of clusters
k and the LVQ further requires the learning rate η.

In the self-organizing map (SOM) the placing of the prototypes is not only opti-
mized with respect to the data, but also constrained to form a low-dimensional mani-
fold [Kohonen, 1995]. When the algorithm is converged, prototypes corresponding to
nearby vectors on the manifold have nearby locations in the feature space. Often a 2- or
3-dimensional regular square grid is chosen for this manifold such that data mapped on
this manifold can be visualized afterwards. Higher dimensional manifolds are possible, but
the storage and optimization costs become prohibitive (for a dSOM dimensional manifold,
the number of neurons becomes kdSOM). When the dimensionality of the manifold does
not fit the data, this topological constraint on the placing of the prototypes might result
in suboptimal placing.

Thus, in the optimization of the SOM kdSOM neurons have to be placed in the d-
dimensional feature space. This means that the number of free parameters in the SOM
becomes:

nfreeSOM = dkdSOM (3.32)

The dimensionality of the manifold dSOM , the number of prototypes per manifold dimen-
sionality k and the learning rate are supplied by the user. Furthermore, the user should also
define a neighborhood function over the grid, which can even change during training. We
used the defaults in the SOM-tool Matlab toolbox [Vesanto et al., 2000], i.e. a Gaussian
neighborhood which decreases in size over time.

In all of these methods the Euclidean distance is used in the definition of the error and
the computation of the distance.

dSOM(z) = min
k
‖z− µk‖2 (3.33)

Consequently, all these methods are sensitive to scaling of the features.

6 or when the user is out of patience.

76 3. One-class classification

3.5.2 Principal Component Analysis

Principal Component Analysis (PCA) (or the Karhunen-Loève transform) [Bishop, 1995]
is used for data distributed in a linear subspace. The PCA mapping finds the orthonormal
subspace which captures the variance in the data as best as possible (in the squared error
sense). Neural network approaches exist for the optimization of a PCA (we will encounter
one in the section 3.5.4 about auto-encoders). The simplest optimization procedure uses
eigenvalue decomposition to compute the eigenvectors of the target covariance matrix. The
eigenvectors with the largest eigenvalues are the principal axis of the d-dimensional data
and point in the direction of the largest variance. These vectors are used as basis vectors
for the mapped data. The number of basis vectors M is optimized to explain a certain,
user defined, fraction of the variance in the data. The basis vectors W become a d × M
matrix. Because they from an orthonormal basis, the number of free parameters in the
PCA becomes:

nfreePCA =

(
d− 1

M

)
(3.34)

In PCA it is often assumed that the data has zero mean. When the mean of the data has
to be estimated also, this will add another d free parameters to nfreePCA.

The reconstruction error of an object z is now defined as the squared distance from the
original object and its mapped version:

dPCA(z) =
∥∥z− (W(WTW)−1WT)z

∥∥2
=
∥∥z− (WWT)z

∥∥2
(3.35)

where the second step is possible because the basis W is orthonormal.
The PCA performs well when a clear linear subspace is present. Also for very low sample

sizes the data is automatically located in a subspace (10 objects are always distributed in
a 9-dimensional subspace). When the intrinsic dimensionality of the data is smaller than
the feature size, the PCA can still generalize from the low sample size data. When the
data has variance in all feature directions, it might sometimes be impossible to reduce
the dimensionality without reducing the fraction of the explained variance too much. For
instance, when the user requests that 90% of the variance of some 2-dimensional data
should be explained, it might happen that each of the two PCA features explain about
50% of the variance. In this case, no feature reduction can be applied and the complete
feature space is described by the two features. Therefore, all data will be accepted. Also
when data is distributed in separate subspaces, the PCA will produce an average subspace
which may represent the data in each subspace very poorly.

The PCA is relatively sensitive to the scaling of the features, it directly influences
the feature variances. Scaling changes the order of the large variance directions and thus
the PCA basis. When data directions are enhanced, this improves the PCA description,
but when noise is amplified, it harms the characterization. Finally, because the PCA
only focuses on the variance of the target set, the PCA is incapable of including negative
examples in the training.

3.5. Reconstruction methods 77

3.5.3 Mixtures of Principal Component Analyzers

Like the extension of the Gaussian model to the mixture of Gaussians, the PCA can be
extended to a mixture of PCA’s. The extension of the PCA is far less obvious, though. For
the optimization of the original PCA no probability distribution is assumed or optimized.
The combination of several principal component analyzers then becomes a bit ad hoc:
when is an object z described by subspace A and not by subspace B?

In [Tipping and Bishop, 1999] the PCA is reformulated within a maximum likelihood
framework with a probability model for the data. It is, therefore, also called the proba-
bilistic principal component analysis. By introducing several principal component bases,
a mixture of probability models can be optimized. Each model identifies a subspace Wk

in the data. The resemblance of a new object z to the total mixture becomes:

pMPCA(z) =
∑

k

(
(2π)−d/2|Ck|−1/2 exp

{
−1

2
(z− µk)

TC−1
k (z− µk)

})
(3.36)

where Ck = σ2I + WkW
T
k is the covariance matrix in subspace Wk. In the mixture of

PCAs the means µk, the subspace directions Wk and the covariance matrices Ck have
to be estimated from the data. These parameters can be estimated by an EM algorithm
[Tipping and Bishop, 1999] which minimizes the log-likelihood of the training set. Now for
each object a probability that it is explained by one of the subspaces can be computed and
a well-defined PCA mixture model can be constructed.

The number of free parameters in this method is very high and therefore the required
sample size is high. Not only do we have to estimate the basis vectors for each subspace,
but also the mean µk of each of the subspaces has to be estimated, and finally, the noise
variance σ outside the subspaces. Adding all free parameters for the mixture of PCAs
gives:

nfreeMPCA =

((
d− 1

M

)
+ d

)
NMPCA + 1 (3.37)

By the estimation of the full covariance matrix the method can adapt different scales of
features, but it can be very sensitive to outliers.

3.5.4 Auto-Encoders and Diabolo networks

Auto-encoders [Japkowicz et al., 1995] and diabolo networks are neural network approaches
to learn a representation of the data [Hertz et al., 1991, Baldi and Hornik, 1989]. Both
methods are trained to reproduce the input patterns at their output layer (so they should
perform the identity operation). We will distinguish between the auto-encoders and the
diabolo networks by the number of hidden layers and the sizes of the layers; see the pictures
in figure 3.7. The units are represented by circles, the weights by the arrows. In the auto-
encoder architecture just one hidden layer is present with a large number hauto of hidden
units. We will use conventional sigmoidal transfer functions. In the diabolo network three

78 3. One-class classification

hidden layers with non-linear sigmoidal transfer functions are used and the second layer
contains a very low number of hidden units (hdiab). This is therefore called the bottleneck
layer. The other two layers can have an arbitrary number of hidden units (larger than in
the bottleneck layer). Here, we will choose to use two7 times as many as in the bottleneck
layer.

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

! ! !
! ! !
! ! !
! ! !
! ! !

" " "
" " "
" " "
" " "
" " "

#
#
#
#
#

$ $ $
$ $ $
$ $ $
$ $ $
$ $ $

% % %
% % %
% % %
% % %
% % %

& & & &
& & & &
& & & &
& & & &
& & & &

' ' ' '
' ' ' '
' ' ' '
' ' ' '
' ' ' '

((((
((((
((((
((((
((((

))))
))))
))))
))))
))))

* * *
* * *
* * *
* * *
* * *

+ + +
+ + +
+ + +
+ + +
+ + +

, , ,
, , ,
, , ,
, , ,
, , ,

- - -
- - -
- - -
- - -
- - -

. . .
. . .
. . .
. . .
. . .

/ / /
/ / /
/ / /
/ / /
/ / /

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

3 3 3
3 3 3
3 3 3
3 3 3
3 3 3

4 4 4
4 4 4
4 4 4
4 4 4
4 4 4

5 5 5
5 5 5
5 5 5
5 5 5
5 5 5

6 6 6
6 6 6
6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7
7 7 7
7 7 7

Fig. 3.7: Schematic picture of an auto-encoder network (left) and a diabolo network (right). The
circles represent the neurons, the arrows the weights. Both networks have an equal
number of input and output units and differ in their definition of the hidden layers.
For the auto-encoder network we have hauto = 6 and for the diabolo network hdiab = 2.

Both types of network are trained by minimizing the mean square error (using er-
ror EMSE (1.3) with (1.5), page 4). It is hoped that target objects will be reconstructed
with smaller error than outlier objects. The distance between the original object and the
reconstructed object then a measure of the distance of an object z to the training set:

ddiab(z) = ‖fdiab(z;w)− z‖2 (3.38)

dauto(z) = ‖fauto(z;w)− z‖2 (3.39)

When just one hidden layer is used in the auto-encoder network, a (linear) principal
component type of solution is found [Bourlard and Kamp, 1988]. It means that the auto-
encoder network tends to find a data description which resembles the PCA description.
On the other hand, the small number of neurons in the bottleneck layer of the diabolo
network acts as an information compressor. To obtain a small reconstruction error on the
target set, the network is forced to train a compact mapping of the data into the subspace
coded by these hidden neurons. The number of hidden units in the smallest layer gives the
dimensionality of this subspace. Due to the non-linear transfer functions of the neurons
in the other layers, this subspace can become non-linear. When the size of this subspace
matches the subspace in the original data, the diabolo network can perfectly reject objects
which are not in the target data subspace. When the subspace is as large as the original
feature space, no distinction between target and outlier data can be expected.

7 Magic parameter!

3.6. Robustness and outliers 79

The number of free parameters can be very high for both the auto-encoder as the
diabolo network. The number of input and output neurons is given by the dimensionality
d of the data. First define hauto as the number of hidden units in the auto-encoder. The
total number of weights in the auto-encoder (including bias terms) is:

nfreeauto = d× hauto + hauto + hauto × d + d = (2d + 1)hauto + d (3.40)

(i.e. the number of weights from the input to the hidden layer, the biases in the hidden
layer, the weights from the hidden to the output layer and the biases in the output layer).

For the diabolo network we have both the number of neurons in the bottleneck layer,
hdiab, and the number of neurons in the other hidden layers, which we have chosen as 2hauto:

nfreediab

=d× 2hdiab + 2hdiab(hdiab + 1) + hdiab(2hdiab + 1) + 2hdiab(d + 1) + d

=hdiab(4d + 4hdiab + 5) + d

(3.41)

In the application of the auto-encoder and the diabolo networks, the same problems as
in the conventional application of neural networks to classification problems are inherited.
The methods are very flexible, but they require a predefined number of layers and neurons,
the learning rates and the stopping criterion from the user. The advantage of these models
is that they can be optimized to the problem at hand and that they can therefore obtain
very good results. For non-expert users on the other hand the settings of the magic
parameters might be a problem and performance of the networks can become very poor.

3.6 Robustness and outliers

In the previous three sections we listed a large number of one-class classifiers. Each of them
have different characteristics concerning the number of parameters, the robustness against
outliers etc. In the next two sections we shortly evaluate these characteristics to give a
better overview of what can be expected of the different one-class classification methods.

An important characteristic of the one-class classifiers is their robustness against a few
outliers in the training data. Using the empirical rejection rate on the training set (formula
(3.6) page 60) to obtain a threshold for the density or distance measure, some robustness
is automatically incorporated. Some methods are inherently noise sensitive though, and a
few outliers might severely influence the final data description.

In table 3.2 the outlier robustness for the different one-class classifiers is listed, for
both, a labeled and an unlabeled outlier. For instance, when we consider the Gaussian
model, it is not robust against outliers in the training data (indicated by the ’−’ in the
second column in the table). The outlier in the training data harms the estimation of the
covariance matrix. But when regularization is applied, the Gaussian model can identify
large outliers. When the outlier object is labeled as an outlier, the Gaussian model is still
incapable in using this information to improve the description (indicated by the − in the
fourth column). A second Gaussian density has to be modeled around this outlier in order

80 3. One-class classification

Table 3.2: The robustness of all methods to outliers in the training data. In the second and
third column the outlier is not labeled as outlier, in the fourth and fifth column it
is given as a negative example. A + indicates that a method is robust, − that it is
not robust and −/+ indicates that it actually depends on the implementation of the
method.

method Unlabeled outliers in training Labeled outliers in training

Gaussian
model

– estimation of covariance ma-
trix may suffer, when regular-
ization is used, very large out-
liers can be rejected

– outlier density should be
modeled using few examples

mixture of
Gaussians

– estimation covariance matrix
suffers

– outlier density should be
modeled using few examples

Parzen + density estimation only influ-
enced locally

+ outlier density should be
modeled.

k-centers – ball centers sensitive – outlier can obtain a ball, but
overlapping balls give prob-
lems

NN-
distance

– distance quotient extremely
sensitive

– use a Nearest Neighbor Clas-
sifier

SVDD + a user defined fraction of the
data can be rejected

+ outliers can be forced outside
the description

LVQ – prototypes will be placed on
or near outliers

+ in essence a classifier, it can
repel from outliers

k-means – prototypes will be placed on
or near outliers

– in essence a clustering, cannot
repel from outliers

PCA – estimation covariance matrix
suffers from outliers

– outlier density should be
modeled using few examples

SOM – prototypes will be placed near
outliers

+ repel from outliers

auto-
encoder

–/+ depends on regularization
strength

–/+ a bad representation should
be forced

diabolo –/+ depends on regularization
strength

–/+ a bad representation should
be forced

to incorporate this outlier in the training. This is possible, of course, but it requires extra
assumptions and models, and this surpasses the conventional Gaussian model.

From all the methods, the NN-d is the least robust (most sensitive) to noise. One
outlier will cause a large portion of the feature space to be acceptable (see also section
3.4.2). The methods which rely on some variance measure, such as the Gaussian density
or the PCA, can also suffer from the outliers. The variance introduced by a remote object
can overwhelm the variance for the target class completely. The methods which find local

3.7. Number of parameters 81

approximations, such as the Parzen density, the k-means, LVQ and k-centers (assuming
that the number of prototypes or means is sufficiently high) will very likely place one cluster
around the outlier. For a remote object and a small cluster this will hardly influence the
rest of the description. Finally, the methods with a strong regularization character, such
as the diabolo networks, the auto-encoders and the support vector data description, find
more or less global solutions and are relatively insensitive to outliers.

In some cases examples of outliers are known. Using this extra information might
improve performance of the one-class classification, because it gives an indication of the
relative importance of the features. When a large number of outlier objects is available,
a traditional two-class classifier can be used. When just a few outliers are present, a one-
class classifier should be preferred, because a closed boundary around the data is obtained.
Therefore, we assume that just a few outlier objects are present in the data.

Most of the one-class classification methods are not capable of training with negative
examples. In some cases the method cannot be trained with example outliers at all, such
as in the normal density, the k-means clustering or the PCA. In these cases the outlier
distribution should be modeled separately, which might be problematic when just a few
objects are available. The Parzen density can cope with just a few samples and can
incorporate these negative examples.

In other methods, such as the LVQ, auto-encoder and diabolo network and the self-
organizing map, the learning rule can be adapted not only to accept the target objects,
but also to repel the outlier objects. For the larger neural networks (auto-encoder and
diabolo networks), the influence of just a few outlier objects might be too small to find
very good performance. The LVQ is essentially a classifier, and it is, therefore, the best
method to incorporate a few outlier objects in the training. Finally, in the support vector
data description, it is not only possible to actively exclude negative examples, it is also
possible to adjust the strength with which negative examples should be rejected (see the
bound (2.48)).

3.7 Number of parameters

Here we summarize the discussion about number of free and ’magic’ parameters in each of
the methods. In table 3.3 the sensitivity to the scaling of the data, the number of free
parameters and the user defined parameters for each of the one-class classification methods
is listed.

The sensitivity of the methods to scaling indicates how a method can adapt to rescaling
of one of the features. Some methods depend heavily on a properly defined distance between
objects, such as the NN-d, but also the other boundary methods. Other models can adapt
to that, such as the Gaussian model where a complete covariance matrix can be optimized.
Because in the mixture of Gaussians only a diagonal covariance matrix is chosen with equal
variance in each direction, this method also becomes scale sensitive.

The number of free parameters gives an indication of the flexibility of the method and
the sensitivity to overtraining. Of course the training procedure and extra regularization

82 3. One-class classification

Table 3.3: The scaling sensitivity, the number of free parameters and the number of parameters
required from the user for each of the one-class classification methods. A ’+’ in
the second column indicates that the method will be sensitive to the scaling of the
features. Further we used the conventions: d: dimensionality of the data, N : number
of training objects, k: number of clusters, M : dimensionality of subspaces, h: number
of hidden units.

method scaling number of number of user
sensitivity free parameters defined parameters

Density approaches

normal density – d + d(d + 1)/2 regularization λ
Mixture of Gaussians + (d + 2)NMoG NMoG, # iterations
Parzen density +/– 1 0

Boundary approaches

k-centers + k k and # iterations
NN-d + 0 0
SVDD + N f out

SV

SVDD-neg + N f out
SV

Reconstruction approaches

k-means + kd k, # iterations

PCA –
(

d−1
M

)
fraction of preserved var.

mixture of PCAs –
((

d−1
M

)
+ d
)
NMPCA + 1 dim. and # subspaces

SOM + kdSOM d dim. and subspace size
auto-encoder – (2d + 1)hauto + d # hidden units
diabolo network – hdiab(4d + 4hdiab + 5) + d # hidden units,

dim. subspace

might decrease the effective number of parameters (for instance, in the case of the support
vector data description and the neural networks with their strong regularizing character).
In other cases, such as the NN-d and the Parzen density, almost no free parameters are
present and almost no model is assumed. These methods completely depend on the training
set and as a consequence a bad training set (i.e. a training set which does not reflect the
true distribution well) can ruin the performance of these methods.

The number of parameters which should be defined by the user indicates how convenient
the application of a method is. In table 3.3 we have omitted parameter fT+, because this is
required in all methods and it is therefore not a ’magic’ parameter for a particular method
(although it is explicitly used in the support vector data description). Using a Parzen
density is extremely simple and no poorly optimized parameter can ruin the performance
of the method (although in this case the low sample size probably will). In the support

3.8. Discussion 83

vector data description the user has to supply f out
SV , the fraction of the training objects

which is rejected by the description (i.e. outside instead of on the boundary). Although
this parameter can be very important for the performance of the method, it is an intuitive
measure which offers some extra interpretation. The auto-encoder and diabolo networks
require several settings which are not intuitive to the user beforehand, such as the number
of hidden units and the learning rates. Default values may be supplied, but poor choices
might create such a large bias for a specific problem that the methods become useless.

3.8 Discussion

The one-class classification methods can be based upon three main principles: density
estimation, direct boundary estimation and reconstruction. The density estimation gives
the most complete description of the data, but might require too much data. For lower
sample sizes a method which directly estimates the boundary might be preferred. Finally,
a distance or a reconstruction error might be defined based on a model of the data. This
model gives the ability to include extra prior knowledge of the problem.

To compare the performance of different methods on a training set, the tradeoff between
the error of the first and second kind, EI and EII (or the target acceptance rate fT+ and the
outlier rejection rate fO−), has to be investigated. To measure these errors, both target and
outlier data should be available. When no outlier data is present, an estimate of the covered
volume of the method should be used (which then implicitly assumes that outliers are
uniformly distributed). For higher dimensional data (larger than 10-dimensional) volumes
are very hard to estimate and there outlier data should be available.

The tradeoff between EI and EII is present in all one-class classification methods. In all
methods it is possible to set a threshold θ, such that a prespecified target acceptance rate
fT+ on the training set is obtained. The outlier rejection rate fO− has to be measured
using the example outliers. Good fitting methods will obtain a high value for fO−. To
compare different one-class classification methods on a certain training set, this fO− will be
integrated over a range fT+ (by changing the threshold in the classifier). This integrated
error, also called Area under the ROC Curve (AUC), will be used in the performance
evaluation of one-class classifiers.

The methods listed in this chapter have different characteristics concerning the number
of free parameters, the number of magic parameters, their flexibility to adapt to changes
in scale of the features and their robustness against outliers in the training set. Table 3.3
shows that a large variation is present in the number of free and magic parameters for the
different one-class classifiers. The number of free parameters should be small to avoid a too
flexible model and rapid overfitting to training data (which can be expected in the mixture
of PCA’s, the SOM or the auto-encoder). The number of user defined parameters should
be small and the individual parameters should have an intuitive meaning. This avoids the
optimization of a large set of vague parameters by the user. On the other hand, when just
a few magic parameters are present, it often indicates that a strong model of the data is
assumed. The Parzen density and the NN-d contain the lowest number of free parameters.

84 3. One-class classification

The robustness of the one-class classifiers against outliers in the training set differ from
method to method (as shown in table 3.2). We discerned outliers which are labeled as
outliers (thus in fact a two-class classification problem is obtained) and outliers which can
only be discerned from genuine target objects by their low resemblance to the bulk of the
data. Some robustness against outliers is already incorporated in all the one-class classifiers,
by the fact that the threshold θ is optimized for a specific fT+ < 1. For instance, when
this threshold is optimized for fT+ = 0.95, the 5% most dissimilar target data (probably
containing the outliers) are rejected. Just a few one-class classifiers are able to use labeled
outliers in the training. These are the Parzen density, the SVDD, the LVQ, the SOM and
the neural networks.

In the next chapter we will investigate how the methods presented in this chapter work
on some artificial and real-world applications.

4. EXPERIMENTS

In this chapter the one-class classification methods introduced in the previous chapter are
applied to several artificial datasets. By using artificial datasets, the characteristics of
the datasets can exactly be set. The datasets are constructed such that they differ in
scaling, clustering, convexity and their placing in subspaces. In section 4.1 the general
settings of the one-class classifiers will be discussed. The types of artificial data used are
discussed in section 4.2. In section 4.3 the characteristics of the error measure (defined in
section 3.1.2) will be shown. In sections 4.4 to 4.11 the influence of sample size, modality,
scaling, robustness and time consumption on the one-class classification methods will be
investigated. Finally, in section 4.12 we will look at the performance of the one-class
classifiers on real world datasets.

4.1 Parameter settings

All (one-class) classifier methods contain two types of parameters. The first type of pa-
rameters is optimized by the optimization routine of the methods themselves during the
minimization of an error function E. These parameters include, for instance, the placing
of the prototypes in the k-means method or the rotation of the subspace in PCA. Because
these parameters are optimized automatically, they are of no further worry for the user.
The second type of parameters are the, so called, ‘magic parameters’ which have to be set
beforehand by the user. These are, for instance, the number of prototypes k in k-means
clustering or the dimensionality M of the subspace in the PCA.

In contrast to the first type of parameters, the values of the magic parameters should
be chosen by the user, and poor choices can potentially have a large influence on the
performance of the methods. Ideally, these values should be tuned to the data. For
instance, when insufficient prototypes are used in k-means clustering, it cannot describe
the target data well and it will approximate the data very roughly, resulting in poor
classification performances. On the other hand, using too many prototypes in k-means
is less harmful, but might still result in some overfitting. When no prior knowledge is
available (for k-means, knowing the number of clusters in the data would be very useful),
the training set should be used. Given that, in general, just a limited amount of data is
available, it might not be trivial to find a good value with high confidence.

In the coming sections we will investigate the behavior of the one-class methods on
several artificial datasets. Because we know the characteristics of these artificial datasets
(we know that the data have limited complexity; it will contain 3 clusters at most, while

86 4. Experiments

the intrinsic dimensionality ranges from just 2 to 10), we will avoid an exhaustive exper-
imentation concerning the free parameters and we will choose them to have fixed values.
We will use reasonable, but not fully tuned, settings for all of the methods. This pro-
cedure then gives just an indication of how flexibly a method can adapt to the data for
non-perfect settings of the magic parameters, which then provides an suggestion what an
average user (without detailed knowledge about the methods and the data) can expect
from the one-class models.

For the experiments in this chapter, we set the magic parameters of the one-class
classifiers at these predefined values: the number of clusters in the k-means, LVQ and
k-center methods will always be set to 10, which is enough to find 2 or 3 clusters in
these experiments. The dimensionality of the self-organizing map is set to 2. Because
the SOM uses k = 10 neurons for each dimension in the map, in total 10 × 10 neurons
are required. The diabolo and the auto-encoder networks will (obviously) have the same
number of output units as input units. The auto-encoder will have 10 hidden units, the
diabolo network has two hidden neurons in its bottleneck layer (which then describes a
2-dimensional subspace).

Although it would be possible for the PCA to just take a 2-dimensional subspace,
increasing the dimensionality is not expensive (from a storage and computational point of
view). For the self-organizing map, on the other hand, the number of neurons is exponential
in the map dimensionality; kd to be precise. To take advantage of the relative ease with
which extra dimensions can be added to the PCA, we will optimize it such that it will
account for 90% of the variance. However, for the real world data we will be more careful
in selecting these numbers.

In the comparison between the one-class classification methods both the fT+ and fO−
are measured (on independent test sets). The fT+ is varied from 30% acceptance up to
99%. Because this rate is optimized on the training set, the performance on the test set
might significantly deviate from these values. For the integration error over the ROC curve
(formula (3.7)) a more limited integration range from 50% to 95% is used. All experiments
on artificial data are averaged over 25 runs.

4.2 The datasets

In the first experiments we compare all one-class classification methods on 5 different ar-
tificial datasets. These datasets are constructed to investigate different characteristics of
the methods. By using artificial data instead of real world data, we avoid focusing on
unsuspected and complex distributions. It gives the opportunity to just focus on some im-
portant aspects of data distributions. It is expected that the various one-class classification
methods will behave differently on data with different characteristics. In the coming sub-
section we will present a set of datasets which show very specific features, such as scaling,
clustering and the (non-)convexity of the dataset, which can illustrate the advantages and
disadvantages of the one-class methods. In a special subsection we will discuss a dataset
which has an atypical training set (i.e. a training set which is not a representative sample

4.2. The datasets 87

from the ‘true’ target set).
After the one-class methods are applied to the artificial datasets, they will be applied

to real world data to check whether it is possible to match the characteristics found in
the real world data with those in the artificial data. Since real world data tend to be
distributed in non-linear subspaces and in clusters of different sizes, or have different non-
convex distributions, the characteristics are harder to extract.

4.2.1 Artificial outlier distributions

Z

dataset
dimensions

dimensions
box

Fig. 4.1: The ’box-procedure’ for constructing a box around the target distribution, from which
artificial outliers are uniformly drawn. The sides of the box are 1.5 times the size of
the training set (the gray area) along the feature axes.

To obtain a set of artificial outlier objects Z, a box around the target objects is
defined and from this box test outlier objects are uniformly drawn. The size of the box
is determined by the training data itself. In each feature direction the minimum and
maximum feature values of objects from the dataset is measured. The center of the box
is the average of the minimum and maximum, the sides of this box are 1.5 times the
difference of this minimum and maximum. An illustration is given in figure 4.1. Although
the dimensions of the box become sensitive to outliers in the target set, this procedure
guarantees that all target objects are within the box. Furthermore, by using the box-
shaped uniform distribution the outlier objects are very cheap to create.

When the artificial outliers are uniformly distributed, the fraction of accepted outliers
by a one-class method, fO+, gives an estimate of the volume covered by this method.
This implies that this volume will change when another dataset is considered. Thus,
the performance on the outliers will change and therefore the error of the method as
well. Assume, for example, that we have a 2-dimensional and a 10-dimensional Gaussian
target distribution. In both cases artificial outliers are created using the ‘box-procedure’
mentioned above. Unfortunately, in the 10-dimensional feature space the ratio between

88 4. Experiments

the volume of the box and the spherical Gaussian boundary will be much larger than in
the 2-dimensional case (see section 3.1.1). In other words, the overlap between the outlier
and target objects will be larger in the 2-dimensional feature space. It is, therefore, easier
to distinguish target objects from outlier objects in high dimensional spaces in comparison
with low dimensional.1

4.2.2 Well-sampled target distributions

The first collection of artificial data we discuss, contains datasets in which the training
data is a representative sample from the ‘true’ distribution. In these cases, it is expected
that for sufficient sample sizes the density methods will perform best. In particular, when
the density models fit the data (when they are flexible enough to adapt to the data; for
instance, the Parzen density estimator), it is very hard to improve over that. In these
cases, the boundary one-class classification methods have to focus on the (relative) low
density areas of the data, and might, therefore, show poorer extrapolation characteristics
than the density methods. For the reconstruction methods the performance will depend
on how well the model fits to the data.

−2 −1 0 1
−3

−2

−1

0

1

2

gauss

−5 0 5

−5

0

5

10

three−gauss

−2 0 2

−5

0

5

ellipse

−4−2 0 2 4 6

−5

0

5

banana

−2 0 2

−4

−2

0

2

4

pancake

Fig. 4.2: Two dimensional plots of all artificial data. Target data are indicated by ‘+’; in the
pancake data the outlier data are also given by ‘o’. For other datasets outliers are
uniformly distributed around the target data.

Two-dimensional scatter plots of the different artificial data sets are shown in figure
4.2. The target objects are indicated by ‘+’ markers. The outlier data is created using
the box-procedure from the previous section. Only for the pancake dataset the outlier
data has a non-uniform distribution. This is explicitly shown in the scatter plot by ‘o’.
This pancake data is explained in more detail in appendix B.3. For all other methods the
outlier data is uniformly drawn from a box around the target data. For all experiments
1000 outlier objects are used.

We focus on the following data characteristics:
1 Note that we did not consider sample sizes. In high dimensional feature spaces larger number of

training objects are required to obtain a good estimate of the boundary of the data. When we have just
a limited amount of data, a lower dimensionality is to be preferred.

4.2. The datasets 89

sample size: Because outlier objects can be anywhere in the feature space (by assump-
tion), in any direction around the target data a boundary should be defined. When no
strong model is assumed, the required number of training objects increases dramat-
ically with the dimensionality of the data. To investigate the sample size behavior
with respect to the dimensionality, a simple normal target distribution with unit
covariance matrix around the origin is used (Gauss).

The optimal model for this problem is, of course, the Gaussian (or normal) model.
Because a unit covariance matrix is used, the individual features are weighted equally.
We also assume equally weighted features in most of the other methods (the mixture
of Gaussians, the Parzen density, LVQ, k-means, k-centers) and, therefore, we can
expect good performance for these methods. The only restriction will be the efficiency
of these methods in small sample size situations. The boundary methods will very
likely fail. These methods have to infer a very symmetric boundary around the data
from a few objects on the boundary. Unfortunately, for the Gauss dataset the objects
on the boundary are more or less the outlier objects and these give a bad indication
of the position of the center (or the high density area) of the dataset.

scaling: To define a resemblance between a test object z and a target set X tr, some
methods heavily depend on a proper definition of a distance and well-scaled features.
This holds most explicitly for the nearest neighbor method NN-d, but also for the k-
means and Parzen density estimator. An elongated normal target distribution is used
to investigate the sensitivity rescaled features (ellipse). The standard deviation in
the first feature is 4 times that of the other features. All other standard deviations
are set to one.

Again the Gaussian model should perform well here. The other methods, which
assume well-scaled features, will suffer, especially in case of small sample sizes. When
the sample size is increased, most methods will be able to recover from this scaling.
As in the Gauss, the ellipse does not have sharp boundaries, and, as a result,
the boundary methods will show poor extrapolation performance. In the group of
the reconstruction methods the PCA is expected to be able to use this elongated
direction to fit a subspace.

clustering (length of ‘data boundary’): The sensitivity to multi-modality and to the
relative size of the boundary can be investigated by using clustered target data.
The Gauss dataset is extended with two other Gaussian distributions with the same
unit covariance matrix but with different mean vectors. One cluster has value 10.0
in each feature direction while the other has +10 or −10 for successive features
(three-gauss) (as is shown in the second scatterplot in figure 4.2).

The best methods are the methods which explicitly model several clusters. These
are the mixture of Gaussians, LVQ, the k-means and k-centers. Although the Parzen
density is no clustering method, it is flexible enough to model clustered data. It can
be expected that in the three-gauss the models suffer from the small sample sizes.

90 4. Experiments

Each cluster now contains just one third of the data in comparison to the Gauss. In
particular, for the support vector data description this is expected to cause problems.

(non-)convexity: The influence of both the convexity and the boundary size is investi-
gated by a banana-shaped dataset, banana. Data is uniformly distributed in a half
circle; the radial distribution is normally distributed. The fourth subplot in figure 4.2
shows the 2-dimensional distribution. In higher dimensions this distribution func-
tion is repeated and the feature values are drawn independently from the original
2-dimensional distribution.

For this banana dataset the one-class models have to be more complex than for the
previous datasets. Unimodal models will not work here (such as the Gaussian model
or the PCA), but due to the complexity of the boundary, density methods should also
have problems finding the structure in the data. In small sample size situations, the
non-convexity of the data is completely hidden. For large sample sizes it is expected
that the flexible methods such as the Parzen density estimator, the support vector
data description and the self-organizing map will perform well.

subspaces: For poorly scaled data or for data in a subspace, singular directions can
appear in the data. Although for the data in the complete feature space the sample
size might be extremely small, when the data is only considered in the data subspace,
the sample size might be sufficient to obtain reasonable data descriptions.

To simulate a target set in a subspace, the pancake dataset is constructed. The
Matlab code for creating such datasets can be found in appendix B.3. The target
objects are normally distributed with unit variance in the first bd/2c features and a
variance of 0.1 in the remaining dd/2e features. In this dataset, the outliers are not
created randomly in a box around the data, but they are explicitly created near the
subspace. Two outlier clusters with the same variance structure as the target data
are created. The means of these clusters are set to +1 and −1 in the directions of
low variance. This pancake dataset is the only artificial data set where the outliers
are not uniformly distributed.

For this dataset the PCA and SOM should work best. When we assume that the
data is in an n-dimensional linear subspace, this subspace can be described by just
n objects.2 A density method will hopelessly fail here. The other boundary methods
(the nearest neighbor NN-d and SVDD) do not assume a subspace model thus only
focus on distances between objects, and, therefore, it is not to be expected that they
will perform very well in this case.

2 Or n + 1 if we assume that the data do not have a zero mean and the mean of the data has to be
estimated as well.

4.3. The error for one-class classifiers 91

4.2.3 Atypical training data

In the previous subsection we focused on problems for which the training data is a represen-
tative sample from the ‘true’ target distribution. We have argued in the introduction that
this is not usually the case. The training and testing data are not i.i.d. (not identically
and independently distributed). The user has to measure and create a training set be-
forehand and in many practical applications the target distribution might be ill-defined or
completely unknown. We have seen this in the pump characterization problem in chapter
2, page 49.

0 1

p(x)

x 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Atypical training data

Fig. 4.3: Training distribution of the target class of the atypical dataset.

To emulate atypical sampling behavior, we assume that the ‘true’ target distribution
is uniformly distributed in a unit square. The training data is sampled from a triangular
distribution between 0-1 (the 1-dimensional version is shown in the left graph in figure
4.3). All feature values are drawn independently from this 1-dimensional distribution. In
the left plot of figure 4.3 a scatter plot of a 2-dimensional training set is given. The target
data of the test set will be uniformly distributed in the square box. This will be called
the atypical dataset. Outlier objects are drawn in the same manner as in the previous
artificial datasets, from a box around the target set.

4.3 The error for one-class classifiers

In section 3.1.2 (page 60) we defined an error EM to evaluate one-class classifiers. It
integrates the fO+ for varying fractions of fT− (or equivalently, it integrates the error EII

over varying EI):

EM =

1∫
0

EII(EI)dEI =

1∫
0

∫
Z

I
(
p(z) ≥ θfT+

)
dzdθfT+

(3.7)

92 4. Experiments

(where θfT+
is the threshold on the probability model p(z) on the data). This tries to avoid

the focus on one of the threshold values by averaging over a range of thresholds. First we
want to check if this error measure gives information comparable to the complete ROC
curves.

To show how this error behaves and how it relates to the original ROC curve, we apply
it to a simple 2-dimensional Gaussian target distribution. All methods are trained on a
sample of 25 objects drawn from the target distribution. In the left plot of figure 4.4 the
results of all one-class methods are plotted in one ROC plot.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

gauss 2D, 25 tr.

norm
MoG
Parz
NN−d
SVDD
negS
LVQ
k−m
k−c
auto
PCA
SOM

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

outlier rejected

ta
rg

et
 a

cc
ep

te
d

gauss 2D, 25 tr.

theoretical optimal curve

Fig. 4.4: Receiver-Operator Characteristic curve for different one-class classifiers on 2-
dimensional Gaussian data with 25 training objects and 1000 test objects. The com-
plete ROC curve is shown on the left, an enlarged version with the theoretically optimal
curve on the right.

These ROC curves can serve to compare the performances of the one-class classification
methods. The more the ROC curves are located in the upper right corner, the better the
target and outlier objects are separated. It appears that most methods perform about the
same on the Gaussian distribution. Due to the large number of methods, they can hardly
be discerned in the plot (so don’t try, we will discuss only the two curves in the lower left
in the next section). Furthermore, it is not clear how these 2-dimensional curves can be
compared. The use of the integrated error, formula (3.7), will solve this problem in the
coming section.

Two ROC curves are located below all other ROC curves, i.e. the curves with the
open circles and with the triangles pointing to the right. These are the ROC curves of the
NN-d and the PCA methods. The NN-d is very noise sensitive (see section 3.4.2) and it
suffers from a few objects that are relatively remote from the bulk of the data. It accepts
large areas in feature space and on average, rejects just about half of the outlier objects.
The PCA concludes that all feature directions show large variance, and thus retains the
complete feature space. Although for all target and outlier data the error is very small
(on average the reconstruction error for both target and outlier data is ρPCA(x) ∼ 10−30),
objects located around the mean of the dataset are represented slightly better than objects

4.3. The error for one-class classifiers 93

lying further way. By this tiny difference, still some separation between target and outlier
objects is possible.

What is not visible in these plots (due to the overlap of the curves of different methods
or because some curves are collapsed onto one point in the ROC plot) is that some of the
methods do not perform well either. For instance, the auto-encoder network suffers from
the fact that the number of training objects is not very large and thereby it cannot be
trained well. It accepts the complete feature space and thus its complete ROC curve is
in the lower right corner (fO− = 1 and fT+ = 0). Other methods, such as the k-center
method, the SVDD and the SOM perform poorly when a large target acceptance rate is
required. It appears that their ROC curves stop at about 80% acceptance rate. When an
error integration rate up to 95% is considered, this will cause a large error.

In this artificial data distribution the probability densities of the target and outlier data
are known and it is, therefore, possible to compute the optimal boundary for different target
rejection rates.3 For objects coming from a Gaussian target distribution (with known mean
and covariance), the Mahanalobis distances are χ2

d distributed and the optimal threshold
can therefore be determined; see formula (3.12). In the right subplot in figure 4.4 the
theoretical optimal ROC curve is shown. Most methods approach this optimal curve very
closely.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

M
P

C
A

Gauss 2D, 25 tr.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

M
P

C
A

Gauss 5D, 25 tr.

Fig. 4.5: Histograms of the integrated error over the ROC curves for the (left) 2-dimensional
and (right) 5-dimensional Gauss dataset. The errorbars give the standard deviations
over 25 runs.

A histogram of these integrated error areas, as defined in section 3.1.2 is given in figure
4.5. The results for 2-dimensional data are shown in the left plot, for the 5-dimensional
data in the right plot. The target data is normally distributed. The worst case error is
Eworst = 0.45 for an integration range of 0.5 to 0.95.

3 Note that the outlier distribution is not completely known when the box procedure from section 4.2.1
is applied. The size of the box is determined by the most remote objects from the random target sample.
To avoid the influence of these objects, for the experiment with 25 target objects, the box is fixed between
−4.0 and 4.0 in all dimensions.

94 4. Experiments

The histograms show that the Parzen density estimation and the mixture of PCA’s
perform very well. The results are comparable to and sometimes even better than the
results of the fitted Gaussian method. The data is generated from a Gaussian distribution
with unit variance in all directions and we can, therefore, expect that the Gaussian model
would fit the data best. The Gaussian model, however, has to estimate a complete covari-
ance matrix. This can become problematic in small sample size situations. In this case
the Parzen density has the advantage that the width parameter is equal for all directions
in the feature space. The mixture of PCA’s takes advantage of the fact that a very large
regularization parameter has to be used to compute the inverse covariance matrices (ma-
trix C in formula (3.36)). Without this regularization parameter, the mixture cannot be
trained at all, but when it is set, an almost spherical description is obtained.

The mixture of Gaussians, nearest neighbor method (NN-d) and the PCA perform very
poorly, which was already observed from the ROC curves in figure 4.4. The performance
of the auto-encoder network is also poor. This is caused by the fact that the network could
not accept more than 80% of the target class. For the larger target acceptance rates it
therefore shows very large errors. But when a reasonable integration range is chosen, the
integrated error gives an indication comparable to the ROC curves.

In the 2 plots in figure 4.5 the difference in performance is clearly noticeable. In both
the left and right problem the target data is normally distributed, but the dimensionality
differs. Data is 2-dimensional in the left and 5-dimensional in the right subplot. With
increasing dimensionality the volume of the bounding box of the outlier data and the
volume of the target distribution diverge (we already mentioned this in sections 3.1.1
and 4.2.1). This means that the volume covered by the target class within the outlier
distribution becomes very small and, consequently, the error decreases. It appears that the
theoretical optimal performance for 25 objects in 2 dimensions is Etheor = 0.105, while for
5-dimensional data the error decreases to Etheor = 0.045. This also means that for different
dimensionalities the problems basically change and therefore cannot be compared. When
just one fixed dimensionality is considered, it is, of course, still possible to compare the
performances of the different one-class methods.

4.4 Sample size

To investigate the influence of the sample size, the Gauss data is drawn from a Gaussian
distribution. For three different dimensionalities (2-, 5- and 10-dimensional) samples with
different sizes (10, 25, 50, 75 and 100 training objects) are created. In the left plot of figure
4.6 the results of the fitted Gaussian (or normal) method are shown. For increasing sample
sizes the error decreases, but for increasing dimensionalities the performance for small
sample sizes decreases. This is mainly caused by problems in the estimation and in the
inverse operation of the covariance matrix on which the method heavily relies. For small
samples sizes the matrix becomes singular and can not be inverted. In these cases, the
description by the normal method mainly relies on the regularization used in the covariance
matrix (see section 3.3.1). For 10 objects in 10 dimensions the regularization parameter λ

4.4. Sample size 95

 10 50 100 10 50 100 10 50 100
0

0.1

0.2

0.3

0.4

0.5

2D 5D 10D

normal model

 10 50 100 10 50 100 10 50 100
0

0.1

0.2

0.3

0.4

0.5

2D 5D 10D

theoretical performance

 10 50 100 10 50 100 10 50 100
0

0.1

0.2

0.3

0.4

0.5

2D 5D 10D

k−means

Fig. 4.6: The integrated error for the Gauss data of different dimensionalities (2, 5 and 10) and
sample sizes (10, 25, 50, 75 and 100 training objects) for the Gaussian model (left)
and k-means model (right). As a reference the performance of the true target data
distribution (with the correct mean and covariances) is shown in the middle.

is not optimized and the worst case error is approached. This effect is stronger for larger
dimensionalities since the required number of objects exponentially increases. For larger
sample sizes, reasonable performances are achieved.

When we compare these performances with the theoretically possible performance,
shown in the middle plot, we see that a large error is still present (especially for small
sample sizes). When the k-means method is applied, it is implicitly assumed that a stronger
spherical description is suitable and the problem of the estimation of the covariance matrix
is avoided.4 The performance is better, but now it appears that the estimation of the
(empirical) threshold is problematic for small sample sizes. It appears that when 100%
of the training data is accepted, on average about 60% of the testing target data is also
accepted. This severely increases the error, see formula (3.8). For larger sample sizes,
the difference between the normal method and the theoretical model decreases. For 100
objects in two dimensions both methods approach the theoretical performance.

In figure 4.7 the performances of all one-class methods are shown on Gauss data. In the
upper left corner the dataset contains 10 2-dimensional objects and in the lower right corner
100 10-dimensional objects. In each individual plot the performance of the 12 methods is
shown in the following order: the Gaussian method, mixture of Gaussians, Parzen density,
NN-d, the SVDD, LVQ and k-means, k-centers, auto-encoder network, the PCA, the self-
organizing map and the mixture of PCA’s. The diabolo networks is left out of the plots.
The number of free parameters was too large for this small sample size data and in all
situations poor results are obtained.

These plots show that the performances on a training set consisting of 10 objects are
often poor. In particular, the mixture of Gaussians, the SVDD, the k-center method
and the SOM do not work at all. Clearly, the sample size of 10 objects in 2 dimensions
is insufficient in all these cases. Surprisingly, the Parzen density still works best. Of
course, we have to mention that the target distribution has equally scaled feature values,

4 This is an example of the bias-variance dilemma; we include extra bias in our method to reduce the
variance.

96 4. Experiments

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

Gauss 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

Gauss 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

Gauss 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

Gauss 10D, 100 tr.

Fig. 4.7: Performance of one-class classification on the Gauss dataset.

and therefore, that the assumptions of the Parzen density estimation are fulfilled (see
section 3.3.3, page 67). The Parzen estimator only has to estimate one single smoothing
parameter h for all feature directions. Because the assumptions are fulfilled and just one
free parameter has to be estimated, the Parzen fits very well with this data.

By increasing the sample size, the performance of all methods improves. This can
already be observed for 25 training objects, except for the auto-encoder which requires the
largest sample sizes; even on 25 training objects it does not train properly. There are small
errors for almost all methods for sample sizes of 100 objects. For 2-dimensional data only
the PCA accepts the complete feature space. In 5 dimensions, even the PCA finds a good
description (although it retains 5 features), the numerical imprecision in the computation
of the reconstruction error still cause some good performance, see section 4.3.

With increasing dimensionality, the errors slightly decrease. This is caused by the fact
that the volumes of the target and outlier sets exponentially diverge in these cases (see
section 3.1.1). Due to the relatively small target volume, the inherent overlap between
the target and outlier class decreases. With increasing dimensionality the NN-d method
improves most, while the SVDD suffers from the lower bound on the number of support
objects required for its description (when a SVDD is trained on 10 training objects and
4 objects become support vector, the estimation of the error on the target set, formula
(2.47), then indicates that the expected error on the target set will be about 40%. This
will result in a large error contribution in the integrated ROC error, formula (3.8) for high
values of fT+.). For higher dimensional data sets this number can become substantial,
especially when smaller sample sizes are considered. The PCA does not fit the data at

4.5. Scaling 97

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

ellipse 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

ellipse 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

ellipse 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

ellipse 10D, 100 tr.

Fig. 4.8: Performances on the ellipse data distribution for varying sample sizes and dimen-
sionalities.

all: there is no subspace present and therefore PCA cannot distinguish between target and
outlier objects. In this data, with one cluster, the k-centers, k-means and the LVQ show
good performance, comparable to the best Parzen density estimation.

4.5 Scaling

In the next dataset, the ellipse dataset, we investigate the influence of the scaling of the
individual features. The errors on the ellipse dataset are shown in figure 4.8. Comparable
results, especially for small sample sizes when 10 training objects are used, can be observed.
The main difference in performance between the Gauss and the ellipse datasets can be
observed in the PCA. Especially for small sample sizes in high dimensional feature spaces,
10 or 25 training objects in 10 dimensions, the PCA can find a reasonable data description.
But also for large sample sizes, the PCA shows much smaller error.

The Parzen method works still well, although it does suffer from poorly scaled features
in this experiment. The performance is somewhat worse than in the Gauss experiment
(figure 4.7). The NN-d also deteriorates, although not as much as the Parzen density
estimator. The SVDD performs better in comparison with the Gauss data and achieves
performance comparable to the Parzen and the PCA. The elongated ellipse data makes
it possible for the SVDD to use just a few support vectors to describe the complete dataset.
The weak performance of the SVDD in the low target rejection rates is, therefore, avoided

98 4. Experiments

and the total performance increases (this is clearly visible in the experiments using 100
training objects). The SOM also suffers from the scaling, especially when it is trained
on about 25 training objects. When a large number of samples is available, however, the
performance does not deteriorate.

The clustering methods all suffer from the poorly scaled data. In the small sample size
situation (10 training objects) performance was already very poor. In the larger sample size
situations (25 and 100 training objects), it is visible that the k-means, k-centers and LVQ
deteriorate more than the other one-class classifiers. Good performance can be observed
in the Gaussian model. The Gaussian model has rescaled its covariance matrix and the
performance is about equal to that in the Gauss dataset. The auto-encoder again require
large sample sizes for training. It shows very poor performance, except for 100 training
objects in 2-dimensional data. Finally, the mixture of Gaussians relies on the estimation of
a diagonal covariance matrix for each of the components. This makes the method sensitive
to the scaling and its performance drops with respect to the original Gauss data.

4.6 Multimodality

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

three−Gauss 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

three−Gauss 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

three−Gauss 10D, 100 tr.

Fig. 4.9: Performances on the three-gauss data distribution for varying sample sizes and di-
mensionality.

To investigate the influence of the number of clusters in the data and the length of
the boundary, we apply the one-class classifiers to the three-gauss (see figure 4.2). In
figure 4.9 the error on the three-gauss dataset is shown for all methods and all sample

4.6. Multimodality 99

sizes considered. The characteristics of the three-gauss dataset differ significantly from
the previous Gauss. Since the three-gauss data consist of three Gaussian clusters with
a distance of 10

√
d between the centers, the uniform outlier distribution will cover a large

volume. The fraction which will be occupied by the target data will be relatively small
in comparison with the first Gauss distribution (compare the two plots in figure 4.2, page
88). The best performances on the three-gauss data is therefore better than the best
performances of the Gauss data (this is especially clear in the experiment with a sample
size of 10 and 25 objects).

Some similarities and dissimilarities between the results of the Gauss and the three-gauss
datasets can be observed. Most methods which perform poorly on the Gauss data also
perform poorly on the three-gauss data. A sample size of 10 objects gives results com-
parable to that of the Gauss, indicating that the clustering characteristics of the data
is completely hidden by the noise in the small sample size. The clustering of the data
only becomes apparent in the large sample size situation. The performance of the NN-d
is improved with respect to the Gauss due to the increased complexity of the data and
therefore the decreased ‘effective’ sample size. For 100 training objects in 2 dimensions
the performance of the (unimodal) Gaussian method deteriorates with respect to the other
methods. The mixture of Gaussians, on the other hand, performs well in this case.

For 2-dimensional data, the PCA still preserves the complete feature space. For larger
dimensionalities the performance increases. The three centers of the Gaussians span a
2-dimensional subspace which is easily described by the PCA in 5 and 10 dimensions. The
performance becomes comparable to that of the Gaussian method. The Parzen method
still works very well, also for very small sample sizes (10 objects in the training set). For
the moderated sample sizes, the SOM has problems to describe the data. The LVQ and k-
means show very large variance for small sample sizes (10 training objects). The prototypes
sometimes miss a cluster due to bad sampling of the target data, which results in poor
performances. On the other hand, when each of the three clusters obtains a prototype,
good results are obtained.

Finally, the SVDD still clearly suffers from the fact that a certain number of vectors
is required to define the boundary (see inequality (2.47)): for higher dimensionalities,
performance seriously decreases. Although the boundary of the data is enlarged, the volume
covered by the target set is decreased (in comparison with the outlier distribution) and the
average performance on the three-gauss data is comparable to that of the Gauss data.

In figure 4.10 the same methods are applied but now with different user settings. In
the previous experiments the number of clusters and the sizes of the networks were chosen
to be large enough to cover all the data (for the exact parameter values, see page 85). In
this experiment we change the number of clusters in the mixture of Gaussians, the LVQ,
k-means clustering and the k-centers to 2, and the number of hidden units in the auto-
encoder to 2. All other methods stay the same. Because the number of clusters in the
three-gauss is 3, this mismatch introduces a big bias for these methods.

It is expected that, in general, the performance of these methods will deteriorate. Only
the mixture of Gaussians and the auto-encoder network should improve their performance.
This is caused by the fact that the number of parameters which have to be estimated

100 4. Experiments

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

three−Gauss, k=2, 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

norm
M

oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

three−Gauss, k=2, 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

norm
M

oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

three−Gauss, k=2, 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

norm
M

oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

three−Gauss, k=2, 10D, 100 tr.

Fig. 4.10: Performances on the three-gauss data distribution of the one-class methods which
only model two clusters.

significantly decreases in both methods. These fewer parameters can now be estimated
with higher precision, which results in a much better description. The performance of the
k-means, LVQ and k-centers drastically deteriorates, which becomes especially apparent
in the case of a sample size of 100 objects. For smaller sample sizes, not enough data is
available to conclude with confidence that three separate clusters are present in the data.
Using just two clusters now gives comparable results.

4.7 Non-convexity

Figure 4.11 presents the results for the banana dataset. This dataset has a non-convex
distribution for the target class. Looking at the scatter plots (page 88) it is obvious
that only for larger sample sizes the banana-shape can be distinguished from the Gauss

data and only then the non-convexity of the data becomes apparent. For smaller sample
sizes the banana data set just resembles the original Gauss. Therefore, we can observe
that the performances for the small sample sizes are almost identical to the results on
the Gauss data (compare figures 4.11 and 4.7). Only for the NN-d method does the
performance increase somewhat more with the increase of increasing dimensionality. Most
other methods completely fail for small sample sizes (10 training objects).

For larger sample sizes we detect some more differences between the one-class classifi-
cation methods. The SVDD now also shows poor performance in moderate sample sizes

4.8. Subspace 101

0

0.2

0.4

er
ro

r v
ol

um
e

banana 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

banana 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

banana 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

banana 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

banana 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

banana 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

banana 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

banana 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

banana 10D, 100 tr.

Fig. 4.11: Performances of the one-class classifiers on the banana data distribution for different
sample sizes and dimensionalities.

in high dimensional feature spaces in comparison with the Gauss dataset. This is caused
by the enlarged boundary of the data. For large sample sizes the SVDD behaves well. For
100 training objects in a 2-dimensional feature space, the SVDD and the Parzen density
estimator reach the best accuracy over all other methods. Surprisingly, the normal model
works reasonably well, even in the large sample sizes (except perhaps for 100 objects in
2D). The clustering methods, like k-centers, k-means, LVQ and SOM, reach comparable
accuracy as in the Gauss dataset. Like the SVDD, the auto-encoder works well when
enough data is available, but fails in the small sample size situations. Finally, the PCA
fails because no clear linear subspace in the data is present.

The non-convexity of the data seems to be very hard to detect. For small sample size
(in high dimensional data) only the crude form of the data can be described. When a
large sample is available, just a very small penalty is paid when the non-convexity is not
modeled. Even for large sample size data the normal model performs comparably to the
other methods.

4.8 Subspace

To investigate which one-class classifiers are suitable for describing a dataset which is
distributed in a subspace, we apply the classifiers to the pancake dataset. This is the
only artificial dataset in which the outliers are not uniformly distributed around the target

102 4. Experiments

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

pancake 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

pancake 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

pancake 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

pancake 10D, 100 tr.

Fig. 4.12: Performances on the pancake data distribution for different sample sizes and dimen-
sionalities.

set, but are on both sides of the subspace (see the right subplot in figure 4.2). This
outlier distribution distinguishes the ellipse and pancake dataset; the target sets of both
datasets are comparable. In figure 4.12 the error of all one-class classifiers on the pancake

dataset is shown.

The difference in accuracy for small sample sizes between the ellipse and the pancake
dataset is not very big (compare figure 4.12 and 4.8). The accuracies of the one-class
methods are somewhat higher in the pancake data, because the overlap between the target
and outlier class is (almost) zero in this distribution. But methods which fail in the ellipse
dataset, also fail in the pancake data. The Parzen estimator still works well, and the NN-d
slightly improved in comparison with the ellipse. For large sample sizes most methods
obtain perfect separation, except for the auto-encoder and the mixture of PCA’s.

The performance of the PCA in moderate sample sizes (i.e. 25 objects in the training
set) is improved, in comparison with the other methods, which more or less perform equally.
The performance of the LVQ is surprisingly good. The variance of the k-means and the
LVQ is still large for small sample sizes. The SOM works well for large sample sizes, but
behaves poorly for the very small sample sizes. Decreasing the size of the map (which is
now a 10× 10 grid of units) might improve performance again.

In the ellipse data set the PCA more or less models a subspace. Because the outliers
are drawn uniformly around the target set, the overall performance of this method is not
very good. In the pancake data, on the other hand, all outlier data is drawn from both
sides of the subspace, but not from the subspace itself. The performance of the PCA,

4.9. Atypical training set 103

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 2D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 5D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

atypical 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

atypical 10D, 10 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

atypical 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
LVQ

k−m

k−c
auto
PCA
SO

M

atypical 10D, 100 tr.

Fig. 4.13: Performances of all one-class classification methods on the atypical target data
distribution for different dimensionalities and sample sizes.

therefore, significantly improves.

Summarizing, in all experiments in the last five sections, a major constraint was the
sample size. The target class can only be characterized well and described well, when
enough data is present. For instance, in almost all cases 10 objects in a 10 dimensional
feature space is insufficient. Only very obvious characteristics, like the distribution in a
subspace or the presence of a few clusters, can be detected. Although different methods
perform differently on different types of data, for reasonably well representative data, the
Parzen density estimator always obtains an acceptable solution. This will not be the case
in the next section.

4.9 Atypical training set

In all previous experiments the training data was a good representation of the distribution
we encountered in the testing data. Therefore, the density methods had a large advantage
and it appeared that especially the Parzen density estimator was in most cases very apt in
finding a good data description. In this section, we investigate the performances on data
where the training data distribution differs significantly from the true distribution, only
the boundary between the target and outlier data is the same (but the exact target density
within the boundary might differ).

In figure 4.13 the results on the atypical dataset are given. In this dataset the true

104 4. Experiments

distribution is uniform in a unit square, but the training objects are drawn from a triangular
distribution (see figure 4.3 on page 91). The outlier data is generated in a box around the
training data, as in all previous artificial datasets.

The results show that for high dimensional data the overlap between outlier and target
data decreases and the performance of most methods improves. For very small sample
sizes (10 objects) some methods completely fail, for instance, the mixture of Gaussians,
k-centers, the auto-encoder and the SOM. The normal model and the PCA also collapse
for feature spaces larger than 2-dimensional.

The other methods are more robust and give reasonable results. In particular, the
Parzen density, the NN-d and the LVQ work well. The fact that the original target data
distribution is square, assumes that all features are equally scaled. In all these methods
this assumption is made, and in this small sample size situation this pays off. For this
small sample size situation a rough estimate of the mean and variance is already sufficient
to find a reasonable description. This holds up to 25 objects in 2 dimensions or 100 objects
in 5 dimensions.

For large sample sizes more interesting results are visible. Here the difference between
the target and outlier distribution becomes apparent. Although the density methods work
well, the best performances are obtained by the SVDD and the SOM. Here, it is more
advantageous to describe only a domain in feature space. The density methods suffer, and
in particular, the Parzen density performs worse (even worse than the LVQ and k-means).

4.10 The presence of outliers

To measure the influence of outliers in the training set, a dataset containing extra outliers
is created. The outliers are randomly drawn from a box 8 times as big as the target set
(this box is obtained as explained on page 87). The outliers are not labeled as negative
examples and can, therefore, only be rejected on the basis of their large distance to the
bulk of the data.

In figure 4.14 the results on a Gaussian target distribution with 5 outliers are shown.
The performance of the Gaussian method does not deteriorate with respect to performance
on the Gauss dataset, because the covariance matrix is already regularized. Sometimes this
Gaussian model works even better than in the previous case without example outliers (in
the case of 25 training objects in 10 dimensions). The same is observed in the mixture of
Gaussians. The few extra objects (although they are remote) improve the estimates of the
free parameters in these methods.

As expected, the Parzen method does not change its performance very much. The width
parameter is small enough not to accept large parts of the input space. The clustering
methods, like the LVQ, k-means and k-centers also do not suffer from outliers in the
training target set. In our experiments we already used more prototype vectors µk than
was strictly necessary. About 5 prototypes are used to describe the outliers and 5 for
the ‘real’ target set. When 5 prototypes are used to describe the simple Gaussian target
class, each prototype covers just for a very small hypersphere in the feature space. The

4.10. The presence of outliers 105

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 2D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 5D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 unlab. outl. 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 unlab. outl. 10D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 unlab. outl. 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 unlab. outl. 10D, 100 tr.

Fig. 4.14: Performances of all one-class classifiers on the Gauss target distribution containing 5
remote outliers. The outliers are labeled as target data.

distance from a test object z to the closest prototype should be very small, before object
z is classified as a target object (formula (3.29)). The prototypes on the outlier objects
therefore capture just small areas in the feature space. Also the support vector data
description does not suffer from the outliers, due to its ability to reject objects when they
are very remote (formula (2.3)).

Finally, the NN-d seriously suffers from the outliers, which is expected. The perfor-
mance of the auto-encoder was already poor and no improvements are shown. Finally,
the SOM and the PCA were already poor in the original Gauss problem, especially in 2D.
The performances deteriorate for larger than 2-dimensional data in comparison with the
Gaussian method.

In figure 4.15 the methods are trained again on the Gauss with 5 outlier objects, but
now the outliers are labeled −1. We introduce an extra classifier, the neg-SVDD, which
uses the information on outliers during its training (using the procedure given in section
2.2). When no example outliers are present, the neg-SVDD reduces to the classic SVDD.
Therefore, it was not necessary in the previous experiments to distinguish between the
SVDD and neg-SVDD. Now, it is expected that neg-SVDD will be able to obtain a tighter
description of the target class. The SVDD will now be trained on the target data and it
will ignore all objects which are labeled as outliers.

It is expected that only the Parzen, the neg-SVDD and the LVQ can improve their
performance by using these examples. Looking at the performances it appears that only
the neg-SVDD gives significant improvements (which now gives higher accuracies than the

106 4. Experiments

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 2D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 2D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 2D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 5D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 5D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

5 label. outl. 5D, 100 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 label. outl. 10D, 15 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 label. outl. 10D, 25 tr.

0

0.2

0.4

er
ro

r v
ol

um
e

G
auss

M
oG

Parz
NN−d
SVDD
negS
LVQ

k−m

k−c
auto
PCA
SO

M

M
PCA

5 label. outl. 10D, 100 tr.

Fig. 4.15: Performance on the Gauss distribution with 5 prominent outliers. Outliers are ex-
plicitly labeled as outliers.

normal SVDD). The LVQ and Parzen do not show significant improvements. All other
methods perform comparably to the original Gauss results. From these outcomes we can
conclude that it is not easy to include a few example outliers in the training of one-class
classifiers. In the construction of the neg-SVDD, one outlier object can significantly change
the boundary around the data, and therefore can improve the performance. When a larger
number of outlier examples is available, we might consider using a traditional two-class
classifier, instead.

4.11 Guaranteed performance and time consumption

In all previous experiments we focused on the error performance of the methods, on how
well the target data can be described and be distinguished from the outlier objects. It is also
important to see how reliable a method is. In all the methods the user defines beforehand
the fraction of target objects fT which is allowed to fall outside the description. This
fraction should be reflected in the acceptance rate of the target data fT+ in the testing set.
In the following experiments we check this target acceptance rate with the acceptance rate
observed in the testing set. To compare the reliability of the one-class methods, we define
the error to measure the relative difference between the user defined fraction fT+ and the

4.11. Guaranteed performance and time consumption 107

−2

0

2

4

6

8

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 2D, 10 tr.

0

2

4

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 2D, 25 tr.

−0.5

0

0.5

1

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 2D, 100 tr.

−2

0

2

4

6

8

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 5D, 10 tr.

−2

0

2

4

6

8

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 5D, 25 tr.

−0.5

0

0.5

1

1.5

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 5D, 100 tr.

−2

0

2

4

6

8

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 10D, 10 tr.

norm
M

oG

P
arz

N
N

−
d

S
V

D
D

LV
Q

k−

m

k−
c

auto
P

C
A

S

O
M

−2

0

2

4

6

8

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 10D, 25 tr.
norm
M

oG

P
arz

N
N

−
d

S
V

D
D

LV
Q

k−

m

k−
c

auto
P

C
A

S

O
M

0

1

2

de
vi

at
io

n
fr

om
 r

ej
−

ra
te

three−Gauss 10D, 100 tr.

norm
M

oG

P
arz

N
N

−
d

S
V

D
D

LV
Q

k−

m

k−
c

auto
P

C
A

S

O
M

Fig. 4.16: Difference between the user defined target rejection rate and the rate measured on
the test set. Experiment was on the three-gauss dataset.

fraction observed in the test set:

Erel =
fT+ − 1

N

∑
i I
(
p(zi) > θfT+

)
fT+

(4.1)

where N is the number of objects in the test set. For error values larger than 0 (Erel > 0) less
target objects are accepted than was requested by fT+, while for negative values (Erel < 0)
more target objects are accepted.

In figure 4.16 the average Erel over threshold values from fT+ = 0.99 to fT+ = 0.5 is
shown. The results are given for the three-gauss dataset, but they are characteristic and
do not differ significantly for the other artificial data sets. 5

5 This only holds for dataset for which the training set is a good representative for the true distribution,
so it will not hold for the atypical dataset. When the training and true target distributions are different
and only the area they cover is comparable, the two fractions will only be comparable when the boundary
of the data is modeled (i.e. only for very high target acceptance rates fT+). Integration over fT+ will not
give sensible results then.

108 4. Experiments

From this plot we see that the Parzen density and the NN-d work well. They do not
assume a strong data model and give exactly the target rejection rate which is set by the
user. The SVDD (and the neg-SVDD) show the same characteristics for larger sample
sizes. For smaller sample sizes, on the other hand, the reliability suffers and is comparable
to the LVQ, k-means and k-centers methods.

The mixture of Gaussian, the auto-encoder and the SOM show large deviations between
the target rejection rates on the training and the testing sets. This does not improve by
increasing the sample size, indicating that these methods do not match the data or are
seriously overtrained. For the Gaussian model, the model perfectly matches the data.
For small sample sizes the difference between the training and testing rejection rates is
significant, but by increasing the sample size, this difference disappears.

Finally, the evaluation time is of interest. In most cases it is possible to train a method
off-line and the training time is not of interest. For the practical use of the methods the
evaluation time might be critical. In these experiments we investigate what the typical
requirements for evaluation objects are.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

flo
ps

 (x
 1

06)

G
auss

M
oG

P
arz

N
N

−d

S
V

D
D

LV
Q

k−m

k−c

auto

P
C

A

S
O

M

evaluation time: three−Gauss 2D, 100 tr.

0

1

2

3

4

5

6

7

flo
ps

 (x
 1

06)

G
auss

M
oG

P
arz

N
N

−d

S
V

D
D

LV
Q

k−m

k−c

auto

P
C

A

S
O

M

evaluation time: three−Gauss 10D, 100 tr.

Fig. 4.17: Number of flops used for the evaluation of 1000 outliers in the three-gauss dataset.

The number of floating point operations (flops) for the evaluation of a test set by all
methods is shown in figure 4.17. It is measured on a test set of 1000 objects. The most
expensive methods are the Parzen density, the NN-d and the SOM. The cheapest are
the Gaussian model, the LVQ, k-means and the PCA method. An average behavior is
shown by the support vector methods, the mixture of Gaussians and the auto-encoder (for
evaluation).

4.12 Pump vibration data

In the previous sections we considered data which show one important characteristic, such
as unimodality, (non-) convexity or a distribution in a subspace. The performance of the
different one-class methods can often be traced back to one of these characteristics. For

4.12. Pump vibration data 109

data distributions encountered in real life, the data characteristics are far less clear. These
datasets are a mixture of different features, for instance, data distributed in a subspace,
which is non-convex and which can be multimodal. How the performance of different
methods on the data will be, is therefore very hard to predict beforehand. On the other
hand, when the results of different methods are known, a profile of the data might be
obtained. Here we will consider two real one-class problems, a machine diagnostics problem
and a handwritten digit recognition problem.

The machine diagnostics problem has been encountered before in section 2.7, on page
49. It deals with a machine diagnostics: the characterization of the operation of a water
pump [Tax et al., 1999]. In a small experimental setup, shown in figure 4.18, several normal
and outlier situations can be simulated. The normal operation conditions are situations
with different loads (by closing a membrane controlling the water flow) and speeds (from
46 to 54 Hz) of the pump. Also the measurements on faulty situations can be simulated,
and consist of loose foundation, imbalance and a bearing failure. To detect dangerous
conditions during the working of the pump, a one-class classification method trained on
the normal working situation has to detect anomalous signals and raise an alarm.

1000 1100 1200 1300 1400 1500 1600 1700 1800
0

20

40

60

80

100

120

140

frequency

am
pl

itu
de

spectrum snapshot; gear mesh failure

Fig. 4.18: On the left the physical setup of a small water pump. On the right, an example
measurement on a pump showing gear mesh failure.

Vibration sensors are mounted on the pump. From the recorded time series (an example
frequency spectrum is shown in the right subplot of figure 4.18) subsamples are taken and
several features are calculated. It is well known that faults in rotating machines will be
visible in the acceleration spectrum as increased harmonics of running speed or presence
of sidebands around characteristic (structure-related) frequencies [Mitchell, 1993]. Due
to overlap in series of harmonic components and noise, high spectral resolution may be
required for adequate fault identification. This may lead to difficulties because of the curse
of dimensionality: one needs large sample sizes in high-dimensional spaces in order to avoid
overfitting of the train set. Hence we focused on relatively low feature dimensionality (64
spectral bins).

110 4. Experiments

We consider four types of features, the power spectrum, the Auto Regressive model
(AR features), the envelope spectrum and a MUSIC spectrum estimation:

power spectrum: standard power spectrum estimation, using Welch’s averaged peri-
odogram method. Data is normalized to the mean prior to spectrum estimation,
and feature vectors (consisting of spectral amplitudes) are normalized with respect
to the mean and standard deviation (in order to retain only sensitivity to the spec-
trum shape). The dataset contains 157 target objects for training and 143 target and
457 outliers for testing.

autoregressive modeling (AR model): another way to use second-order correlation
information as a feature is to model the time series with an autoregressive model
(AR-model). For comparison with other features, an AR(64)-model was used (which
seemed sufficient to distinguish between the operation modes) and model coefficients
were used as features. The dataset contains 151 target objects for training and 149
target and 451 outliers for testing.

envelope spectrum: a measurement time series is demodulated using the Hilbert trans-
form, and from this cleaned signal (probably containing information on periodic im-
pulsive behavior) a spectrum was determined using the above method [Randall, 1987].
Prior to the demodulation a bandpass-filtering in the interval 125 - 250 Hz (using
a wavelet decomposition with Daubechies-wavelets of order 4) was performed: it is
expected that gear mesh frequencies will be present in this band and impulses due
to pitting are expected to be present as sidebands. This dataset contains 157 target
objects for training and 143 target and 457 outliers for testing.

MUSIC spectrum: if a time series can be modeled by sinusoids plus a noise term, a
MUSIC frequency estimator [Proakis and Manolakis, 1992] can be used to focus on
the important spectral components. A statistic can be computed that tends to infinity
when a signal vector belongs to the, so-called, signal subspace. When one expects
amplitudes at a finite number of discrete frequencies to be a discriminant indicator,
MUSIC features may enable good separability while keeping feature size (relatively)
small. The dataset contains 91 target objects for training and 89 target and 271
outliers for testing.

The results for the power spectrum are shown in the left subplot in figure 4.19. The
differences between the methods are not very large, but the Parzen, the SOM and the
k-center method perform best. Using the default settings for the mixture of Gaussians,
the cluster algorithms (LVQ, k-means, k-centers, SOM) and the auto-encoder result in
worse performance. It appears that by increasing the number of clusters for the LVQ,
k-means and k-centers the performance is improved, while for the SOM and the mixture of
Gaussians the number of clusters had to be decreased. All in all, the performances could
be improved by an error of 0.05 (on the scale of figure 4.19). Given the limited amount of
available data, this is quite reasonable performance.

4.12. Pump vibration data 111

0

0.05

0.1

0.15

0.2

0.25

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

negS

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

Power spectrum,

 10D, 157 tr.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

negS

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

AR−model feat. 10D, 151 tr.

Fig. 4.19: Performance of the one-class classifiers on the pump datasets. On the left 10-
dimensional power spectrum data, on the right 10-dimensional AR-model features.

The comparable performance of the normal density, mixture of Gaussians and the
Parzen density indicates that we have one cluster. Surprisingly the LVQ and the k-means
perform very poorly, which might indicate that different parts of the dataset show different
scaling of the features. Furthermore, the LVQ is harmed by the tendency to stop adjusting
its prototypes once all training objects are classified well. When target and outlier data
are very close and the LVQ is not trained using the outliers, the generalization by the LVQ
might be poor.

The overall data signature resembles the signature of the banana for large sample sizes
(except for the principal component analyzer, which performs here comparably with the
other methods). The fact that the performance of the NN-d is not that good, indicates
that we do not have very small sample sizes. Combined with the good performance of the
PCA and especially the self-organizing map this shows that the data is mainly distributed
in a subspace.

The characteristics of the AR model features (right graph in figure 4.19) are completely
different from the power spectrum features. Here we have clearly separate clusters, but no
clear subspace is available.

In figure 4.20 the results for the envelope spectrum data and the MUSIC features are
presented. Comparing them with figure 4.19, similar characteristics are present in the
data. The envelope spectrum corresponds to the power spectrum data, again one cluster
is available. There appears to be severe overlap between the target and outlier data; the
performance of all methods is very poor. These envelope spectrum features are clearly not
powerful enough to distinguish between target and outlier situations. The best performance
is obtained using the Parzen density method.

The MUSIC frequency estimation can be compared to the AR feature dataset. Here
the data is more clustered, but also the performance is somewhat worse than in case of the
AR features. Due to overlap between the target and outlier data the SVDD performed very

112 4. Experiments

0

0.05

0.1

0.15

0.2

0.25

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

negS

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

Envelope spectrum 10D, 157 tr.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

er
ro

r
vo

lu
m

e

G
auss

M
oG

P
arz

N
N

−
d

S
V

D
D

negS

LV
Q

k−
m

k−
c

auto

P
C

A

S
O

M

MUSIC spectrum 10D, 91 tr.

Fig. 4.20: Performance of the one-class classifiers on the pump datasets. On the left 10 di-
mensional envelope spectrum data, on the right 10-dimensional MUSIC spectrum
data.

poorly, especially with the low target rejection rates. For the first time we see (relatively)
good performance of the auto-encoder network, which is one of the best methods for this
dataset. The Parzen density is now outperformed by the mixture of Gaussians, the SVDD,
the auto-encoder and the SOM. This is not very significant though, a large overlap between
the target and outlier objects is present and all methods have problems to distinguish
between the target and outlier objects.

4.13 Handwritten digit data

At present no standard one-class classification datasets exist. Most repositories only con-
sider multi-class classification problems [Blake et al., 1998]. These traditional classification
problems can be changed into one-class problems, when just one class is treated as the tar-
get class, and the other classes are considered as outliers. By construction of the one-class
classification methods (which mainly focus on the target class) they will perform worse
than traditional classifiers which use information of all classes.

For the last experiments in this chapter, a handwritten digit database is used. This
dataset contains 4 different feature sets for each object. Digits were extracted from 9
original maps of a Dutch public utility. The maps represent the position of a conduit
system with respect to certain landmarks and were hand drawn by a large group of drawing
engineers over a period of more than 25 years. The dataset is composed of separate digit
images and consist of 10 classes, each having 200 examples (thus assuming equal class
probabilities). From the set of 2000 digits 4 types of feature sets were extracted: Zernike
moments, Fourier descriptors, profile images and image pixel vectors. For a more elaborate
explanation of the features, see appendix C. A few examples of the digits are shown in
figure 4.21.

4.13. Handwritten digit data 113

Fig. 4.21: Some examples of the handwritten digits.

Table 4.1: Results of the one-class classification methods on handwritten digit data given by the
different feature sets. Class ’0’ is treated as the target class. Bold numbers indicate
the best accuracy for a considered dataset (integrated ROC ×100).

set Gauss MoG Par NN-d SVD LVQ k-m k-c aut PCA SOM

Zernike 2.80 1.15 0.45 11.67 4.63 0.16 1.98 0.25 2.46 1.47 0.51
Fourier 4.00 0.93 0.04 1.60 16.22 0.21 0.79 1.02 0.81 3.60 1.01
Profile 0.65 0.35 0.08 2.18 9.58 1.04 2.33 2.14 5.08 4.48 0.35
Pixel 21.60 9.99 0.09 2.36 17.22 0.62 1.45 0.86 8.60 26.80 0.39

Treating class ’0’ as the target class, the performances of the one-class classifiers are
presented in table 4.1. Per definition, the outlier class consists of the objects from the
other 9 classes. Because we do not create artificial outlier data around the target class,
but we are given the same set of outlier objects in all feature spaces, we can compare
performances on different feature spaces (and different feature dimensionalities). Thus, we
do not consider the volumes of the target set, but the classification performance.

The same abbreviations for the classifiers as in the previous chapter are used (see page
95). In most datasets the Parzen density estimator is clearly the best. In the Profile and
Zernike data the ’0’ class appears to be clustered well, and in these datasets the clustering
methods such as LVQ, k-means and k-centers perform comparably to the Parzen method.
The performance of the SVDD on the pixel and Fourier data, indicates that the sample
sizes in these dataset are not sufficient. Very likely the 0 class is multimodal with a complex
boundary. The Gaussian model does not work very well (especially in the pixel dataset),
while the performance of the k-means clustering or the k-center method is quite acceptable.

When a good data description of the ’0’ class is required, the best data set to use is
the Fourier dataset. When the storage requirements are important, we can also choose the
LVQ on the Zernike dataset (which stores just 10 objects, instead of the complete training
set). Note that both the Zernike and the Fourier datasets are rotation invariant, which is
a clear advantage in describing the digit 0.

114 4. Experiments

4.14 Conclusions

What can we conclude from the experiments performed in this chapter? We have investi-
gated two types of problems. In the first type the distributions of the target objects in the
training set and testing sets are identical. When these distributions are (approximately)
equal, the best data description methods are the density methods. In particular, the Parzen
density estimator appears to perform well on the considered data. Other density methods
sometimes use assumptions which are not satisfied in the data (for instance, the Gaussian
model assumes a unimodal density), and a large bias is introduced. In the second type
of problems, the distributions of the target objects in the training set and testing sets are
different. In such cases, density methods do not work well, and the boundary methods are
to be preferred. To provide a more thorough summary, the applicability of the one-class
methods on all types of data is summarized in table 4.2. A ’+’ indicates that good perfor-
mance can be expected, while a ’−’ indicates that this one-class classifier is not suited for
this data. A ’+/−’ indicates that with special cares, the method can be applied.

Considering the sample sizes, it is very hard to obtain a data description for very small
sample sizes (about 10 objects in 2 or higher dimensional feature spaces). There is not
enough information to extract more than a rough estimation of the mean and variance
of the data. The Parzen density estimator depends heavily on the continuity assumption
and it can extrapolate only in the close neighborhood around the given objects. In most
problems with identical distributions for the training and testing sets, this can be sufficient
to give reasonable results. This extrapolation is also present in the NN-d method, especially
for small sample sizes.

For large sample sizes, about 100 objects in a 2-dimensional feature space, all methods
perform well. In such circumstances it becomes important how well the method fits to the
data. When a strong model is assumed, for instance, a unimodal Gaussian distribution,
the risk of introducing large bias for a particular problem increases. Here, the flexible
Parzen model again performs well, but the drawback is that for increasing training sizes,
the evaluation times for testing new objects becomes quite large.

The clustering methods: LVQ, k-means and k-centers, often obtain comparable accu-
racy and never perform very poorly. The only constraint is that a sufficient number of
prototypes is chosen, else a large bias is introduced. Given a sufficient number of proto-
types, the methods are not only quite robust against varying sample sizes, but also against
scaling of features and clustering of data. Only for very small sample sizes the methods
break down. On the other hand the auto-encoder requires careful training and adjusting
and it is not very robust. It requires quite some data for training, sometimes even 100
objects in a 2-dimensional feature space is not sufficient. In some lucky cases the training
algorithm obtains very good results, but subsequent bad results deteriorate the average
performance.

Finally, the performance of the the support vector data description is worse on the
data with identical training and testing distributions. The SVDD does not show sufficient
extrapolation ability to generalize very well in small sample size situations. For larger
sample sizes, the performance of the SVDD approaches the Parzen density estimator. When

4.14. Conclusions 115

the training distribution significantly differs from the testing distribution, the situation
changes completely. The density methods show now very poor results, but the other
methods (especially the SVDD and the clustering methods) achieve good generalization
performance. This characteristic of the SVDD is more important in real world datasets
than in the artificially created data. In most cases the training objects are not obtained
directly from real life situations, but are sampled and recorded especially to construct a set
of examples. The operator has to decide which situations are typical and should therefore
be included. To estimate the correct probability of occurrence might be very hard, but it
might still be possible to sample from the correct area in the feature space. In these cases
the SVDD is still able to find a good data description.

As far as the robustness of the methods is concerned, due to the fact that the acceptance
threshold is set such that it accepts a certain fraction of the target data (for instance 95%),
the methods are already somewhat robust against outliers. Only the NN-d, the PCA and
the SOM seriously suffer from a few outliers. Here the model is influenced heavily by the
few outliers, and changing the acceptance threshold cannot counter-balance this influence.

In the experiments done on non-artificial data, it appears that real data characteristics
are far more complex than these of the artificial datasets. It makes the evaluation of the
various schemes more difficult. In many cases we see that the Parzen density and clustering
schemes work well for reasonably well-sampled data, while for somewhat atypical training
data the SVDD performs well (this is the case of the pump vibration datasets).

116 4. Experiments

Table 4.2: The applicability of all one-class classification methods on data with different char-
acteristics.
one-class classifier small

sample
size

scaling
insensi-
tivity

clustering convexity

Gaussian model - + - -
Mixture of Gaussians +/- - + +/-
Parzen density + + + +
NN-distance + - + +
SVDD - + +/- +
neg-SVDD - + +/- +
k-means + +/- + +/-
k-centers + +/- + +/-
auto-encoder - + - +/-
PCA - + - -
SOM - - - -

one-class classifier subspaces atypical
data

robustnessguaranteed
perfor-
mance

Gaussian model + +/- + +
Mixture of Gaussians + - + -
Parzen density + +/- + +
NN-distance - - - +
SVDD - + + +
neg-SVDD - + + +
k-means +/- +/- + +
k-centers +/- +/- + +
auto-encoder - - - -
PCA + - - -
SOM + - +/- -

5. COMBINING DESCRIPTIONS

In the previous chapters we focused on the problem of finding a good classifier for one-class
classification problems. Depending on the type of data (the sample sizes, the data distribu-
tion and how well the true distribution could be sampled), the best fitting data description
had to be found. Unfortunately, classifiers hardly ever fit the data distribution optimally.
Using just the best classifier and discarding the classifiers with poorer performance might
waste valuable information [Wolpert, 1992]. To improve performance, of different classi-
fiers (which may differ in complexity or training algorithm) can be combined. This may
not only increase the performance, but can also increase the robustness of the classifica-
tion [Sharkey and Sharkey, 1995]. Furthermore, it appears to be possible to include prior
knowledge in the classification by using specific combining rules; we will see this at the end
of this chapter.

Classifiers can be combined in several ways. The first one is to use different feature sets
and to combine the classifiers trained on each of the feature sets. The second approach is to
train several different classifiers on one feature set and combine these. In this chapter both
approaches will be discussed. In section 5.1 some basic properties of combining rules are
given, focusing on the product and mean combination rules in conventional classification
problems [Tax et al., 2000]. In section 5.2 this is applied to the one-class problems, covering
the combining of different datasets and different classifiers. Finally, in section 5.3 the
combining rules is used in an image database application where the combining rules can
incorporate constraints supplied by the user.

5.1 Combining conventional classifiers

A large number of combining schemes for conventional classifiers exists. In general, three
types of situations in combining classifiers have been identified [Xu et al., 1992]. In the first
type, each classifier outputs one single class label and these labels have to be combined
[Battiti and Colla, 1994]. In the second type, the classifier outputs sets of class labels
ranked according to their order of likelihood [Tumer and Ghosh, 1995]. The third type
involves the combination of real valued outputs for each of the classes (most often posterior
probabilities [Jacobs, 1995], sometimes evidences [Rogova, 1994]).

Commonly a combined decision is obtained by just averaging the estimated posterior
probabilities of different classifiers. This simple algorithm already gives very good results
[Hashem, 1994, Tanigushi and Tresp, 1997]. This is somewhat surprising, especially con-
sidering the fact that the averaging of posterior probabilities is not based on some solid

118 5. Combining Descriptions

(Bayesian) foundation. When the Bayes theorem is adopted for the combination of different
classifiers, under the assumption of independence, a product combination rule automati-
cally appears: the outputs of the individual classifiers are multiplied and then normalized
(this is also called a logarithmic opinion pool [Benediktsson and Swain, 1992]).

Some classifiers immediately offer estimates of posterior probabilities, such as the mul-
tilayer perceptron, trained with backpropagation [Ruck et al., 1990] or by maximizing the
cross-entropy on the network outputs [Bishop, 1995]. In other classification methods, prob-
abilities are harder to obtain. For instance, the posterior probability in the 1-nearest-
neighbor classifier is not defined. When posterior probabilities can be defined, they are
often only reliable for large training sets, as for example in the case of the k-nearest neigh-
bor classifier. When posterior probability estimates are not available, these probabilities
have to be approached, or the combining has to be applied to the labels or rankings.

In [Kittler et al., 1996] and in [Kittler et al., 1997] a theoretical framework for com-
bining (estimated posterior probabilities from) classifiers is developed. For different types
of combination rules (under which the minimum and maximum rules, weighted averages,
mean and product rule) derivations are given. It has been shown [Kittler et al., 1996] that
when classifiers are applied on identical data representations, the classifiers estimate the
same class posterior probability, potentially suffering from the same noise in the data.
To suppress the errors in these estimates and overfitting of the individual classifiers, the
classifier outputs should be averaged. On the other hand, when independent data repre-
sentations are available, classifier outcomes should be multiplied to gain maximally from
the independent representations.

Assume that each object x belongs to one of C classes ωj, j = 1...C.1 When R mea-
surement vectors x1, ...,xR from feature spaces X1, ...,XR are available, the probability
p(ωj|x1, ...,xR) has to be approximated to make a classification (see also [Kittler et al., 1996]).
In each of the R feature spaces, a classifier is constructed which approximates the true pos-
terior class probability p(ωj|xk) in Xk:

fk
j (xk) = p(ωj|xk) + εk

j (x
k) (5.1)

where εk
j (x

k) is the error made by classifier k on the probability estimate that object xk be-
longs to class ωj. A combination rule combines these fk

j (xk) to approximate p(ωj|x1, ...,xR)
as well as possible.

Two extreme cases can be distinguished, the first in which X1 = X2 = ... = XR, the
second where X1, ...,XR are different and assumed to be independent. In the first case, the
classifiers all use the same data x: p(x1, ...,xR|ωj) = p(x1|ωj)I(x2 = x1) · . . . · I(xR = x1).
This trivially leads to:

p(ωj|x1, ...,xR) = p(ωj|xk) 1 ≤ k ≤ R (5.2)

where p(ωj|xk) is estimated by fk
j (xk). When we assume zero-mean error for εk

j (x
k) (i.e.

zero bias), all fk
j (xk)’s can be averaged to obtain a less error-sensitive estimation. This

1 Here x denotes the object in an unspecified feature space. In different feature spaces, one can obtain
representations xk for this object x.

5.1. Combining conventional classifiers 119

leads to the mean combination rule:

fj(x
1, ...,xR) =

1

R

R∑
k=1

fk
j (xk) (5.3)

In the second case all feature spaces are different and class conditionally independent.
The probabilities can be written as: p(x1, ...,xR|ωj) = p(x1|ωj) · p(x2|ωj) · ... · p(xR|ωj).
Using the Bayes rule, we derive:

p(ωj|x1, ...,xR) =
p(x1, ...,xR|ωj)p(ωj)

p(x1, ...,xR)
=

∏
k

p(xk|ωj)p(ωj)

p(x1, ...,xR)
=[∏

k

p(ωj|xk)p(xk)

p(ωj)

]
p(ωj)

p(x1, ...,xR)
=

∏
k

p(ωj|xk)
∏

k

p(xk)/p(ωj)
R−1

p(x1, ...,xR)

=

∏
k

p(ωj|xk)
∏

k

p(xk)/p(ωj)
R−1

∑
j′

{∏
k

p(ωj|xk)
∏

k

p(xk)/p(ωj)
R−1

} =

∏
k

p(ωj|xk)/p(ωj)
R−1

∑
j′

{∏
k′

p(ωj′|xk′
)/p(ωj′)R−1

} (5.4)

In case of equal prior class probabilities (p(ωj) = 1/C) and negligible errors εk
j (x

k) = 0 (!):

p(ωj|x1, ...,xR) =

∏
k

p(ωj|xk)/CR−1

∑
j′

{∏
k′

p(ωj′|xk′
)/CR−1

} (5.5)

=

C
∏

k

p(ωj|xk)

∑
j′

{
C
∏
k′

p(ωj′|xk′
)

} '

∏
k

fk
j (xk)

∑
j′

{∏
k′

fk
j′(xk)

} (5.6)

So, this approximation results in the product combination rule:

fj(x
1, ...,xR) =

∏R
k=1 fk

j (xk)∑
j′
∏R

k=1 fk
j′(xk)

(5.7)

In [Tax et al., 1997] comparisons between the average combination rule and the product
combination rule are made. It was confirmed that when independent data sets were avail-
able, the product combination rule should be used. Only in the case of poor posterior
probability estimates, should the more fault tolerant mean combination rule is to be used.

120 5. Combining Descriptions

5.1.1 Differences between averaging and multiplying

From the derivation of the combining rules (5.3) and (5.7), we would expect that the
two rules will be useful under different conditions. The mean combination rule will be
especially useful in case of identical or very highly correlated feature spaces in which the
classifiers make independent errors. The product combination rule is apt for different, class-
conditional independent feature spaces where classifiers make small estimation errors. In
some situations though, the performances of the mean and product rule will be equal. We
will investigate this with a very simple model.

−2
0

2
−4

−2
0

2
4−3

−2

−1

0

1

2

3

4

−2
−1

0
1

2 −2

0

2−2

−1

0

1

2

Fig. 5.1: Data distribution in 3 dimensions. On the left the data is uncorrelated, on the right it
is correlated. The data consist of two classes where the first one is marked by circles
and the second by crosses.

In this model data consists of two classes in an R-dimensional space, each normally
distributed (see figure 5.1 for a 3-dimensional example). The first class is centered on
the origin, while the second on (1, 1, .., 1)/

√
R. The covariance matrix can be adjusted

to change the correlation between the feature values. It can be changed from identity, in
which case the data is uncorrelated for each component (see left subplot in figure 5.1), to
complete correlation, in which case all data is perfectly correlated for each component (right
subplot in 5.1). Each of the R classifiers uses just one of the features, from which it has to
estimate the posterior probabilities and a decision boundary. Combining the predictions
of the classifiers in the two extremes, perfect correlation and complete independence of the
data, will indicate where one combination rule can be preferred over the other.

In case of two class classification problems, we can derive conditions for which the rules
behave the same. Assume we have equal class probabilities for the classes. When the
product rule classifies some object x to class ωj, (j can be 1 or 2) then:∏

k

fk
1 (xk) >

∏
k

fk
2 (xk) =

∏
k

(1− fk
1 (xk)) (5.8)

We can decompose the output of one of the classifiers fk
j (xk) into two parts. The first part

is the average over all other classifiers, f̄j(x) = 1
R

∑
k fk

j (xk), the second part is a rest term

5.1. Combining conventional classifiers 121

ζk
j . Thus we defined:

fk
j (xk) = f̄j(x) + ζk

j (xk) (5.9)

Therefore, per definition holds
∑

k ζk
j (xk) = 0. This is basically the bias-variance decom-

position [Geman et al., 1992] (see chapter 1). The different values for ζk
j account for the

variance, while
∑

k ζk
j = 0 indicates that there is no bias. We can expand the terms in

(5.8):2

∏
k

fk
j = f̄R

j

[
1 +

∑
k,k′

ζk
j ζk′

j

f̄ 2
j

+ ...

]
= f̄R

j + f̄R−2
j

∑
k,k′

ζk
j ζk′

j + f̄R−3
j

∑
k,k′,k′′

ζk
j ζk′

j ζk′′

j + ... (5.10)

The second term with f̄R−1
j in the summation can be dropped because

∑
k ζk

j = 0.

For two class problems ζk
1 = −ζk

2 . All sums over ζk
j ’s in the expansion of

∏
k fk

1 and∏
k fk

2 will be equal, except for the terms with summations over an odd number of classifier
outputs (here the signs are opposite) and for the factors f̄R−n

j , n = 2, 3, When we want

to consider the inequality
∏

k fk
1 (xk) >

∏
k fk

2 (xk) we therefore only have to consider these
terms. Resubstituting (5.10) in (5.8) results in:

f̄R
1 + f̄R−2

1

∑
k,k′

ζk
1 ζk′

1 + f̄R−3
1

∑
k,k′,k′′

ζk
1 ζk′

1 ζk′′

1 + ... >

(1− f̄1)
R + (1− f̄1)

R−2
∑
k,k′

ζk
1 ζk′

1 − (1− f̄1)
R−3

∑
k,k′,k′′

ζk
1 ζk′

j ζk′′

1 + ... (5.11)

which can be simplified to:

f̄R
1 + K ′f̄R−2

1 + K ′′f̄R−3
1 + ... >

(1− f̄1)
R + K ′(1− f̄1)

R−2 −K ′′(1− f̄1)
R−3 + ... (5.12)

where K ′ and K ′′ are constants.
When there are no outliers and ζk

j is smaller than f̄j, then the term K ′′ =
∑

k,k′,k′′ ζk
j ζk′

j ζk′′
j

will stay small. In table 5.1 the size of f̄R−3
j

∑
k,k′,k′′ ζk

j ζk′
j ζk′′

j relative to the previous two
terms is shown for different number of classes. Three classifiers were trained on the artifi-
cial dataset shown in figure 5.1. The correlation was set to 0.5. For classification problems
with more than two classes, the mean of a cluster k was placed at (k, k, k)/

√
R. These

values are the largest absolute values over all classes.
Especially in the two class problem the third term is very small. The relative large

value of the second term does not influence the classification, because the signs of these
terms is equal for all classes. This means that when we start with the product combination

2 For clarity of notation, we drop all xk in fk
j , f̄j and ζk

j .

122 5. Combining Descriptions

Table 5.1: Sizes of higher order sums in formula (5.11) relative to the first term. R = 3 classifiers
trained on data from figure 5.1 were combined.

classes term 1 term 2 term 3

2 1.0 0.16 0.00016
3 1.0 0.22 0.00971
4 1.0 0.23 0.01862
5 1.0 0.30 0.02231

rule (given by formula (5.8)) and we apply the approximation given by (5.10), we get the
new combination rule: classify object x to class ωj, (j can be 1 or 2) when:(

f̄ 2
1 + K ′) f̄R−2

1 >
(
(1− f̄1)

2 + K ′) (1− f̄1)
R−2 (5.13)

This is a rescaled version of the mean combination rule for a two class problem. In the prod-
uct combination rule the output values are just shifted into the direction of the extremes;
for f̄j < 0.5 to 0 and for values f̄j > 0.5 to 1. In [Tax et al., 1997] it was shown that for this
simple two-class problem the differences between the product and mean combination rule
was very small for all correlations (i.e. from no correlation to perfect correlation between
the individual feature sets). Only when this artificial classification problem was extended
to a multiclass problem, the differences between the mean and the product combination
rule appear for the different correlations in the feature sets.

The robustness of the mean combination rule with respect to the product combination
rule is shown by [Kittler et al., 1996] in which formula (5.1) is expanded, comparable with
the expansion in formula (5.10). It can be shown that the combined classifiers using a prod-

uct combination rule approximate the error-free classifier up to a factor
[
1 +

∑
k

ζk
j

p(ωj |xk)

]
while in the mean combination rule the factor is

[
1 +

∑
k ζk

j∑
k p(ωj |xk)

]
. Note that p(ωj|xk) ≤ 1,

so errors are amplified by the product rule. In the mean combination rule the errors are
divided by the sum of posterior probabilities and in particular, for the winning class, where
these probabilities are large, the errors are severely dampened.

5.2 Combining one-class classifiers

In the previous section the combining of a general set of classifiers (using the mean and the
product combination rule) is discussed, where it is assumed that the classifiers approximate
the posterior probability of an object x for a class ωj. When a classifier is not based on
some type of density estimation, the posterior probability can be estimated by a heuristic
approach, depending on the type of classifier. For one-class classifiers another situation
is present. Here the problem is always a two-class problem where only information about
one class, the target class, is known (i.e. p(x|ωT), when the training set is an i.i.d. sample
from the true target distribution), but the outlier class p(x|ωO) is not.

5.2. Combining one-class classifiers 123

Using the Bayes rule, the posterior probability for the target class can be computed by:

p(ωT |x) =
p(x|ωT)p(ωT)

p(x)
=

p(x|ωT)p(ωT)

p(x|ωT)p(ωT) + p(x|ωO)p(ωO)
(5.14)

Because the outlier distribution p(x|ωO) is unknown, and even the prior probabilities p(ωT)
and p(ωO) are very hard to estimate, equation (5.14) cannot be used directly. The problem
is solved when an outlier distribution is assumed. When p(x|ωO) is independent of x, i.e.
it is a uniform distribution in the area of the feature space that we are considering, p(x|ωT)
can be used instead of p(ωT |x).

To complicate matters further, no i.i.d. sample from the target distribution is available,
and only a dataset indicating the boundaries of the target distribution is available. Then
the one-class classifiers do not model the complete p(x|ωT), but they only provide a yes-
no output: object x is either accepted or rejected. In one-class classification the binary
decision threshold θfT

is optimized to obtain a certain target acceptance rate fT on the
training set:

θfT
:

∫
I(p(x|ωT) ≥ θfT

)dx = fT (5.15)

(or θfT
:
∫

I(d(x|ωT) ≤ θfT
)dx = fT for methods using distance d). This means that for a

given object x from the target set, the one-class classifier only approximates

p(acceptingx|ωT) = fT+ (5.16)

p(rejectingx|ωT) = 1− fT+ = fT− (5.17)

as well as possible.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4
True distributions

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Bayes posterior probability

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
OCC output

Fig. 5.2: Example of the posterior probability using Bayes rule (middle) when the true target
and outlier distributions are known (the Gaussian shaped distribution and the uniform
distribution respectively in the left subplot), and the results of a one-class classifier
(right).

The different measures for the posterior probabilities are shown in figure 5.2 for an
artificial example where the true target and outlier distributions are known. The target

124 5. Combining Descriptions

distribution is the Gauss distribution with unit variance (σ = 1) and the outliers are
uniformly distributed. Both distributions are shown in the left subplot. The prior prob-
abilities are chosen p(ωT) = 0.85 = 1 − p(ωO) (so 15% of the data are outliers). In the
middle subplot the posterior probability p(ωT |x) is shown, computed by the Bayes rule
(5.14) using both known probabilities. The posterior probability becomes a more ’blocked’
version of the target distribution, with sharper boundaries between the target and outlier
classes. The decision boundary is put at p(ωT |x) = 0.5.

In the rightmost subplot the output of a one-class classifier is shown. The 2σ boundary
of the Gaussian distribution is shown, thus accepting about 95% of the target data. For this
low prior probability of outlier objects, the boundary of the data tends to be underestimated
by p(x|ωT) (i.e. the boundary is more tight than the optimal Bayes solution3). In this
example the optimal boundary is located at about 3σ, which results in a target rejection
rate of 0.3%. For limited number of target examples and for low outlier density, the
boundary is located far away in the tails of the distribution. When the boundaries have
to be estimated with some confidence, a higher target rejection rate should be used.

Note that when the prior probability of outliers increases, the boundaries of the Bayes
rule will also tighten. The fact that the outlier prior probability (and distribution) is not
known, forces the use of just p(x|ωT).

5.2.1 Combining rules

When one-class classifiers are to be combined based on posterior probabilities, an esti-
mate for p(ωT |x) has to be used. For all types of one-class classifiers (density estimators,
boundary estimators and reconstruction models) estimates for the chances of accepting
and rejecting target objects, p(acceptingx|ωT) and p(rejectingx|ωT), are available. The
p(ωT |x) is approximated by just two values, fT+ and 1− fT+. The binary outputs of the
one-class methods can be replaced by these probabilities. When just this binary output is
used (accept or reject) the different one-class methods can only be combined by a form of
majority voting.

From the previous section we know that by assuming the uniform distribution for the
outlier objects, p(x|ωT) can be used as an estimate of p(ωT |x). For methods which estimate
a distance d(x|ωT), this p(x|ωT) is not available and the distance should be transformed
in to a probability. Therefore, some heuristic mapping has to be applied. Two possible
transformations are:

P̃ (x|ωT) =

{
1
c1

(c2 − d(x|ωT)) for d(x|ωT) < c2,

0 for d(x|ωT) ≥ c2.
(5.18)

(which resembles the ’tent-shaped’ or lambda-type fuzzy membership function [Zadeh, 1965])

3 Of course this is an unfair comparison. The Bayes rule uses the true probability distributions of both
the target and outlier data and thus finds the optimum boundary for the problem. The one-class classifier
can never beat that.

5.2. Combining one-class classifiers 125

or

P̃ (x|ωT) =
1

c1

exp (−d(x|ωT)/c2) (5.19)

(which models a Gaussian distribution around the model if d(x|ωT) is a squared Euclidean
distance). The parameters c1 (normalization constant) and c2 (scale parameter) can be
fitted to the distribution of d(x|ωT) of the training (target) objects. In both definitions
the probability estimate becomes maximal when the distance d decreases to zero, while for
very large distances the estimates drop to zero.

For R one-class classifiers, with estimated probabilities P (xk|ωT) and threshold θk, this
results in the following set of combining rules:

1. First the mean vote, which combines the binary (0-1) output labels:

ymv(x) =
1

R

∑
k

I (Pk(x|ωT) ≥ θk) (5.20)

Here, I(·) is the indicator function. Of course, when one of the heuristic methods for
computing a probability Pk(x|ωT) from a distance d(x|ωT) is used (formula (5.18)
or (5.19)), the original threshold for the method should also be mapped. When a
threshold of 0.5 is applied to ymv(x), this rule becomes a majority vote in a 2-class
problem.

2. The second combining rule is the mean weighted vote, where the weighting by fT k

and 1 − fT k is introduced. Here fT k is the (often predefined) fraction of the target
class that is accepted by method k.

ymwv(x) =
1

R

∑
k

(fT,kI(Pk(x|ωT) ≥ θk) + (1− fT,k)I(Pk(x|ωT) < θk)) (5.21)

This is a smoothed version of the mean vote, (5.20), but it gives identical results
when a threshold of 0.5 is applied.

3. The third combining rule is the product of the weighted votes :

ypwv(x) =

∏
k fT,kI(Pk(x|ωT) ≥ θk)∏

k fT,kI(Pk(x|ωT) ≥ θk) +
∏

k(1− fT,k)I(Pk(x|ωT) < θk)
(5.22)

4. The fourth combining rule is the mean of the estimated probabilities :

ymp(x) =
1

R

∑
k

Pk(x|ωT) (5.23)

126 5. Combining Descriptions

5. and, finally, the fifth combining rule is the product combination of the estimated
probabilities :

ypp(x) =

∏
k Pk(x|ωT)∏

k Pk(x|ωT) +
∏

k θk

(5.24)

where we have used the approximation that Pk(x|ωO) = θk. This means that the
outlier object distribution is independent of x and thus uniform in the area of feature
space we are interested in.

The output y(x) of the combining rule can now be treated as a standard one-class
classifier output. The accuracy on a testing set can be estimated by computing the ROC
curve and integrating the error under the curve (error (3.8)). All these combining rules
will be compared in a real world one-class problem in the next section.

5.2.2 Combining experiments

To investigate the performance of the different combining rules, a classification problem
with several feature sets is used. It is the handwritten digit recognition problem from
section 4.13 (or appendix C), for which the following features are available: digits, Zernike,
Fourier and profile. For the one-class combining problem one class of handwritten digits
is described by one or more data descriptions and distinguished from all other classes. For
training, 100 objects are drawn from the target class (no negative examples are used) and
for testing 100 objects per class are used (which thus gives a total of 900 outlier objects).
In appendix C the integrated ROC errors of all the individual one-class methods on all
datasets are shown. The results on class ’0’ are also shown on page 113.

In the combining experiments, 11 of the methods discussed in chapters 3 and 4 are
used. These are the Gaussian model, mixture of Gaussians, Parzen density, NN-d, SVDD,
LVQ, k-means, k-centers, auto-encoder network, PCA and SOM. The one-class classifiers
are optimized for one threshold value, all methods have to reject 10% of the target set.
The outputs of the methods are combined using the combining rules mentioned in the
previous section. For some of the methods their resemblance measure had to be mapped
to a probability estimate. These methods are the NN-d, SVDD, the LVQ, k-means, k-
centers and SOM. In all these one-class classifiers a distance larger than zero can be defined
(most often just the squared Euclidean distance to the nearest prototype), therefore the
transformation (5.19) was chosen. Parameter c1 was not optimized (c1 = 1), but parameter
c2 was set such that the average 1

N

∑
i d(xi|ωT)/c2 = 1.0.

The ROC curves of the 5 combining rules are shown in figure 5.3 for the target classes
’0’ (left subplot) and ’1’ (left subplot). The ROC curves of the 5 combining rules are
shown. Because the individual one-class methods are optimized for one specific fT , the
performance of the classifiers is given as a single point in the graph (marked by the stars).
Most methods show somewhat higher target rejection rates on the testing set. The ROC
curves make clear that most combining rules perform an averaging over the individual
classifiers. Only the product combination rule on the estimated probabilities improves

5.2. Combining one-class classifiers 127

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Pixel (class 0)

outlier rejected

ta
rg

et
 a

cc
ep

te
d

mv
mwv
pwv
mp
pp

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Pixel (class 1)

outlier rejected

ta
rg

et
 a

cc
ep

te
d

mv
mwv
pwv
mp
pp

Fig. 5.3: The ROC curves of the 5 combining rules on 11 one-class classifiers. The performance
of the individual one-class classifier is given by the stars. In the left plot class ’0’ of
the pixel data is the target class, in the right plot, it is class ’1’. The legend uses the
abbreviations of the combining rules from defitions (5.20) to (5.24).

over all the individual classifiers and produces an ROC curve which exceeds the other
classifiers (this is especially clear in the accuracies on class ’1’).

Table 5.2: Integrated ROC errors (×100) for the 5 combining rules, applied to the one-class
classifiers trained on the Zernike dataset. Numbers in bold indicate that this per-
formance is an improvement over the best individual performance by any of the
classifier.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.01 0.21 0.55 6.69 0.89 1.51 3.69 0.49 0.01 4.16
mwv 0.01 0.20 0.55 6.71 0.87 1.49 3.67 0.45 0.01 4.12
pwv 0.01 0.21 0.54 6.58 0.89 1.50 3.67 0.47 0.01 4.15
mp 0.01 0.16 0.59 5.66 0.65 1.72 3.77 0.22 0.00 4.22
pp 0.00 0.09 0.40 4.45 0.48 1.01 3.83 0.16 0.00 4.13

The combining results on all one-class classifiers for all 4 datasets are shown in tables 5.2
to 5.5. We start the discussion with the integrated ROC errors (see (3.7)) for the Zernike
dataset are shown in table 5.2. Again the integration boundaries are from fT+ = 0.5 up
to fT+ = 0.95. Numbers in bold indicate that the performance is improved over the best
individual one-class classifier. In the Zernike dataset, the accuracy on almost all classes
improves. Only for target class ’3’ and ’9’ the combining rules do not improve over the
best individual performance. Furthermore, the performance of the mean and product of
the estimated probabilities (rules ’mp’ and ’pp’) are often better than the first three rules,

128 5. Combining Descriptions

Table 5.3: Integrated ROC errors (×100) for the 5 combining rule, applied to the one-class clas-
sifiers trained on the Fourier dataset. Numbers in bold indicate that this performance
is an improvement over the best individual performance by any of the classifier.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.30 8.82 4.43 19.80 28.95 28.37 23.09 4.45 0.72 26.76
mwv 0.30 8.72 4.28 19.25 28.33 27.80 22.94 4.23 0.72 26.34
pwv 0.30 8.76 4.27 19.73 28.67 28.12 23.07 3.76 0.70 26.68
mp 0.00 6.85 2.33 15.86 23.12 22.05 20.89 2.49 45.00 24.85
pp 0.00 5.83 1.28 9.94 17.34 13.88 13.47 1.30 45.00 17.02

indicating that the estimated probabilities contain valuable information for combining.
In the combination of the methods on the Fourier dataset (see table 5.3) the performance

improvements are much smaller than in the Zernike dataset. Combining the different
classifiers is only useful for classes ’0’, ’5’ and ’8’ (and perhaps classes ’6’ and ’7’). This
may be explained by the fact that in this dataset, in general, the performance is quite
poor. For class ’5’, for instance, the best individual performance is 26.53. Therefore, by
combining these noisy conclusions not much can be gained. Reasonable results might be
expected from classes ’0’, ’2’ and ’7’. In this dataset it is even more clear that just the mean
and the product of the estimated probabilities improves the performance. The exception
here is class ’8’, where several probability estimates become 0. These estimates ruin all
good estimates from other methods.

Table 5.4: Integrated ROC errors (×100) for the 5 combining methods, combining the one-
class classifiers trained on the profile dataset. Numbers in bold indicate that this
performance is an improvement over the best individual performance by any of the
classifier.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.07 1.42 0.10 0.40 0.28 1.86 0.47 0.02 1.20 0.39
mwv 0.06 1.59 0.09 0.40 0.27 1.88 0.33 0.02 1.15 0.37
pwv 0.07 1.37 0.10 0.39 0.28 1.70 0.44 0.01 1.14 0.37
mp 0.05 0.37 0.09 0.27 0.17 1.00 0.42 0.00 0.87 0.19
pp 0.07 0.09 0.06 0.25 0.12 0.65 0.12 0.03 0.85 0.21

The results on the profile dataset (table 5.4) show similar characteristics as in the case
of the Fourier dataset. For some classes all combining rules improve their performance, for
some classes only the mean or product rules on the estimated probabilities are useful, and
for some classes no improvement can be observed.

In the case of the pixel dataset, hardly any improvement can be obtained (see table

5.2. Combining one-class classifiers 129

Table 5.5: Integrated ROC errors (×100) for the 5 combining methods, combining the one-
class classifiers trained on the Pixel dataset. Numbers in bold indicate that this
performance is an improvement over the best individual performance by any of the
classifier.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 1.08 5.61 0.94 6.29 2.13 5.80 3.57 0.10 8.69 2.47
mwv 0.96 5.14 0.88 5.97 1.76 5.37 3.23 0.11 8.37 2.11
pwv 1.05 4.94 0.83 6.15 1.79 5.67 3.13 0.07 8.57 2.31
mp 0.35 3.11 0.48 4.70 0.63 1.83 1.69 0.03 4.39 1.08
pp 0.01 0.62 0.15 1.99 0.11 0.28 0.17 0.01 1.97 0.31

5.5). What was already apparent in the ROC curves of figure 5.3 for classes ’0’ and ’1’, it
is also noticeable in the performances: the product combination rule (5.24) results in the
biggest improvement. In most cases the other combining rules are also useful (they achieve
higher accuracies), only in classes ’3’, ’4’, ’7’ and ’9’ individual classifiers may perform
better.

The surprising fact is that the product combination over the posterior probabilities
works well. In many cases the posterior probability is estimated very poorly (especially
keeping in mind that in many cases the distance measure d(x) has to be mapped to a
probability p(x)). Combining these poor probability measures by averaging does not lead
to improvements, but the more noise sensitive multiplication does. Only by the fact that
the one-class classification methods make highly uncorrelated errors, is it possible that the
performance increases. The results for the target data give very small output values (for
class ’1’ in the profile dataset, it is on the order of 10−9), but the output for the outlier
classes are even smaller (on the order of 10−31).

The results in this section show, that combining different classifiers trained on the same
data, does not always result in better performances. In some cases one individual classifier
already achieves very high accuracy, and this cannot be improved by combining. When the
classifiers are combined, the best combining rules are the mean or the product combination
of the estimated probabilities. Using the mean vote, mean weighted vote or the product
of weighted votes, approximates the real valued outputs of the individual classifiers for the
combining by binary values. The results in this section show that by this approximation
procedure useful information for the final classification is lost.

5.2.3 Combining different feature sets

The second experiment concerns the combination of one-class classifiers which are trained
on different feature sets. On the 4 sets: profile, Fourier, pixel and Zernike, one-class
classifiers of the same type are trained and the outputs are combined again with the same
combining rules. It is expected that the extra information contained in the other dataset

130 5. Combining Descriptions

will improve the final performance. Again the ROC curves are calculated and the integrated
error for the classifiers on all datasets are shown in table C.11.

Table 5.6: Integrated ROC errors (×100) for the 5 combining methods over the 4 feature sets
for class ’0’ as target set. Numbers in bold indicate that the performance is better
than that of the best individual classifier.

combining method nr.
method nor MoG Par NN SVD LVQ k-m k-c aut PCA SOM

mv 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
mwv 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
pwv 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mp 0.01 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pp 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The results of combining the classifiers for class ’0’ is shown in table 5.6. It appears
that, using all 4 feature sets, it is possible to separate this target class from all other classes
almost without errors. In most cases and for all possible one-class classifiers, the error
almost completely vanishes on the independent test set. Note that the best performance of
the individual classifiers on class ’0’ is 0.04 using the Parzen density on the Fourier dataset.
This already indicates that very good performances can be obtained for this target class.

Table 5.7: Integrated ROC errors (×100) for the 5 combining methods over the 4 feature sets
for class ’1’ as target set. Numbers in bold indicate that the performance is better
than that of the best individual classifier.

combining method nr.
method nor MoG Par NN SVD LVQ k-m k-c aut PCA SOM

mv 0.04 0.28 0.05 3.40 5.79 4.13 0.63 0.35 0.04 0.25 0.33
mwv 0.04 0.28 0.05 3.32 5.78 3.98 0.64 0.34 0.04 0.25 0.33
pwv 0.04 0.38 0.04 3.39 5.60 3.46 0.38 0.20 0.05 0.25 0.57
mp 0.09 0.21 0.15 0.50 2.17 0.28 0.01 0.01 0.04 0.06 0.00
pp 0.00 0.01 0.00 0.57 2.17 0.28 0.01 0.01 0.00 0.00 0.00

In table 5.7 the same results are shown for class ’1’. Here the best performance of the
individual classifier is 1.07 (again the Parzen density on the profile dataset). Now only
some combining rules and one-class methods match and give higher accuracies than the
best individual classifier. In particular; the SVDD reach low accuracies with all combining
rules. It appears that it extrapolates so poorly for high fT+ that even by combining the
performance does not improve significantly. Density estimators work well in this problem,

5.3. Combining to include prior knowledge 131

which is caused by the fact that the training set is a good sample from the true target
distribution. For the combination of the Gaussian model and the auto-encoder network
small errors are achieved. Also in these experiments, we see different behavior for the first
three (voting type) rules and the last two (probability type) combining rules.

The other combining results are shown in table C.11 (page 167). For the combining of
class ’2’ (best 0.98) and ’3’ (best 1.63) combining rules almost always improve performance.
Only combining the NN-d and the SVDD can give larger errors.

5.3 Combining to include prior knowledge

In the previous sections the results of the one-class classifiers are combined to improve the
overall performance of the classification problem. It is assumed that in each feature set the
probability P (ωT |xk) for the target set is well defined. When several separate feature sets
are available, not only the extra information P (ωT |xk) can be used to improve performance.
The fact that independent P (ωT |xk) are available makes it possible to exclude (or suppress
the influence of) a certain P (ωT |xk).

Let us consider an adapted version of the example from chapter 1 where only apples
should be distinguished from all other possible objects. Assume that from all objects two
types of features are measured, such that the objects are characterized in, for instance, a
’flavor’ and a ’shape’ feature space. Then a probability density should be modeled in both
feature spaces. An apple should then both smell like an apple and look like one. There
are situations, however, where only one feature is measured reliably. It might happen that
there is some mud on the apple, which preserves the shape characterization, but might
destroy the flavor. Or the apple might have some leaves which do not disturb the flavor,
but harm the shape of the object. Using appropriate combining rules can then make the
classification more robust.

The average and multiplication rules can be used for this purpose. The mean and
product combination rules can be interpreted as being an OR combination and an AND
combination, respectively. When it is required that the new object is accepted by all one-
class classifiers, a product combination rule gives high output when all classifiers agree that
the object is acceptable, but immediately gives low output when one classifier disagrees. In
a mean combination all outputs are averaged and one poor output of one of the classifier
can be counterbalanced by another high output. This results in an OR combination. By
using the mean combination rule, a muddy apple can still be acceptable. If the user wants
to reject objects like that, then he4 should apply the product combination rule.

5.3.1 Image database retrieval

To investigate the use of these rules in a real application, the SVDD will be applied to an
image database retrieval problem. In this application the user specifies some interesting and
desired image regions, and the application should retrieve the resembling images (images

4 or she

132 5. Combining Descriptions

Fig. 5.4: The five defined queries, Cathedral, Queen, Hut, Flag, Newsreader, each with two
user-defined regions.

with the same characteristics as in the user-defined regions) from the database. Five test
queries are shown in figure 5.4, each with 2 user-selected regions.

In the literature it is well known that color features perform very well in distinguishing
the target images from the rest of the database [Antani et al., 1998]. Some very advanced
techniques for image database retrieval have been employed to use both color and texture
features. A well optimized retrieval procedure, including automatic feature selection and
extraction is also found in [Messer, 1999]. In the latter case also (random) images from
the database are used as negative examples.

We will use the image database from Messer [Messer, 1999], which contains 3483 images,
ranging from captured television images to images from the MPEG-7 test set (the 5 test
queries defined in figure 5.4 are already defined in [Messer, 1999]). For each image in this
database 33 color and texture features are computed, thus each image can be represented
as a large cloud of objects (pixels) in a 33-dimensional feature space. The set of pixels from
the user-selected regions are now the target set. To perform a query, a one-class classifier
should be trained on these pixels and all other pixels of all other images should be classified
by the classifier. The fraction of pixels from a certain image that is accepted, then gives
an indication how well that image resembles the user-selected regions in the query image.
We will rank all images in the database based on the resemblance between the image and
the user-selected regions (thus the image with rank 1 fits best). There are several ways to
rank the images, we will discuss them in sections 5.3.3 and 5.3.4.

To test the performance of the one-class classifier, 5 to 8 other target images, which
resemble the target images, are defined beforehand. For a successful retrieval, these target

5.3. Combining to include prior knowledge 133

images should appear high in the final image ranking (preferably within the first 100
images). We will discuss this in more detail in section 5.3.2.

To accelerate the query, the color and texture features of the image are calculated
beforehand. For each pixel in each image 33 features are computed. They can be separated
in 7 feature sets, 3 texture feature sets (Discrete Cosine Transform, Gabor, wavelet) and
4 color feature sets (energy, entropy, mean, variance). The features are listed in table 5.8.
The values in the rightmost column are the average standard deviations of the different
features sets. The values are measured on the second user-selected region in the first image
from figure 5.4. These values show that the different features have significantly different
characteristics, and it might be profitable to train 7 separate one-class classifiers in each
of these feature spaces. We will consider this in section 5.3.4.

Table 5.8: List of the 33 features, divided in 7 feature sets. The last column gives the aver-
age standard deviation of the data set obtained from the brick wall region from the
Cathedral image. The large differences show that the data characteristics signifi-
cantly differ in the different feature sets.

feature set type of features dimensionality σ

1 discrete cosine transform 9 1 · 104

2 Gabor filters 8 2 · 103

3 energy (green/int/red) 3 3 · 10−2

4 entropy (green/int/red) 3 6 · 10−2

5 mean (green/int/red) 3 2 · 100

6 variance (green/int/red) 3 6 · 102

7 wavelet transform 4 1 · 103

To reduce the training time, from the user-selected image regions just a subset of 200
pixels is randomly drawn, and on this set of objects a one-class classifier is trained. Here,
the SVDD is used. Using larger training sets sometimes gives somewhat better results,
but requires long training times. In all experiments, the SVDD is trained on the user-
defined regions such that about 10% of the training pixels are expected to fall outside the
description (estimated by (2.47)).

The evaluation of all pixels in all images from the database is very time-consuming.
To reduce the computational burden in the evaluation of the complete image database,
all images are segmented first by clustering the set of pixels in the 33-dimensional feature
space. On average about 30 to 50 cluster centers are obtained for each of the images. These
cluster centers will be called indices. An example of a clustered image is given in figure
5.5. This reduces the size of the representation of the images from about 300× 200 pixels
to about 50 indices. The drawback is that this only considers an average of the cluster and
the variance structure of the cluster is lost.

134 5. Combining Descriptions

Fig. 5.5: Clustered (or segmented) Cathedral image, containing 38 clusters. The cluster centers
(indices) and their approximate positions are given by the dots.

5.3.2 Evaluation performance

Thus, on a set of pixels drawn from the user-selected regions, a SVDD is trained. All
indices of all images are classified by this SVDD and the images are ranked using a ranking
measure Erank (definitions of ranking measures will be given in sections 5.3.3 and 5.3.4).
To judge how well the 5 (or 8) test images are retrieved, a retrieval error Eret should be
defined. The retrieval error is defined as the chance that a random method (a method
which just randomly ranks the images) shows the same or a better ranking as the method
under investigation. With a better ranking we mean a ranking in which the average rank
of the test images is lower (more images are ranked at the top).

The exact computation of the chance that a certain average rank is obtained by a
random method, is expensive, even if we avoid the discrete nature of the rankings. Assume
in the continuous case we have n ranks ri, i = 1, . . . , n uniformly distributed between 0
and 1.5 Using the central limit theorem we approximate the distribution of the average

5 When we have n independent uniform random variables, the rankings ri, between 0 and 1, and
we order the random variables such that r1 < r2 < · · · < rn, the kth variable is distributed as
[Grimmett and Stirzaker, 1982]:

fk(r) = n

(
n− 1
k − 1

)
rk−1(1− r)n−k for r between 0 and 1 (5.25)

The joint probability for n variables becomes f(r1, r2, . . . , rn) = f1(r1)f2(r2) . . . fn(rn). This is the distri-
bution of the set of n values. We are interested in any set equal or better than this. A better set is defined
as one having an average ranking higher at the top. Then, the mean rank m = 1

n

∑n
i=1 ri is distributed

as:

f(m) =
∫

r1

∫
r2

· · ·
∫

rn

f(r1, r2, . . . , rn)I

 1
n

n∑
j=1

rj ≤ m

 dr1dr2 . . . drn (5.26)

This is very hard to compute, and we therefore use the central limit theorem which states that m is
approximately normally distributed when n is large enough [Weisstein, 1998] (all ri’s originate from the

5.3. Combining to include prior knowledge 135

ranking m = 1
n

∑n
i=1 ri by a normal distribution with the mean of the uniform distribution

µ = µunif = 1
2

and the variance of σ2 = 1
n
σ2

unif = 1
12n

. The chance of finding an average

rank m or better, is than given by
∫ m

0
N (m; 1

2
, 1

12n
)dm.

In the case of the image database, we have n images ranked between 1 and M . The
distribution of average rank m of the n images will be distributed as:

p(m) = N
(

m; µ =
M + 1

2
, σ2 =

(M − 1)2

12n

)
(5.27)

where N (x; µ, σ2) is the Gaussian distribution [Ullman, 1978]. In general, the average
ranking obtained by a non-random method will be better. Integration over m up to this
average rank m of (5.27) gives an indication how (un-)likely the results would be in the
case of a random method:

Eret(m) =

∫ m

−∞
p(m)dm (5.28)

To get a feeling for what this means, assume that we have a database containing M = 10
images and a one-class classifiers ranks the n = 3 target images on ranks 1, 2 and 5.
This gives m = 2.67, and results in E = 0.029 by formula (5.28). A more realistic image
database will contain M = 3500 images, and assume that a query with n = 5 target
images is defined. When the images are ranked (1, 2, 3, 4, 5), m = 3, the error becomes
Eret = 5.09 · 10−15, while for ranking (1500, 1550, 1600, 1650, 1700) Eret = 0.2526. To avoid
printing the huge differences in orders, the results of the experiments will be shown in a
more readable format as log10(Eret), giving −14.29 and −0.59 respectively.

Although this measure does not give an exact estimate of the performance of a one-
class classifier with respect to the random method, it does give a possibility to compare
different classifiers. This measure is therefore only used to give an impression of the relative
performance. Is not used to give precise, absolute errors of each of the individual classifiers.

5.3.3 Original features

First a SVDD is trained on the original 33 features, without preprocessing, to give an
indication of difficulty of the problem. In table 5.9 four definitions of the ranking measures
Erank are shown. First, it is determined which indices are accepted by the SVDD. Second,
the accepted indices are ranked according to distance to center of the SVDD, the region
size of the index or a combination of both. Finally, these values are summed (or multiplied
in case of ranking measure 4) over all indices to obtain a final score or rank for the image.

Table 5.11 (page 139) shows the ranking performances for the 5 query images, Cathe-
dral, Queen, Hut, Flag and Newsreader, on the complete image database for all retrieval

same uniform distribution). The integration in (5.26) is than replaced by an integration over a normal
distribution.

136 5. Combining Descriptions

Table 5.9: Ranking measures Erank defined for queries where all features are used in one SVDD.

ranking measure error

1 sum over region sizes of accepted indices
2 sum over distances from accepted indices to centers
3 sum over distance × (1+region size)
4 product over region sizes

methods used in this chapter. In the third and fourth column of table 5.11 (page 139)
the results are shown for the case in which the SVDD is trained on all features. Because
the database consists of almost 3500 images, a worst case ranking of, for instance, 3200
means that the SVDD on that image is far worse than random guessing which would give
a ranking around 1700. When one image out of 5 testing images is ranked like this, an
ranking measure on the order of −1.0 to −2.0 occurs (using formula (5.28)), depending on
how the other testing images are ranked. The results show that the four different ranking
measures Erank (table 5.9) give about the same ranking for the images. Results on the
Cathedral, Queen and Newsreader queries are acceptable. Although it appears that the
desired images are not within the first 100, the SVDD clearly performs better than random
guessing. The results on the Hut and Flag queries on the other hand are disappointing.
It appears that in the Hut query only the training image is recognized well (it is ranked
91, 4, 5, 43 in the four ranking measures). All other images are either ranked very low or
are completely rejected.

In the Flag query, most of the desired images are ranked very high. Only two images are
not retrieved well. These images are shown in figure 5.6. These images have been rotated
over 90 degrees. This transformation is not considered irrelevant (the texture features are
not rotation invariant), and therefore the images are rejected.

Fig. 5.6: Images with very poor ranking in the Flag query

The last column in table 5.8 shows the standard deviations of the data extracted from
the wall region from the Cathedral image. Clearly, the large difference in scale of the
features can deteriorate the performance of the SVDD. Therefore, the data is rescaled to
unit variance in the target set and the experiments are repeated. The results are shown in

5.3. Combining to include prior knowledge 137

the 4th column in table 5.11. The results on the Cathedral, Queen and Newsreader queries
are very good. When the second worst rank is considered in the Queen query, all ranks are
lower than 32. Hut and Flag suffer from the same problems as before. Even more so, the
only image in the Hut query which is accepted by the SVDD is the original target image:
all other images are rejected.

5.3.4 Separating the feature sets

To improve performance, especially in the Flag query, separate SVDD’s are trained on the
individual feature sets (see table 5.8). It is hoped that it will not only make training of a
SVDD easier and more efficient, but it will also give the possibility to use several feature
combination rules. In the Flag query this means that the one-class classifier can be forced
to use the texture information.

Table 5.10: Ranking measures Erank defined for image ranking in case of SVDD on separate
feature sets.

ranking distance region weighted by feature indices
measure to center size training perform. sets

1 X sum sum
2 X sum sum
3 X sum sum
4 X prod sum
5 X prod sum
6 X prod sum

Table 5.10 shows the definitions of the ranking measures in this new problem. The
fourth column, called ’weighted by training perform.’, indicates that the ranking is also
weighted by how well the extracted indices from the training image are accepted by the
one-class classifiers. When all indices of the training image are rejected by the SVDD’s,
the corresponding feature set obtains a low weight. The difference between a sum and a
product combination over feature sets is the difference between ’blue sky OR brick wall’
and ’blue sky AND brick wall’.

In the fifth and sixth column of table 5.11 the results for the separate SVDD’s without
and with scaling are shown. The separate feature sets are scaled well and the rescaling does
not improve performance very much. The results are somewhat worse for the Cathedral,
Queen and Newsreader with respect to the original results. Only when the ranking measure
is based on a product over the feature sets (measures 4,5,6), the performance is comparable.

For the Hut image the OR-operation over the feature sets performs very well. It appears
that in some of the desired images one of the panels is partly obscured by an antenna, thus
destroying the texture characterization of the original panel. An example is shown in figure
5.7. By using the OR operation, the influence of the “wrongly” characterized panels can
be reduced.

138 5. Combining Descriptions

Fig. 5.7: An example of a Hut test image, where one of the panels is partly occluded by an
antenna.

Finally, the Flag query still suffers from the same problems as before. The two desired
images, which are rotated 90 degrees, are not ranked very high. Best performance is
reached using the AND operation on the feature sets, while only considering the distance
to the centers of the SVDD’s.

It appeared that in this application the color feature is important and that it is well
clustered. Scaling both color and texture features to unit variance does not decrease
performance for image queries in which texture features can be ignored. For queries where
texture features are more important, the different color and texture features are better
separated and treated separately. Combining the descriptions from the different feature
sets opens the possibility of applying AND and OR operations on the different features.
Then a distinction between ’blue sky AND brick wall’ and ’blue sky OR brick wall’ can be
made. Of course this will require user input.

A normal operation procedure might therefore be, that a SVDD is trained on all 33
features, which are scaled to unit variance. In most cases this gives very acceptable re-
sults, especially when queries are focused on color. When the user is not satisfied, data
descriptions in separate feature sets should be trained. The user then has to indicate how
they should be combined (by AND or OR operations).

5.4 Conclusion

Inspired by the gains in performance which have been obtained when conventional classifiers
are combined, we looked at the possibilities of combining one-class classifiers. In the
combining of conventional classifiers several combining rules can be considered, depending
on the type of output the individual classifiers give. It appears that when the classifiers
estimate class posterior probabilities, the Bayes rule shows that the product combination
rule is optimal for classifiers which estimate from independent data. On the other hand,
when data is highly correlated, or the posterior probability estimates are very noisy (large
errors occur) the mean combination rule is more robust and shows better performance.

In the combination of one-class classifiers, the situation is different. In most cases,

5.4. Conclusion 139

Table 5.11: Query results for one SVDD using all features (original and scaled to unit vari-
ance) and the SVDD’s trained on separate feature sets (also on the original and
rescaled sets). The results are presented as logarithmicly scaled retrieval error,
log10(Eret(m)).

ranking all features separate features outlier objects
name query type no sc. scaling no sc. scaling no sc. scaling

Cathedral 1 -13.01 -12.98 -9.23 -12.31 -12.94 -14.23
2 -13.15 -13.18 -10.57 -7.84 -13.27 -14.23

(5 target 3 -12.87 -12.99 -10.07 -9.88 -12.82 -14.23
images) 4 -13.01 -12.99 -14.03 -13.95 -12.95 -14.23

5 -14.01 -13.95
6 -14.04 -14.11

Queen 1 -12.31 -11.82 -8.64 -12.17 -13.32 -13.49
2 -12.46 -11.11 -13.01 -13.47 -12.45 -13.74

(5 target 3 -12.33 -11.05 -6.86 -7.13 -12.47 -13.47
images) 4 -12.84 -11.68 -12.63 -13.96 -13.51 -13.59

5 -12.24 -13.72
6 -12.69 -13.96

Hut 1 -4.31 -10.01 -10.28 -12.23 -4.99 -6.86
2 -4.57 -10.04 -2.93 -4.89 -5.10 -6.86

(5 target 3 -4.40 -10.04 -13.23 -13.15 -5.03 -6.86
images) 4 -4.34 -10.02 -8.17 -6.60 -5.02 -6.86

5 -8.12 -6.57
6 -8.22 -6.60

Flag 1 -4.30 -8.90 -0.09 -7.18 -6.34 -2.15
2 -2.11 -8.54 -7.10 -15.21 -4.41 -2.14

(8 target 3 -3.04 -8.64 -0.00 -0.00 -5.69 -2.15
images) 4 -4.41 -8.64 -1.99 -20.84 -6.59 -2.15

5 -2.10 -17.57
6 -1.86 -10.07

Newsreader 1 -10.16 -12.22 -1.24 -13.68 -8.69 -14.05
2 -13.19 -13.62 -11.70 -12.98 -12.44 -14.27

(5 target 3 -12.15 -13.65 -0.08 -0.37 -11.47 -14.26
images) 4 -10.46 -13.51 -14.27 -14.29 -9.41 -14.13

5 -14.12 -14.18
6 -14.24 -14.27

only a class label is estimated. It is even impossible to estimate a posterior probability
because the density of one of the classes (the outlier class) is unknown. Only when it is

140 5. Combining Descriptions

assumed that the outliers are uniformly distributed, can we estimate the posterior proba-
bility. Furthermore, in some one-class classification methods no probability is estimated,
but a distance. When we have a combination of distance and probability outputs, the
outputs should be standardized before they can be combined. To use the same type of
combining rules as in conventional classification combining, the distance measures must be
transformed into a probability measure.

When this is done, we observe that, as in combining conventional classifiers, combining
often improves performance, especially when the probability estimates are combined by
using the product rule. Surprisingly, this rule still performs well also when the resemblances
are mapped to probabilities by a, more or less ad hoc, transformation. Although the
product outputs are, in general, very small, significant outputs for the target and outlier
outputs can be reported.

The results of combining one-class classifiers confirm what has already been observed in
the combining of conventional classifiers, i.e. that combining different feature sets is more
useful than combining different classifiers. This is a natural implication of the fact that
the different datasets contain more information than the different views of the individual
classifiers on one dataset. To be more specific, for the individual one-class classifiers, it
appears that although the Parzen density is often the best classifier, combining is often
best using a Gaussian model.

Finally, combining rules are not only useful in improving the classification performance
over one classifier. Using different combining rules can also give the opportunity to include
prior knowledge and user interaction into the classification process. In the application
of the image database retrieval, for instance, the choice between the product and mean
combination rule opens the possibility of applying AND and OR operations on the different
features. In such a case, the user can make a distinction between the queries ’blue sky
AND brick wall’ and the query ’blue sky OR brick wall’.

6. CONCLUSIONS

In this thesis we have have investigated one-class classifiers. We tried to answer the fol-
lowing questions:

• How can a classifier be constructed, trained and evaluated based on samples from
just one of the classes (called the target class)?

• What should be the basis for a decision to classify an object as belonging to the
target class?

• How can the resemblance of an object to a set of training objects be defined?

• What should be the measure to minimize the chance of accepting non-target (or
outlier) objects?

• How can a one-class classifier be evaluated when no example outlier objects are
available?

One-class classification appears when in a conventional classification problem classes in
the (training) data are poorly balanced, i.e. one of the classes is severely undersampled
due to the measuring costs for that class caused by the low frequency of occurrence. It
might also occur that it is completely unclear what the representative distribution of the
data is. In that case only the boundary of the data might be known (or approximated
by the user), but a complete density cannot be modeled with high confidence. In these
situations conventional classification methods should be replaced by one-class classifiers
(see the experiments in chapters 2 and 4).

A complication emerges when one-class classifiers have to be evaluated. When only
objects from one class are available, only the number of false negatives can be estimated
(target objects which are rejected). Unfortunately, the false positive fraction (the fraction
of outlier objects which is accepted) cannot be estimated, because negative examples are
(per definition for the one-class classification problem) absent or very scarce. To get an
estimate for the fraction of false negatives, artificial outliers have to be created. When
these artificial outliers are uniformly distributed in and around the one-class classifier, the
volume occupied by the one-class classification can be estimated. It is hypothesized that
a smaller volume implies a smaller chance of accepting outliers. The total error is then a
combination of the classification error on the target set and the volume of the one-class
classifier. In practice, the user has to give the tradeoff between these two.

142 6. Conclusions

6.1 What has been done in this thesis?

In chapter 2 we presented the derivation of the support vector data description (SVDD), a
one-class classification method which avoids a complete density estimation in the feature
space. Instead of estimating a complete probability density, it estimates a closed boundary
around the data set such that it encloses a volume as small as possible in the feature space.
This method is, therefore, eminently suited for solving the one-class problems mentioned
above. The boundary of the basic method is given by a hypersphere and it appears that this
boundary can be described by a few training objects, the support vectors. Furthermore,
in this formulation the feature vectors always form an inner product with another feature
vector.

Although the SVDD uses a rigid hypersphere model for the boundary around the data,
it has the ability to obtain more flexible data descriptions. This is done by using kernel
functions instead of the original inner products. These kernel functions implicitly map the
data to another, possibly very high dimensional, feature space. The mapped data in this
feature space may fit the hypersphere model better than the original data. Two important
kernel functions have been investigated, the polynomial and the Gaussian kernels. In con-
trast to the support vector classifier, the support vector data description with a polynomial
kernel suffers from the influence of large norms of the object vectors, but it shows promising
results for the Gaussian kernel. Using the Gaussian kernel, descriptions comparable to the
hyperplane solution of Schölkopf et al. [Schölkopf et al., 1999] are obtained.

When it is assumed that the training set is a representative sample from the true
target distribution,1 the fraction of the target objects which become support vectors is an
estimate of the error which the description will make on the target set. When the maximum
acceptable error on the target set is known beforehand, the width parameter (which is still
a free parameter in the support vector classifier) can be set to give the desired number
of support vectors. Because the SVDD cannot extrapolate very well, the performance of
the SVDD for high target acceptance rates (low false negative rates) is poor. When the
number of training objects is insufficient, the fraction of objects which become support
vectors remains high whatever width parameter is used. This is an indication for the
SVDD that more data is necessary or that the data dimensionality should be reduced.
Extra data in the form of outlier objects can also be used to improve the support vector
data description.

In chapters 3 and 4, we discussed the performance of a large set of (relatively simple)
one-class classifiers. We distinguished 3 types of one-class classification models: based on
density estimation, based on a boundary description and based on data reconstruction.
Some methods assume strong models for the data (especially the reconstruction methods)
while others rely almost completely on the data (which is especially true for the Parzen
density estimator and the NN-d). The influence of these assumptions and the ease of opti-
mization of the methods have been investigated by applying them to a set of artificial and

1 In this thesis we do not automatically assume that this is the case. In most practical one-class
classification problems this will not hold, and therefore the proposed estimates cannot be used.

6.1. What has been done in this thesis? 143

real world data. The artificial datasets were constructed such that they showed different
characteristics concerning sample size, scaling of the features, clustering, convexity and the
presence of subspaces. The applicability of the methods to all types of data was measured.
The fit of the one-class methods to the data was used to characterize some real world data.

Some conclusions about the one-class classifiers and their fit to the different types of
data, can be drawn:

1. For small sample sizes it is, in general, impossible to make a good description of
the data. The few objects will contain too much variability to provide a description
with high confidence. On the other hand, for high dimensional data and small sample
sizes the problem of distinguishing between target objects and outlier objects becomes
quite easy for most methods. In these high dimensional feature spaces there is much
freedom and space so a solution can easily be found.

2. The Parzen density estimator is often a good choice for describing the data. Because
the width parameter in the Parzen density can be found using maximum likelihood
optimization, even with small sample sizes reasonable solutions can be reached. This
density approach fails when the data is very scarce and poorly scaled, or when the
training distribution differs significantly from the true target distribution. A further
drawback of the Parzen density estimator is that the evaluation time is considerable.

3. Evaluation time for the NN-d is also considerable, but fortunately this method per-
forms best in small sample size areas where computational efforts are low. For larger
sample sizes and noisy data the performance is very poor. Here the nearest neighbor
method seriously suffers from remote objects in the training set. For small sam-
ple sizes and data distributions with sharp boundaries, performance of the nearest
neighbor method is good.

4. The clustering methods, LVQ, k-means and k-centers often have comparable perfor-
mance. Most often the assumption that the objects from one class are clustered or
nearby in feature space (continuity assumption), is satisfied. The only constraint for
these methods is that a sufficient number of prototypes is used. When this number
is too low, a large bias is introduced and the model does not have enough flexibility
to adapt to the data.

5. The support vector data description performs poorly when an insufficient amount
of data is available. Otherwise, performance is comparable to the Parzen density
estimator. Fortunately, the performance of the SVDD on the training set is a good
indication of the performance on a test set, so poor performance is already expected
when the error is high on the training set. Furthermore, the performance of the
SVDD is especially good when the training distribution is different from the target
distribution (where in the training data mainly covers the target class area, but
does not model the density). Most methods will overtrain on the training data, but
the SVDD is very apt at finding a good boundary. Finally, the evaluation time is

144 6. Conclusions

moderate, as the SVDD only depends just on the number of support vectors. In
normal cases, this number of support vectors is a small fraction of the number of
training objects, and the evaluation time stays small (especially in contrast to the
Parzen density estimator).

6. The auto-encoder (and the diabolo) networks require careful training and adjusting
and is not very robust. It also demands larger sample sizes than the other one-class
classification methods. When enough data is available, and some effort is put into
good optimization, very good results can be obtained. When the auto-encoder is
expected to be a fully automatic procedure, the results can be very disappointing.

7. Finally, the SOM and the PCA use strong assumptions about the data. For the
SOM it is assumed that the data is distributed in a low dimensional manifold (1, 2
or 3-dimensional, depending on the definition of the grid). For the PCA the data
should be located in a linear subspace. When the data satisfies these assumptions,
good results can be obtained.

In the last chapter we investigated the possibilities of combining one-class classifiers.
In conventional classification problems, it often appears that one single classifier is not
capable of obtaining the optimal results from the dataset. By combining several classifiers
particular weaknesses of individual classifiers can be hidden, and the final performance can
be significantly improved. It is hoped that this boost in performance can also be observed
when one-class classifiers are combined.

It appears that combining one-class classifiers is more complicated than combining
conventional classifiers. Much of the theory of combining conventional classifiers is based
on the assumption that the classifiers estimate posterior class probabilities. When each
classifier outputs posterior probabilities, it is possible to combine them using the Bayes
rule. In combining one-class classifiers, the classifiers do not have to output a probability
estimate, but they can also output a distance to a model. To combine these types of
classifiers, the distance measure has to be transformed into a type of resemblance. This
transformation introduces extra assumptions in the combining procedure.

Fortunately, it appears that combining one-class classifiers often improves performance,
like in the case of combining conventional classifiers. Somewhat surprising is the result
that combining is especially useful when the probability estimates are combined using
the product rule. In conventional classification combining, the product combination rule
works best when the error in the probability estimates is limited. In one-class combining,
resemblances are mapped to probability estimates by a, more or less ad hoc, transformation
which might introduce a significant amount of noise in the estimates. Still, the product
combination often gives very good results. The noise introduced by the mapping from
resemblance to probability does not seem to harm the final classification results very much.

Finally, we have observed that combining different feature sets is more useful than com-
bining different classifiers. This is to be expected and it is also noticed in the combination
of conventional classifiers. Because different feature sets contain more information than
different classifiers trained on one dataset, better generalization can be obtained.

6.2. What can be concluded from this thesis? 145

In the second part of chapter 5 combining is not merely used to improve performance
directly, but to include prior knowledge into the classification problem and to steer the
solution. In the image database retrieval problem it was the task to retrieve all images
resembling an image which was given by the user. The user could indicate sub-regions in
the original image which are important (for instance, a part of a blue sky and a red brick
wall). In some cases it turns out to be useful to search for AND and OR combinations of
these sub-regions. Then the user can search for ‘blue sky’ AND ‘brick wall’ or the user
can search for ‘blue sky’ OR ‘brick wall’. This can be done by applying the product or the
mean combination rule, respectively.

6.2 What can be concluded from this thesis?

First, the best overall one-class classifier for well sampled data is the Parzen density. Well
sampled data means that the sample size is reasonably high (as a rule of thumb, the number
of training objects is at least five times the data dimensionality), and that the distribution
of the training data is the same as the testing (or ‘true’) data distribution.

Secondly, the support vector data description performs best when the training distribu-
tion is not identical to the testing distribution. It only estimates the boundary of the data.
Because the extrapolation ability of the SVDD is poor, the SVDD does not perform well
when the sample size is very small. SVDD works fine when a prespecified target acceptance
rate is required. Also the evaluation costs are small (although the training costs are not!).

When more is known about the data distribution, a more specific model can be fitted to
the data. PCA and SOM are good candidates to use when data is distributed in a subspace,
but they require non-trivial sample sizes. For clustered data, methods like k-means, LVQ
and k-centers are well-suited.

Finally, combining one-class classifiers is possible, and it is especially useful when classi-
fiers trained on different feature sets are combined. Combining by multiplying the outputs
(maybe mapped to probabilities) of the one-class classifiers often shows the best final per-
formance.

In figure 6.1 a very coarse overview is given which shows the applicability of different
methods to different situations. For well sampled data it is assumed that the training
distribution closely resembles the ‘true’ distribution and here density estimators work well.
For small sample sizes more assumptions have to be made about the data for the method
to find a good solution. For very small sample sizes it becomes very hard to find a rep-
resentative training set. In practice it means that an atypical sample is being used. For
atypical data the training dataset is not identically distributed as the ‘true’ distribution,
only the area covered by both is about equal. Here, the boundary methods perform better.
For larger sample sizes the SVDD works best, while for very low sample sizes the nearest
neighbor method is to be preferred.

In summary, no final winner for the one-class classification problem can be given, it
depends too much on the task at hand. It depends then not only on the scaling of the
features, preprocessing, the sample size in comparison with the dimensionality, but also on

146 6. Conclusions

sa
m

pl
e

si
ze

data representativity

representativea-typical sample

model/clustering

ParzenSVDD

NN-d

Fig. 6.1: Different one-class classification methods for different sample sizes and for both repre-
sentative training sets and atypical training samples.

time and computation constraints, and what target rejection rate is acceptable. Therefore,
all such constraints should be taken into account, before choosing the best suitable method.

6.3 What can be done in the future?

The problems encountered in one-class classification are most often general problems in
pattern recognition. Unfortunately, some of these problems become more prominent in
one-class classification. For instance, how can we be sure that the training sample is a
good approximation to the ‘true’ distribution? To measure this, how can we estimate
the difference between a training distribution and a testing distribution? This is especially
important when an already optimized classifier is applied to a similar classification problem.
When we are sure to have a good representative dataset available, the density estimators
might perform well enough and the computation of, for example, a support vector data
description can be avoided.

Because no example outliers are available, other measures have to be used to estimate
the error of the second kind (see section 1.4). In the support vector data description, the
volume of the description is used to minimize the chance of accepting outliers. Are there
other criteria which can be used? Are there efficient methods for creating outlier objects?

On the other hand, when the volume of the description is used, the scaling of the features
becomes important. Different scaling results in different solutions for the data description.
Is there a sensible way to obtain a good distance definition for the problem at hand? Can
data be rescaled such that the description becomes more simple (preferably a hypersphere
solution, which best suits the support vector data description)? Can redundant features
be identified (if necessary using example outlier objects)?

Further, focused more on the support vector data description, can this method be
“patched” to show some extrapolation ability? In the current solution the boundary of

6.3. What can be done in the future? 147

the description passes right through the support vectors. This means that around the
individual support vectors about half of the objects will be rejected. It might be reasonable
to assume that the objects in the dataset are not purely given by vectors, but by small
(Gaussian) distributions. Can this be incorporated to obtain another data description?

Finally, there is one very substantial problem which we did not discuss at all, but also
becomes very important for one-class classification: How can a dynamic data distribution
be followed? In the one-class classification methods we discussed in this thesis, all training
was done beforehand using a training set (perhaps even a atypical dataset). In a dynamical
situation, new objects are measured in time. Starting with none (or a few) example objects,
the dataset might evolve through time. Would it be possible to automatically detect from
new, incoming objects when the target distribution starts to deviate from the original
distribution and adapt the boundary accordingly? Is there a natural extension of the
SVDD which can cope with this type of data?

To make the available classification methods more useful and applicable, an attempt
should be made to answer these questions. Currently, still a large gap exists between the
data obtained in real-life environments (containing noise, missing measurements, outliers
and measured from atypical and non-stationary data distributions) and the nice theo-
retical statistical classifiers (which assume well-defined, well-sampled and stationary data
distributions). One-class classifiers is just one of the tools which can help to bridge this
gap.

APPENDIX

A. SUPPORT VECTOR DATA
DESCRIPTION

In section 2.1 on page 21 the Quadratic Optimization problem is derived. In the derivation
of the constraints and the interpretation of the constraints on the free parameters αi, some
extra explanation might be useful.

We start again by defining the error to minimize:

E(R, a) = R2 + C
∑

i

ξi (A.1)

where we constrain the solution such that (almost) all objects lie within the hypersphere:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i (A.2)

Constraints (A.2) can be incorporated into formula (A.1) by introducing Lagrange
multipliers and constructing the Lagrangian [Strang, 1988]:

L(R, a, ξ, α, γ) =R2 + C
∑

i

ξi

−
∑

i

αi{R2 + ξi − (xi · xi − 2a · xi + a · a)} −
∑

i

γiξi (A.3)

with the Lagrange multipliers αi ≥ 0 and γi ≥ 0. Note that for each object xi a correspond-
ing αi and γi is defined. L has to be minimized with respect to R, a, ξi and maximized
with respect to α and γ.

Setting partial derivatives to zero gives the constraints:

∂L

∂R
= 0 :

∑
i

αi = 1 (A.4)

∂L

∂a
= 0 : a =

∑
i αixi∑
i αi

=
∑

i

αixi (A.5)

∂L

∂ξi

= 0 : γi = C − αi, ∀i (A.6)

From the last equation we get that αi = C − γi. Instead of the constraints that γi ≥ 0
and γi = C − αi, a new constraint on αi can be introduced as:

0 ≤ αi ≤ C, ∀i (A.7)

152 A. Support Vector Data Description

As long as this constraint is satisfied, we can compute the Lagrange multipliers γi by
γi = C − αi and automatically γi ≥ 0 holds.

Rewriting error (A.1) and assuming all constraints are fulfilled:

L(R, a, ξ, α, γ) = R2 −
∑

i

αiR
2 + C

∑
i

ξi −
∑

i

αiξi −
∑

i

γiξi

+
∑

i

αixi · xi − 2
∑

i

αia · xi +
∑

i

αia · a (A.8)

= 0 + 0 +
∑

i

αixi · xi − 2
∑

i

αi

∑
j

αjxj · xi + 1 ·
∑
i,j

αiαjxi · xj

=
∑

i

αixi · xi −
∑
i,j

αiαjxi · xj (A.9)

This error function (A.9) with constraints (A.7) presents a well-known quadratic form.
Its minimization is an example of a Quadratic Programming problem and standard algo-
rithms exist to solve this.

Error (A.9) is optimized with respect to α. Given the optimal values for α, the center
a of the hypersphere and the errors ξi can be calculated using formulae (A.5) and (A.6).
The radius R is defined as the distance from the center a to the support vectors on the
boundary of the hypersphere.

iα = 0

i = 0γ

i = Cγ

iξ

iα < C0 <

iγ < C0 <

R

iα = C

Fig. A.1: The values of the two Lagrange multipliers αi and γi for objects xi inside the hyper-
sphere, on the boundary and outside the hypersphere.

By the Lagrange formulation of the problem, further interpretation of the values of α
can be given. A characteristic of Lagrange multipliers is, that they only play a role when
the corresponding constraint should be enforced or is violated. Only in these cases they
become positive (unequal to 0). For instance, when an object xi is within the hypersphere,
the constraint ‖xi − a‖2 ≤ R2 is satisfied, and the corresponding Lagrange multiplier
becomes zero: αi = 0. For an object xi on the boundary of the sphere, ‖xi − a‖2 = R2,
the Lagrange multiplier becomes positive: αi > 0. When the Lagrange multiplier αi hits
the upper bound C, the hypersphere description is not adjusted further to include the
corresponding object xi in the description. The Lagrange multiplier αi will stay at C and
the object xi will be outside the hypersphere. Objects for which the Lagrange multiplier
is larger than zero, αi > 0, will be called the support vectors.

153

Table A.1: The values of the Lagrange multipliers αi and γi for different placements of the
object with respect to the hypersphere.

Object placement αi γi

Object xi is within the hypersphere 0 C
Object xi is on the hypersphere bound-
ary (SV bnd)

between 0 and C between 0 and C

Object xi is outside the hypersphere
(SV out)

C 0

In figure A.1 the three situations for an object xi (inside the sphere, on the boundary
and outside the sphere) are shown with their corresponding values for αi. Furthermore,
the values of the Lagrange multiplier γi are shown. This Lagrange multiplier forces the
error ξi to become zero within the sphere, such that it will not be counted in the error
(A.1). The Lagrange multiplier γi becomes therefore active (γi > 0) when the data vector
xi is within the sphere.

Because the two Lagrange multipliers αi and γi are coupled (by equations (A.6)), one
multiplier automatically determines the value of the other. For object xi within the hy-
persphere, αi = 0 and therefore γi = C. This should counterbalance exactly the term
Cξi from the second term in (A.8). Note that ξi is the distance from the object to the
boundary and objects within the sphere have negative ξi. By adding γiξi = Cξi in effect no
error is counted. For an object on the boundary, both constraints have to be enforced and
both αi > 0 and γi > 0. Finally, for objects outside the sphere, αi = C. The constraint
that ξi > 0 is automatically satisfied and therefore γi = 0. All these situations are listed
in table A.1.

For the computation of the radius R of the hypersphere, the distance is calculated from
the center of the sphere a to a support vector on the boundary of the sphere. This means
that the corresponding Lagrange multiplier of the support vector should fulfill 0 < αi < C,
to avoid using objects outside the hypersphere (αi = C).

B. NEAREST NEIGHBOR DATA
DESCRIPTION

In the nearest neighbor method, NN-d, a test object z is accepted when its local density
is larger or equal to the local density of its nearest neighbor in the training set NNtr(z) =
NNtr

1 (z) (see section 3.4.2 on page 69). For the local density estimation, just the first
nearest neighbor is used. This results in the following acceptance function:

fNNtr(z) = I

(
‖z− NNtr(z)‖

‖NNtr(z)− NNtr(NNtr(z))‖
≤ 1

)
(B.1)

This means that the distance from object z to its nearest neighbor in the training set
NNtr(z) is compared to the distance from this nearest neighbor NNtr(z) to its nearest
neighbor (see figure B.1).

This NN-d has several predefined choices, choices for the magic parameters. First of all,
more neighbors can be considered. One can use the distance to the k-th nearest neighbor,
one can use the average of the k distances to the first k neighbors or one can change
the threshold of 1.0 to either higher or lower values. Increasing the number of neighbors
will decrease the local sensitivity of the method, but it will make the method less noise-
sensitive. Because we often consider low sample sizes, k = 1 is chosen to retain the local
sensitivity. In the few coming experiments in this appendix, the threshold of 1.0 is used,
but in the experiments in chapter 4 the threshold is changed to obtain ROC curves.

d1d
2

d1

2
d

reject z>1 z

Fig. B.1: The NN-d compares the distance from a test object z to its nearest neighbor in
the training set NNtr(z) with the distance from this object to its nearest neighbor
NNtr(NNtr(z)).

156 B. Nearest Neighbor Data Description

The extrapolation ability and the sensitivity to outliers of this function can be shown
by applying it to some simple distributions. For three data distributions, which differ in
the sharpness of the distribution boundary, the performance of the NN-d is compared to
the Gaussian method. The distributions considered are a uniform distribution (with data
uniformly between −1 and +1), Gaussian distribution (zero mean and unit variance) and t-
distribution (with the number of degrees of freedom equal to the data dimensionality). For
uniformly distributed data the NN-d is expected to work well due to the sharp boundaries of
the data. The t-distribution, on the other hand, is an example of a distribution containing
a lot of remote objects which will deteriorate the performance of the NN-d. For normally
distributed data the Gaussian method should work very well, the model fits the data
perfectly. The performance of the NN-d can then be compared with the optimal model.

B.1 1-dimensional data

For low dimensional data and low sample sizes we can easily derive the differences between
the NN-d and the Gaussian model. A NN-d and Gaussian model is trained for several
samples of the uniform distribution between -1 and 1. The size or width of the description
is obtained by calculating the difference in the upper and lower boundary.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

2 σ width N(0,1)

w
id

th
 k

N
N

v
G

v

NN
v

G
v/

NN
=

0 0.5 1 1.5
0

0.5

1

1.5

2 σ width N(0,1)

w
id

th
 k

N
N

v v
G

=

NN
v v

G

NN

/

Fig. B.2: Covered surface of NN-d versus Gaussian model for a 1-dimensional uniform distribu-
tion (between -1 and 1), from left to right: 2 and 25 training objects. The results are
averaged over 100 runs.

For the Gaussian density the threshold is set at 2σ, for the NN-d the fixed threshold of 1
is applied in the acceptance function (3.26). In figure B.2 the width of the NN-d is plotted
versus the Gaussian description for 100 1-dimensional samples, each sample containing 2
training objects (such that the boundaries of the distribution should be estimated on the
basis of just 2 objects). Trained on 2 objects, the width of the Gaussian description is
consequently a bit tighter than the NN-d method. For a sample size of just 2 the width of
the NN-d and Gaussian distributions can be computed exactly: vNN = 3

2
d and vG =

√
2d

B.1. 1-dimensional data 157

where d is the distance between the two points. vNN/vG corresponds to the slope in figure
B.2.

The NN-d gives tighter descriptions for a sample size of 25 (right subplot of figure
B.2). This can be concluded from the figure by the fact that almost all ratios vNN/vG are
smaller than 1. For larger sample sizes, the NN-d finds on average a width of 1.0, while
the Gaussian method, in general, overestimates the width of the description. The dashed
line is the minimum least squares estimate over 100 experiments. It gives an indication of
the relative covered surfaces by the two methods. A slope smaller than 1.0 indicates that
on average the NN-d method covers less space than the Gaussian model. It also means
that a part of the uniform distribution is not captured. So, for this uniform distribution
with sharp boundaries the NN-d gives tighter descriptions than the Gaussian model while
it rejects a smaller part of the target distribution.

In figure B.3 the volumes of the NN-d and the Gaussian model are compared for in-
creasing sample sizes and for different data distributions. We considered the uniform dis-
tribution (between −1 and 1), the Gaussian distribution (µ = 0, σ = 1) and the student-t
distribution (with d degrees of freedom). In the left plot of figure B.3 the ratio between
the covered space by the NN-d and by the Gaussian model is shown. In the right plot
the ratio of the total covered probabilities are shown. For the uniform distribution, the

0 5 10 15 20 25
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Sample size

vo
l.k

N
N

 /
vo

l.N

Uniform
Gauss
t−distr

0 5 10 15 20 25
0.85

0.9

0.95

1

1.05

1.1

Sample size

pr
ob

.k
N

N
 /

pr
ob

.N

Uniform
Gauss
t−distr

Fig. B.3: The ratio vNN/vG for three 1-dimensional datasets (uniform, Gaussian and t-
distribution) and different sample sizes.

NN-d covers far less volume than the Gaussian method, at the expense of a 10% decrease
in covered target distribution. For sample sizes smaller than 5 the NN-d is also more
efficient in describing the Gaussian distributed data and the t-distributed data. For the
Gaussian distribution and the t-distribution and sample sizes larger than 5 the Gaussian
method becomes more efficient. The captured volume is less than for the NN-d while it
still captures more of the distribution.

158 B. Nearest Neighbor Data Description

B.2 2-dimensional data

The same characteristics can be observed in higher dimensional feature spaces. In figure
B.4 the NN-d and the Gaussian model are compared for all 2-dimensional data sets. In 2

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

sample size

fr
ac

tio
n

target unif
outlier unif
target gauss
outlier gauss
target t
outlier t

Fig. B.4: Ratio between NN-d and Gaussian acceptance rates for target and outlier data from
uniform, 2-dimensional normal and 2-dimensional t-distributions as function of the
sample size.

dimensions the captured volume can not be calculated directly, but it is estimated using a
grid of outlier objects. In the figure an indication of the relative performances is shown:

fNN/G =
vNN

vG

=
accepted by the NN-d

accepted by the Gaussian model
(B.2)

This ratio can be estimated for the covered feature space area or the fraction of target
objects accepted. A ratio lower than 1.0 for the target set indicates that the NN-d accepts
less target objects than the Gaussian. On the other hand, a ratio lower than 1.0 for the
outlier set means a better outlier rejection. The figure shows that for all data distributions
the NN-d only captures about 60% of the target set which is captured by the Gaussian
model. On the other hand, the outlier acceptance of the NN-d is smaller in comparison
to the Gaussian model. So, the same characteristics as in the 1-dimensional data appear,
the NN-d is especially useful for the uniform distribution (where it only covers one third
of the surface covered by the normal distribution), but far less for the normal distribution
or the t-distribution.

B.3 Data in a subspace

When data is distributed in a subspace, the target density distribution is truly bounded.
For data outside (some band around) the subspace the probability drops to zero. To
simulate data in a subspace, a Gaussian distribution is taken, which is embedded in n
dimensions. The target class has a standard deviation of 1.0 in the first two features,

B.3. Data in a subspace 159

and 0.1 in the remaining features, thus creating a 2-dimensional subspace. To detect how
tightly the subspace is captured by the outlier methods, the outlier class contains two
subclasses with the same standard deviations, but with their means at ±1 for the low
variance features (the means are equal in the first two features). The Matlab code is given
below.

% Matlab code for creating artificial ’pancake’

% data in a subspace.

tar_mean = zeros(1,d);

tar_cov = 0.1*ones(1,d);

tar_cov(1:2) = 1.0;

out_mean = ones(1,d);

out_mean(1:2) = 0.0;

out_cov = tar_cov;

x_tar = gauss(tar_mean,diag(tar_cov));

x_out = [gauss(out_mean,diag(out_cov));

gauss(-out_mean,diag(out_cov))];

A scatter plot of the second and third feature is shown in the left plot of figure B.5.
Note that when the largest components are considered, all important structure in the data
is removed. Again the ratio fNN/G is measured for the target and outlier data. In the

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Dimensionality Orthogonal space

N
N

 a
cc

/N
 a

cc

target data
outlier data

Fig. B.5: Performance of the NN-d and the Gaussian density for the pancake data for different
dimensionalities. Target objects are marked using ’+’, outlier objects are marked ’o’.

testing of the Gaussian distribution with both target and outlier objects, it turns out (not
visible in this plot) that the Gaussian model accepts about 85% of the target set, but

160 B. Nearest Neighbor Data Description

also 85% of the outliers. The NN-d, on the other hand, accepts about 60% of the target
data, but it rejects almost all outliers, especially in high dimensional spaces. This can be
observed in the right plot in figure B.5. The ratio of target data accepted by the Gaussian
density to the NN-d is about 70% for all dimensionalities (this is the ratio 60%/85%).
The ratio of outlier data which is rejected decreases rapidly for increasing dimensionality,
such that for 7 dimensional data the nearest neighbor method significantly outperforms
the Gaussian model.

Finally, it appears that by increasing the threshold of NN-d from 1.0 to 2.0 the target
acceptance increases to 80%, but the outlier acceptance to 30%.

B.4 Empty areas

The properties of the NN-d in empty areas can only be considered when the data distri-
bution has a limited volume, i.e. for regions far from the target center, the density should
become 0: p(z) = 0. This is due to the fact that the method (in this form) tries to find
the exact boundary of the target distribution. Objects z are accepted when:

fNNtr(z) = I
(
V (z− NNtr(z)) ≤ V (NNtr(z)− NNtr(NNtr(z)))

)
(B.3)

Now for increasing sample size:

lim
N→∞

V (NNtr(z)− NNtr(NNtr(z))) = 0 (B.4)

thus object z is only accepted when also

lim
N→∞

V (z− NNtr(z)) = 0 (B.5)

or for a spherical volume V :

lim
N→∞

‖x− NNtr(x)‖2 = 0 (B.6)

Thus for increasing sample sizes an object z is only accepted when the distance to the
nearest neighbor in the target distribution vanishes and the object is in the target distri-
bution (p(z) > 0). When a normal distribution is considered, everywhere in the feature
space the probability density is larger than 0.

On the other hand, the NN-d also reject parts of the feature space which are within
the target distribution. When we consider a uniform target distribution and we leave one
object x out of the training, it could only be accepted by the description when it becomes
the nearest neighbor of its nearest neighbor in the training set NNtr(x). Thus, only the
fraction of objects which are their mutual nearest neighbors will be consistently accepted.
This rate is independent of the sample size, but does depend on the dimensionality of
the data. In table 3.1 (page 71) the fraction of the target data (drawn from a uniform
distribution), is accepted by the NN-d, is shown for some dimensionalities and number of
neighbors.

C. HANDWRITTEN DIGITS DATASET

The images of handwritten digits are extracted from nine original maps from a Dutch
public utility. The maps represent the position of a conduit system with respect to certain
landmarks and were hand drawn by a large group of drawing engineers over a period of
more than 25 years. The dataset is composed of separate digits which give the dimensions
of different parts in the map. The digits were automatically extracted from a binary
image of the map, deskewed and normalized to fit exactly into a 30 by 48 pixel region.
Finally, the digits were labeled manually. This data set is also used and explained in
[van Breukelen et al., 1997]. In figure C.1 a small part (600×500 pixels) of a large scanned
map is shown. A few example digits are shown in figure 4.21 on page 113.

Fig. C.1: Small region (600× 500 pixels) from a large utility map.

The data consists of 10 classes, each having 200 examples (thus equal class probabilities
are assumed). From the set of 2000 digits 4 types of feature sets are extracted: Zernike

162 C. Handwritten digits dataset

moments, Fourier descriptors, profile images and image pixel vectors. Zernike moments are
the projection of the image function onto a set of orthogonal basis functions. There are 13
orders of Zernike moments with 49 moments associated in total. For the feature extraction
only the last 11 orders were used resulting in a subset of 47 Zernike moments. Also some
morphological features were added (the number of holes in the image and the number of
end points and branch points of the skeleton). This dataset is an adapted version of the
UCI dataset, multiple features dataset, which can be found at [Duin, 1999].

The Fourier feature set contains 76 Fourier coefficients, computed by transforming the
original pixel image. The Fourier set is rotation invariant, just like the Zernike feature set.
In the profile feature set 12 faces and cross-sections of all digits are made. From these
12 vectors the correlations to 18 reference digits are computed. This results in a feature
vector of 216 correlation features per digit.

The fourth feature set is based on a simple transform of the binary image to a pixel
vector. To reduce the number of features and the possible loss of information, the normal-
ized image was divided into tiles of 2 by 3 pixels resulting in a total of 240 tiles. Each tile
represents an element of the feature vector and the value corresponding to each tile was
calculated simply by counting the number of object pixels within the tile.

The total number of 2000 digits is divided into a training set and a testing set of 1000
objects each; 100 digits per class. In the application of one-class classification this means
that for training, the training sets consists of just 100 target objects. For testing again 100
target and 900 outlier objects are available.

The feature sizes of the original datasets are relatively high (53 for the Zernike dataset,
76 for Fourier, 216 features for profile and 240 for the pixel dataset). Considering that just
100 target objects are available for training, the number of features is reduced by projecting
the data on the first few principal components. By retaining 90% of the variance in the
data, the dimensionality is could be significantly reduced (13 for the Zernike dataset, 47
for Fourier, 19 features for profile and 51 for the pixel dataset). These reduced datasets
are used in all experiments.

C.1 Individual classifiers

The methods presented in chapter 3 are applied to this handwritten digits data. The
methods which are considered here are: Gaussian model (Gau), Mixture of Gaussians
(MoG), Parzen density estimate (Par), nearest neighbor method (NNd), support vector
data description (SVDD), (in some cases support vector data description using negative
examples: SVDn), Learning Vector Quantization (LVQ), k-means clustering (k-m), k-center
method (k-c), auto-encoder network (aut), principal component analyzer (PCA) and the
self-organizing map (SOM). All classifiers are trained for a range of threshold values and
the integrated ROC error is computed. The error is integrated from 50% to 95% target
acceptance.

In tables C.1 to C.4 the errors on the 4 feature sets, Zernike, Fourier, profile and pixel
are presented for all methods and all target classes. The error is computed using formula

C.1. Individual classifiers 163

Table C.1: Results of all one-class classifiers on the Zernike dataset (integrated ROC ×100).
The best results are marked in bold.

class Gau MoG Par NNd SVDD LVQ k-m k-c aut PCA SOM

0 2.80 1.15 0.45 11.67 4.63 0.16 1.98 0.25 2.46 1.47 0.51
1 2.00 1.17 0.72 3.26 6.02 5.81 2.67 1.81 2.73 0.63 0.72
2 2.21 1.82 1.05 4.56 6.82 1.93 2.98 2.02 1.62 2.69 2.69
3 3.60 5.30 3.83 10.92 11.28 5.03 5.30 7.41 7.46 4.80 4.61
4 1.07 3.56 0.78 4.46 7.94 4.13 2.89 3.38 4.50 0.75 2.53
5 2.01 3.26 1.62 7.24 10.48 4.89 3.03 6.20 6.39 6.52 2.88
6 4.20 5.79 4.19 13.23 8.97 4.90 5.06 4.53 4.63 4.25 4.48
7 0.55 1.10 0.35 4.86 10.13 0.78 0.65 1.67 0.80 1.27 1.36
8 1.80 7.22 0.87 3.69 5.34 0.47 1.30 0.61 1.57 0.96 2.73
9 4.28 4.97 4.07 12.84 8.05 4.40 3.92 5.26 6.51 4.33 4.22

average 2.45 3.54 1.79 7.67 7.97 3.25 2.98 3.31 3.87 2.77 2.67

Table C.2: Results of all one-class classifiers on the Fourier dataset (integrated ROC ×100).
The best results are marked in bold.

class Gau MoG Par NNd SVDD LVQ k-m k-c aut PCA SOM

0 4.00 0.93 0.04 1.60 16.22 0.21 0.79 1.02 0.81 3.60 1.01
1 28.47 7.27 5.30 13.85 22.87 7.45 7.00 9.63 7.94 26.88 8.79
2 13.61 2.09 0.96 5.63 27.71 2.21 1.94 3.19 2.57 21.94 2.54
3 33.64 11.32 9.15 9.82 23.44 12.57 11.18 14.91 7.80 42.34 10.78
4 37.95 18.14 12.01 16.18 26.47 22.84 21.32 17.26 15.70 29.87 14.76
5 43.05 37.89 37.31 38.46 26.53 38.15 38.11 39.15 37.88 43.45 37.64
6 33.67 19.56 15.72 16.75 32.77 20.24 20.27 24.48 15.20 18.76 20.41
7 13.72 3.81 1.48 3.80 22.72 5.00 3.14 4.07 4.26 7.32 5.32
8 31.22 45.00 18.28 21.40 30.10 18.34 19.30 20.53 25.04 39.61 23.98
9 31.20 20.12 14.82 22.20 30.58 17.32 18.87 17.94 14.84 22.42 16.75

average 27.06 16.62 11.51 14.97 25.94 14.43 14.19 15.22 13.20 25.62 14.20

(3.7) (and is multiplied by 100 to avoid printing all preceding zeros). In each row in the
tables another class is used as target class. For each target class the best results are
indicated in bold. The last row shows the average performance of each method averaged
over all 10 target classes.

Looking at the results, it appears that no single one-class classifier outperforms all
other methods, but some trends are visible. On the Zernike data the Gaussian model,
the k-means and k-centers perform well. This indicates that the Zernike data is nicely
clustered. Some of the target classes are easier to describe, like class ’0’ and ’8’ (both by

164 C. Handwritten digits dataset

Table C.3: Results of all one-class classifiers on the profile dataset (integrated ROC ×100). The
best results are marked in bold.

class Gau MoG Par NNd SVDD LVQ k-m k-c aut PCA SOM

0 0.65 0.35 0.08 2.18 9.58 1.04 2.33 2.14 5.08 4.48 0.35
1 3.42 2.50 0.13 5.34 9.38 2.60 1.26 1.82 1.33 0.52 1.01
2 0.85 0.20 0.07 4.51 7.67 0.45 0.48 1.71 0.86 1.08 0.16
3 2.24 1.33 0.59 9.71 10.14 0.58 0.76 0.52 4.97 5.30 1.08
4 0.13 0.16 0.13 4.04 11.06 0.47 0.68 0.84 5.28 0.23 1.13
5 2.42 1.86 0.78 7.65 12.79 1.31 0.82 2.35 9.83 8.72 2.02
6 9.44 0.15 0.16 4.76 7.13 0.15 0.25 0.26 0.89 0.09 0.47
7 18.06 1.44 0.13 0.92 10.10 0.89 1.02 0.48 1.53 0.95 2.31
8 2.17 0.86 1.04 4.70 16.22 0.75 1.33 2.35 6.51 5.89 1.41
9 1.57 0.67 0.21 3.08 8.45 0.32 0.38 0.80 2.95 1.73 1.05

average 4.09 0.95 0.33 4.69 10.25 0.86 0.93 1.33 3.92 2.90 1.10

Table C.4: Results of all one-class classifiers on the pixel dataset (integrated ROC ×100). The
best results are marked in bold.

class Gau MoG Par NNd SVDD LVQ k-m k-c aut PCA SOM

0 21.60 9.99 0.09 2.36 17.22 0.62 1.45 0.86 8.60 26.80 0.39
1 34.60 3.29 0.04 1.94 20.20 0.45 0.26 0.94 7.00 18.20 0.38
2 29.80 5.41 0.01 2.22 17.00 0.10 0.13 2.12 6.81 14.63 3.42
3 45.00 10.29 0.14 5.81 10.38 0.64 0.46 0.87 6.26 26.80 1.63
4 24.00 9.85 0.01 3.40 27.80 0.69 0.11 0.90 4.01 12.01 0.43
5 34.80 3.41 0.47 7.79 21.51 2.08 1.28 1.97 3.63 32.41 2.28
6 31.00 2.43 0.16 4.14 17.02 0.68 0.62 1.52 3.86 17.60 1.38
7 45.00 1.01 0.01 0.88 18.00 0.05 0.02 0.47 1.20 5.20 0.02
8 39.04 4.82 0.62 4.10 24.97 2.41 2.89 4.80 6.78 41.81 3.38
9 40.60 0.30 0.16 3.51 19.45 0.62 0.40 1.64 0.94 21.21 0.75

average 34.54 5.08 0.17 3.61 19.36 0.83 0.76 1.61 4.91 21.67 1.40

the k-center method). Others show larger overlap with other data, for instance, in classes
’3’, ’6’ and ’9’. The problems with the last two classes is not surprising for the Zernike
dataset, because the Zernike features are rotation invariant and it is therefore very hard
to distinguish the ’6’ and the ’9’. When one method has to be used for all classes, the
Gaussian model best fits this data.

On the Fourier, profile and pixel data sets another picture arises. Here, the Parzen
density often works well, with some exceptions for some classes. Still, on average, the
Parzen density estimation is the best for all feature sets.

C.2. Combining classifiers 165

The average performance of the methods is good for Zernike, profile and pixel datasets,
but in the Fourier dataset some classes are very hard to describe, for instance, classes
’3’-’6’, ’8’ and ’9’.

Table C.5: Results of all one-class classifiers on the pixel dataset (integrated ROC ×100). The
integration boundary is changed: the maximal target acceptance rate is set to 85%.

class Gau MoG Par NNd SVDD LVQ k-m k-c aut PCA SOM

0 11.60 7.02 0.02 1.35 7.61 0.11 0.06 0.08 1.40 16.80 0.01
1 24.60 0.03 0.01 0.91 10.20 0.05 0.05 0.04 1.00 10.20 0.01
2 19.80 0.40 0.00 0.83 7.00 0.01 0.01 0.05 0.60 5.23 0.00
3 35.00 7.02 0.02 3.53 1.93 0.14 0.06 0.13 0.42 16.80 0.04
4 14.00 7.01 0.00 1.86 17.80 0.04 0.02 0.02 0.60 4.20 0.00
5 24.80 0.19 0.10 3.91 11.51 0.53 0.21 0.34 0.08 22.41 0.05
6 21.00 0.04 0.01 2.15 7.22 0.11 0.08 0.19 0.01 7.60 0.01
7 35.00 0.00 0.00 0.31 8.00 0.00 0.00 0.03 0.00 0.20 0.00
8 29.04 0.61 0.19 2.16 15.17 0.93 0.65 0.82 1.59 31.81 0.40
9 30.60 0.07 0.05 1.75 9.45 0.15 0.09 0.26 0.05 11.40 0.04

average 24.54 2.24 0.04 1.88 9.59 0.21 0.12 0.20 0.57 12.67 0.06

The pixel dataset contains 51 features (this is after the PCA mapping which retains
about 90% of the variance in the data) and the target class contains just 100 training
objects. It is, therefore, to be expected that the performance for high target acceptance
rates might be poor. In these cases all methods have to extrapolate to reject just a small
fraction (5%) of the target objects. In table C.5 other integration bounds for the ROC
curves are used in the pixel database. Instead of a maximal target acceptance rate of 95%,
this rate is decreased to 85%. Comparing the results of tables C.5 and C.4 we see that the
errors obtained by all methods decrease for smaller target acceptance rates. Furthermore,
we see that the extrapolation ability is best in the Parzen density estimation. When the
extrapolation ability is stressed less, other methods can model the data better. For lower
target acceptance rates both the auto-encoder and the SOM perform well. Especially in
this high dimensional data it is to be expected that data are in a subspace. The fact that
the PCA performs far worse, indicates that this subspace is not linear.

C.2 Combining classifiers

Now that we have trained the individual classifiers on all the digit classes, we can investigate
the performance of the five different combining rules, defined in formulae (5.20) to (5.24)
on page 125. First we will combine different one-class classifiers which are trained on the
same data set. All methods are trained and optimized to have a target acceptance rate
of 90%. The outputs of all methods are combined and on the resulting output the target

166 C. Handwritten digits dataset

Table C.6: Integrated ROC errors (×100), combining the all one-class classifiers trained on the
Zernike dataset. The 5 combining rules are defined in formulae (5.20) to (5.24) on
page 125.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.01 0.21 0.55 6.69 0.89 1.51 3.69 0.49 0.01 4.16
mwv 0.01 0.20 0.55 6.71 0.87 1.49 3.67 0.45 0.01 4.12
pwv 0.01 0.21 0.54 6.58 0.89 1.50 3.67 0.47 0.01 4.15
mp 0.01 0.16 0.59 5.66 0.65 1.72 3.77 0.22 0.00 4.22
pp 0.00 0.09 0.40 4.45 0.48 1.01 3.83 0.16 0.00 4.13

rejection rates are varied, such that a ROC curve and the error on that ROC curve can be
calculated. These ROC errors are shown in tables C.6 to C.9. Numbers in bold indicate
that this error is smaller than the best performance reached by an individual classifier (and
thus combining classifiers is useful).

Table C.7: Integrated ROC errors (×100), combining all the one-class classifiers trained on the
Fourier dataset. The 5 combining rules are defined in formulae (5.20) to (5.24) on
page 125.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.30 8.82 4.43 19.80 28.95 28.37 23.09 4.45 0.72 26.76
pwv 0.30 8.72 4.28 19.25 28.33 27.80 22.94 4.23 0.72 26.34
pwv 0.30 8.76 4.27 19.73 28.67 28.12 23.07 3.76 0.70 26.68
mp 0.00 6.85 2.33 15.86 23.12 22.05 20.89 2.49 45.00 24.85
pp 0.00 5.83 1.28 9.94 17.34 13.88 13.47 1.30 45.00 17.02

In tables C.6, C.7 and C.8 we see that for some classes combining several methods
is actually improving the classification performance. While the performance is increased
in classes ’1’, ’2’ and ’7’ in the Zernike dataset, for the other classes no improvement is
obtained. Probably these classes have boundaries which are hard to fit using just one
model and a combination of several models have to be used, to get best performance. For
other classes one of the methods already fit quite well (for instance, for class ’0’ in the
Zernike dataset, the Parzen, LVQ or k-means already give a very good description of class
’0’).

When we just concentrate on the combining rule, we see that the combining rule based
on the product of the estimated probabilities (5.24), in general, outperforms all other
rules. This is somewhat surprising because this rule use a product combination which is
noise sensitive. In the combination of standard 2-class classifiers it appears that in many
situations the more robust average combination rule is to be preferred. Here extreme

C.3. Combining featuresets 167

Table C.8: Integrated ROC errors (×100), combining all the one-class classifiers trained on the
profile dataset. The 5 combining rules are defined in formulae (5.20) to (5.24) on
page 125.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv 0.07 1.42 0.10 0.40 0.28 1.86 0.47 0.02 1.20 0.39
mwv 0.06 1.59 0.09 0.40 0.27 1.88 0.33 0.02 1.15 0.37
pwv 0.07 1.37 0.10 0.39 0.28 1.70 0.44 0.01 1.14 0.37
mp 0.05 0.37 0.09 0.27 0.17 1.00 0.42 0.00 0.87 0.19
pp 0.07 0.09 0.06 0.25 0.12 0.65 0.12 0.03 0.85 0.21

Table C.9: Integrated ROC errors (×100), combining all the one-class classifiers trained on the
pixel dataset. The 5 combining rules are defined in formulae (5.20) to (5.24) on page
125.

combining target class nr.
method 0 1 2 3 4 5 6 7 8 9

mv1 1.08 5.61 0.94 6.29 2.13 5.80 3.57 0.10 8.69 2.47
mwv 0.96 5.14 0.88 5.97 1.76 5.37 3.23 0.11 8.37 2.11
pwv 1.05 4.94 0.83 6.15 1.79 5.67 3.13 0.07 8.57 2.31
mp 0.35 3.11 0.48 4.70 0.63 1.83 1.69 0.03 4.39 1.08
pp 0.01 0.62 0.15 1.99 0.11 0.28 0.17 0.01 1.97 0.31

posterior probability estimates are averaged out. In one-class classification on the other
hand, only the target class is modeled and a low uniform distribution is assumed for the
outlier class. This makes this classification problem asymmetric and extreme target class
estimates are not cancelled by extreme outlier estimates. When a few extreme target
class probability estimates are present, the mean combination will cover a broad domain in
feature space, while the product rule has restricted range. In particular, in high dimensional
spaces this extra area will cover a large volume and potentially a large number of outliers.

C.3 Combining featuresets

Finally, the combination rules are applied to the results of the same type of one-class
classifier trained on different feature sets. Again the classifiers are trained to accept 90%
of the target class, and the errors are again the integrated ROC curves.

For a reference, the best individual performances (over all different feature sets) for
each of the classes is:

When finally the classifiers trained on seperate feature sets are combined, we see the
following performances for the different combination rules:

168 C. Handwritten digits dataset

Table C.10: Best individual performances of all methods over all feature sets. Performances are
given in integrated ROC errors (×100).

one-class classification method
classnr Gau MoG Par NNd SVDD SVDn LVQ k-m k-c PCA SOM

0 0.65 0.35 0.04 1.60 4.63 5.56 0.16 0.79 0.25 1.47 0.35
1 2.00 1.17 0.04 1.94 6.02 6.27 0.45 0.26 0.94 0.52 0.38
2 0.85 0.20 0.01 2.22 6.82 11.64 0.10 0.13 1.71 1.08 0.16
3 2.24 1.33 0.14 5.81 10.14 7.27 0.58 0.46 0.52 4.80 1.08
4 0.13 0.16 0.01 3.40 7.94 7.35 0.47 0.11 0.84 0.23 0.43
5 2.01 1.86 0.47 7.24 10.48 9.55 1.31 0.82 1.97 6.52 2.02
6 4.20 0.15 0.16 4.14 7.13 11.67 0.15 0.25 0.26 0.09 0.47
7 0.55 1.01 0.01 0.88 10.10 9.11 0.05 0.02 0.47 0.95 0.02
8 1.80 0.86 0.62 3.69 5.34 10.62 0.47 1.30 0.61 0.96 1.41
9 1.57 0.30 0.16 3.08 8.05 8.14 0.32 0.38 0.80 1.73 0.75

average 1.60 0.74 0.17 3.40 7.66 0.40 0.45 0.84 1.98 1.83 0.71

comb. one-class classification method
method Gau MoG Par NNd SVDD SVDn LVQ k-m k-c PCA SOM

class 0

mv 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
mwv 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
pwv 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mp 0.01 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pp 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

class 1

mv 0.04 0.28 0.05 3.40 5.79 4.13 0.63 0.35 0.04 0.25 0.33
mwv 0.04 0.28 0.05 3.32 5.78 3.98 0.64 0.34 0.04 0.25 0.33
pwv 0.04 0.38 0.04 3.39 5.60 3.46 0.38 0.20 0.05 0.25 0.57
mp 0.09 0.21 0.15 0.50 2.17 0.28 0.01 0.01 0.04 0.06 0.00
pp 0.00 0.01 0.00 0.57 2.17 0.28 0.01 0.01 0.00 0.00 0.00

class 2

mv 0.02 0.04 0.00 0.82 0.31 0.02 0.06 0.12 0.14 0.11 0.00
mwv 0.02 0.04 0.00 0.96 0.32 0.02 0.09 0.12 0.14 0.11 0.00
pwv 0.02 0.03 0.00 0.82 0.32 0.02 0.06 0.09 0.14 0.11 0.00
mp 0.27 0.45 0.43 0.03 0.04 0.00 0.00 0.00 0.19 0.01 0.00
pp 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00

class 3

C.3. Combining featuresets 169

comb. one-class classification method
method Gau MoG Par NNd SVDD SVDn LVQ k-m k-c PCA SOM

mv 0.28 1.46 0.41 3.84 4.70 6.59 1.71 3.82 0.57 0.59 0.67
mwv 0.28 1.41 0.25 3.09 4.52 6.05 1.47 3.31 0.57 0.59 0.67
pwv 0.27 1.73 0.41 3.79 6.36 6.42 1.88 3.82 0.77 0.62 0.72
mp 1.31 4.16 7.90 0.93 3.44 1.77 0.45 0.35 0.52 0.25 0.10
pp 0.04 1.77 0.15 0.98 3.50 1.85 0.50 0.51 0.11 0.04 0.17

class 4

mv 0.04 1.05 0.11 3.35 7.92 3.01 2.81 1.28 0.56 0.08 1.75
mwv 0.04 1.02 0.10 2.18 7.87 2.27 2.33 1.10 0.54 0.08 1.75
pwv 0.06 1.54 0.30 3.35 9.47 3.29 3.12 1.62 0.87 0.08 3.24
mp 0.18 1.67 0.82 0.45 2.27 0.71 0.23 0.12 0.39 0.00 0.00
pp 0.01 0.66 0.00 0.43 2.27 0.68 0.22 0.10 0.00 0.00 0.00

class 5

mv 0.17 3.23 1.06 10.92 7.72 5.99 3.59 2.63 0.41 0.86 0.92
mwv 0.17 2.85 0.84 11.15 7.42 4.31 2.77 2.12 0.41 0.86 0.92
pwv 0.16 2.85 1.06 10.92 8.80 5.98 3.68 2.62 0.59 0.88 1.16
mp 0.65 1.78 1.31 3.53 2.22 0.79 0.35 0.33 0.28 0.19 0.15
pp 0.02 1.03 0.35 6.13 2.24 0.80 0.36 0.30 0.01 0.01 0.18

class 6

mv 0.87 1.69 0.11 1.54 4.02 2.33 2.39 0.72 0.69 1.50 1.36
mwv 0.87 1.65 0.09 1.36 3.89 2.12 2.33 0.66 0.69 1.50 1.36
pwv 1.27 2.04 0.11 1.54 4.73 2.27 2.47 0.72 1.19 2.10 1.82
mp 4.24 5.65 6.20 2.41 1.09 1.15 1.25 0.96 1.29 1.57 0.70
pp 0.00 0.56 0.00 2.73 0.99 0.90 1.09 0.74 0.02 0.00 0.18

class 7

mv 0.00 0.04 0.00 0.17 0.21 0.05 0.03 0.05 0.01 0.06 0.09
mwv 0.00 0.04 0.00 0.12 0.21 0.05 0.03 0.02 0.01 0.06 0.09
pwv 0.00 0.10 0.01 0.17 0.36 0.05 0.03 0.05 0.01 0.06 0.20
mp 0.07 0.35 0.11 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00
pp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

class 8

mv 0.01 0.40 0.11 1.15 1.05 0.40 0.14 0.56 0.15 0.12 0.00
mwv 0.01 0.40 0.18 1.43 1.13 0.62 0.17 0.64 0.17 0.12 0.00
pwv 0.01 0.40 0.11 1.15 0.87 0.40 0.14 0.39 0.13 0.12 0.00
mp 0.00 85.00 0.01 0.09 0.07 0.02 0.00 0.02 0.02 0.01 0.00
pp 0.01 85.00 0.00 0.10 0.08 0.03 0.01 0.02 0.00 0.00 0.00

170 C. Handwritten digits dataset

comb. one-class classification method
method Gau MoG Par NNd SVDD SVDn LVQ k-m k-c PCA SOM

class 9

mv 0.97 1.86 0.40 3.37 5.06 2.66 1.67 2.95 0.56 1.50 1.58
mwv 0.97 1.86 0.34 2.31 5.00 2.31 1.69 2.76 0.56 1.50 1.58
pwv 1.65 2.77 0.40 3.37 7.49 2.66 1.97 3.18 0.56 2.03 2.77
mp 4.30 5.78 6.30 3.40 1.92 1.64 1.03 1.35 1.18 1.44 0.78
pp 0.00 1.16 0.01 3.49 1.83 1.49 0.69 1.16 0.00 0.00 0.33

Table C.11: Integrated ROC errors (×100) for the five
combining methods over the four featuresets.

The results in table C.11 show that combining performance does not always increase
over the individual best performances. The numbers in bold indicate when the performance
is better than the best individual classifier given in table C.10. Some classes are clearly
easier to distinguish from the rest, especially classes 0, 2, 7 and 8. Furthermore, the
combination of the normal density is now often superior to the Parzen density estimator.
Overall the best performance will be obtained when normal density models are trained on
individual feature sets and the results are combined using the product combination rule.

BIBLIOGRAPHY

[Adams and Hand, 2000] Adams, N. and Hand, D. (2000). Improving the practice of clas-
sifier performance assessment. Neural Computation, 12(2):305–311.

[Antani et al., 1998] Antani, S., Kasturi, R., and Jain, R. (1998). Pattern recognition
methods in image and video databases: past, present and future. In Advances in Pattern
Recognition, Proceedings of SPR’98 and SSPR’98, pages 31–53, Berlin. IAPR, Springer-
Verlag.

[Baldi and Hornik, 1989] Baldi, P. and Hornik, K. (1989). Neural networks and principal
component analysis: learning from examples without local minima. Neural networks,
2:53–58.

[Barnett and Lewis, 1978] Barnett, V. and Lewis, T. (1978). Outliers in statistical data.
Wiley series in probability and mathematical statistics. John Wiley & Sons Ltd., 2nd
edition.

[Battiti and Colla, 1994] Battiti, R. and Colla, A. (1994). Democracy in neural nets: Vot-
ing schemes for classification. Neural Networks, 7(4):691–707.

[Benediktsson and Swain, 1992] Benediktsson, J. and Swain, P. (1992). Consensus the-
oretic classification methods. IEEE Transactions on Systems, Man and Cybernetics,
22(4):688–704.

[Bishop, 1994a] Bishop, C. (1994a). Mixture density networks. Technical Report NCRG
4288, Neural computation research group, Aston University, Birmingham.

[Bishop, 1994b] Bishop, C. (1994b). Novelty detection and neural network validation.
IEE Proceedings on Vision, Image and Signal Processing. Special Issue on Applications
of Neural Networks, 141(4):217–222.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Walton Street, Oxford OX2 6DP.

[Blake et al., 1998] Blake, C., Keogh, E., and Merz, C. (1998). UCI repository of machine
learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of
California, Irvine, Dept. of Information and Computer Sciences.

172 Bibliography

[Bourlard and Kamp, 1988] Bourlard, H. and Kamp, Y. (1988). Auto-association by mul-
tilayer perceptrons and singular value decomposition. Biological Cybernetics, 59:291–294.

[Bradley, 1997] Bradley, A. (1997). The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30(7):1145–1159.

[Breunig et al., 2000] Breunig, M., Kriegel, H.-P., Ng, R., and Sander, J. (2000). LOF:
indentifying density-based local outliers. In Proceedings of the ACM SIGMOD 2000
international conference on management of data.

[Burges, 1998] Burges, C. (1998). A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2).

[Carpenter et al., 1991] Carpenter, G., Grossberg, S., and Rosen, D. (1991). ART 2-A:
an adaptive resonance algorithm for rapid category learning and recognition. Neural
Networks, 4(4):493–504.

[Devijver and Kittler, 1982] Devijver, P. and Kittler, J. (1982). Pattern Recognition, A
statistical approach. Prentice-Hall International, London.

[Duda and Hart, 1973] Duda, R. and Hart, P. (1973). Pattern Classification and Scene
Analysis. John Wiley & Sons, New York.

[Duin, 1976] Duin, R. (1976). On the choice of the smoothing parameters for Parzen
estimators of probability density functions. IEEE Transactions on Computers, C-
25(11):1175–1179.

[Duin, 1999] Duin, R. (1999). UCI dataset, multiple features database. Available from
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/.

[Friedman, 1997] Friedman, J. (1997). On bias, variance, 0/1 loss, and the curse-of-
dimensionality. Data Mining and Knowledge discovery, 1(1):55–77.

[Fukanaga, 1990] Fukanaga, K. (1990). Statistical pattern recognition. Academic press.

[Geman et al., 1992] Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks
and the bias/variance dilemma. Neural Computation, 4:1–58.

[Grimmett and Stirzaker, 1982] Grimmett, G. and Stirzaker, D. (1982). Probability and
random processes. Clarendon press.

[Hashem, 1994] Hashem, S. (1994). Optimal linear combinations of neural networks. Neu-
ral Networks, .

[Hassibi and Stork, 1993] Hassibi, B. and Stork, D. (1993). Second order derivatives for
network pruning: optimal brain surgeon. In Hanson, S., Cowan, J., and Giles, C.,
editors, Advances in Neural Information Processing Systems, volume 5, pages 164–172.
Morgan-Kaufmann.

Bibliography 173

[Haykin, 1999] Haykin, S. (1999). Neural Networks, a comprehensive foundation. Prentice-
Hall.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the theory
of neural computation. Addison Wesley Publishing Company.

[Heskes, 1998] Heskes, T. (1998). Bias/variance decomposition for likelihood-based esti-
mators. Neural Computation, 10:1425–1433.

[Jacobs, 1995] Jacobs, R. (1995). Method for combining experts’ probability assessments.
Neural Computation, 7(5). 867-888.

[Japkowicz, 1999] Japkowicz, N. (1999). Concept-Learning in the absence of counter-
examples: an autoassociation-based approach to classification. PhD thesis, New
Brunswick Rutgers, The State University of New Jersey.

[Japkowicz et al., 1995] Japkowicz, N., Myers, C., and Gluck, M. (1995). A novelty de-
tection approach to classification. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 518–523.

[Kittler et al., 1996] Kittler, J., Hatef, M., and Duin, R. (1996). Combining classifiers.
Proc. of ICPR’96, :897–901.

[Kittler et al., 1997] Kittler, J., Hojjatoleslami, A., and Windeatt, T. (1997). Weighting
factors in multiple expert fusion. In Clark A.F., editor, Proceedings of the 8th British
Machine Vision Conference 1997, pages 41–50. University of Essex Printing Service.

[Knorr et al., 2000] Knorr, E., Ng, R., and Tucakov, V. (2000). Distance-based outliers:
algorithms and applications. VLDB journal, 8(3):237–253.

[Koch et al., 1995] Koch, M., Moya, M., Hostetler, L., and Fogler, R. (1995). Cueing,
feature discovery and one-class learning for synthetic aperture radar automatic target
recognition. Neural Networks, 8(7/8):1081–1102.

[Kohonen, 1995] Kohonen, T. (1995). Self-organizing maps. Springer-Verlag, Heidelberg,
Germany.

[Kolmogorov and Tikhomirov, 1961] Kolmogorov, A. and Tikhomirov, V. (1961). ε-
entropy and ε-capacity of sets in function spaces. Trans. of the American Mathematical
Society, 17:277–364.

[Kraaijveld and Duin, 1991] Kraaijveld, M. and Duin, R. (1991). A criterion for the
smoothing parameter for parzen-estimators of probability density functions. Technical
report, Delft University of Technology.

[Le Cun et al., 1989] Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hub-
bard, W., and Jackel, L. (1989). Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1:541–551.

174 Bibliography

[LeCun et al., 1990] LeCun, Y., Denker, J., Solla, S., Howard, R., and Jackel, L. (1990).
Optimal brain damage. In Advances in neural information processing systems, volume
II. Morgan Kauffman.

[MacKay, 1992] MacKay, D. (1992). Bayesian methods for adaptive models. Master’s
thesis, California Institute of Technology, Pasadena, California.

[Messer, 1999] Messer, K. (1999). Automatic image database retrieval system using adap-
tive colour and texture descriptors. PhD thesis, University of Surrey, Guildford.

[Metz, 1978] Metz, C. (1978). Basic principles of ROC analysis. Seminars in Nuclear
Medicine, VIII(4).

[Mitchell, 1993] Mitchell, J. S. (1993). An introduction to machinery analysis and moni-
toring - 2nd ed. PennWell Publ. Comp.

[Moya and Hush, 1996] Moya, M. and Hush, D. (1996). Network contraints and multi-
objective optimization for one-class classification. Neural Networks, 9(3):463–474.

[Moya et al., 1993] Moya, M., Koch, M., and Hostetler, L. (1993). One-class classifier
networks for target recognition applications. In Proceedings world congress on neural
networks, pages 797–801, Portland, OR. International Neural Network Society, INNS.

[Parra et al., 1996] Parra, L., Deco, G., and Miesbach, S. (1996). Statistical independence
and novelty detection with information preserving nonlinear maps. Neural Computation,
8:260–269.

[Parzen, 1962] Parzen, E. (1962). On estimation of a probability density function and
mode. Annals of Mathenatical Statistics, 33:1065–1076.

[Proakis and Manolakis, 1992] Proakis, J. and Manolakis, D. (1992). Digital signal pro-
cessing - principles, algorithms and applications, 2nd ed. MacMillan Publ., New York.

[Pudil et al., 1994] Pudil, P., Novovicova, J., and Kittler, J. (1994). Floating search meth-
ods in feature selection. Pattern Recognition Letters, 15(11):1119–1125.

[Randall, 1987] Randall, R. B. (1987). Frequency analysis. Brüel & Kjaer, Denmark.

[Raudys and Jain, 1991] Raudys, S. and Jain, A. (1991). Small sample size effects in
statistical pattern recognition: recommendations for practioners. IEEE Transactions on
pattern analysis and machine intelligence, 13(3):252–264.

[Richard and Lippmann, 1991] Richard, M. and Lippmann, R. (1991). Neural network
classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3:461–483.

[Ripley, 1996] Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge.

Bibliography 175

[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automatica,
14:465–471.

[Ritter and Gallegos, 1997] Ritter, G. and Gallegos, M. (1997). Outliers in statistical pat-
tern recognition and an application to automatic chromosome classification. Pattern
Recognition Letters, 18:525–539.

[Roberts and Penny, 1996] Roberts, S. and Penny, W. (1996). Novelty, confidence and
errors in connectionist systems. Technical report, Imperial College, London. TR-96-1.

[Roberts et al., 1994] Roberts, S., Tarassenko, L., Pardey, J., and Siegwart, D. (1994).
A validation index for artificial neural networks. In Proceedings of Int. Conference on
Neural Networks and Expert Systems in Medicine and Healthcare, pages 23–30.

[Rogova, 1994] Rogova, G. (1994). Combining the results of several neural network classi-
fiers. Neural Networks, 7(5):777–781.

[Roweis and Ghahramani, 1997] Roweis, S. and Ghahramani, Z. (1997). A unifying review
of linear gaussian models. Technical report, Computation and neural systems, California
Institute of Technology.

[Ruck et al., 1990] Ruck, D., Rogers, S., Kabrisky, M., Oxley, M.E., and Suter, B.W.
(1990). The multilayer perceptron as an approximation to a Bayes optimal discrimination
function. IEEE Transactions on Neural Networks, 1(4):296–298.

[Rumelhart and McClelland, 1986] Rumelhart, D. and McClelland, J. (1986). Parallel Dis-
tributed Processing: Explorations in the microstructure of cognition, volume I and II.
MIT press.

[Schölkopf, 1997] Schölkopf, B. (1997). Support Vector Learning. PhD thesis, Technischen
Universität Berlin.

[Schölkopf et al., 1999] Schölkopf, B., Williamson, R., Smola, A., and Shawe-Taylor, J.
(1999). SV estimation of a distribution’s support. In NIPS’99.

[Sharkey and Sharkey, 1995] Sharkey, A. and Sharkey, N. (1995). How to improve the relia-
bility of artificial neural networks. Technical Report CS-95-11, Department of Computer
Science, University of Sheffield.

[Smola et al., 1998] Smola, A., Schölkopf, B., and Müller, K. (1998). The connection
between regularization operators and support vector kernels. Neural Networks, 11:637–
649.

[Smolensky et al., 1996] Smolensky, P., Mozer, M., and Rumelhart, D. (1996). Mathemat-
ical perspectives on neural networks. Lawrence Erlbaum Associates.

176 Bibliography

[Strang, 1988] Strang, G. (1988). Linear algebra and its applications. Harcourt Brace
Jovanovich College Publishers.

[Tanigushi and Tresp, 1997] Tanigushi, M. and Tresp, V. (1997). Averaging regularized
estimators. Neural Computation, 9:1163–1178.

[Tarassenko et al., 1995] Tarassenko, L., Hayton, P., and Brady, M. (1995). Novelty detec-
tion for the identification of masses in mammograms. In Proc. of the Fourth International
IEE Conference on Artificial Neural Networks, volume 409, pages 442–447.

[Tax and Duin, 1998] Tax, D. and Duin, R. (1998). Outlier detection using classifier insta-
bility. In Amin, A., Dori, D., Pudil, P., and Freeman, H., editors, Advances in Pattern
Recognition, Lecture notes in Computer Science, volume 1451, pages 593–601, Berlin.
Proc. Joint IAPR Int. Workshops SSPR’98 and SPR’98 Sydney, Australia, Springer.

[Tax and Duin, 1999] Tax, D. and Duin, R. (1999). Data domain description using support
vectors. In Verleysen, M., editor, Proceedings of the European Symposium on Artificial
Neural Networks 1999, pages 251–256. D.Facto, Brussel.

[Tax and Duin, 2000] Tax, D. and Duin, R. (2000). Data descriptions in subspaces. In
Proceedings of the International Conference on Pattern Recognition 2000, volume 2,
pages 672–675.

[Tax et al., 1997] Tax, D., Duin, R., and van Breukelen, M. (1997). Comparison between
product and mean classifier combination rules. In Pudil P., Novovicova J, and Grim J,
editors, 1st international workshop on statistical techniques in pattern recognition, pages
165–170. Institute of Information Theory and Automation.

[Tax et al., 2000] Tax, D., van Breukelen, M., Duin, R., and Kittler, J. (2000). Combining
multiple classifiers by averaging or multiplying? Pattern Recognition, 33(9):1475–1485.

[Tax et al., 1999] Tax, D., Ypma, A., and Duin, R. (1999). Pump failure detection using
support vector data description. In Hand, D., Kok, J., and Berthold, M., editors,
Advances in Intelligent Data Analysis, volume 3, pages 415–425.

[Tipping and Bishop, 1999] Tipping, M. and Bishop, C. (1999). Mixtures of probabilistic
principal component analyzers. Neural Computation, 11(2):443–482.

[Tumer and Ghosh, 1995] Tumer, K. and Ghosh, J. (1995). Order statistics combiners for
neural classifiers. In Proceedings of the World Congress on Neural Networks., pages
I:31–34. Washington D.C. INNS Press.

[Tumer and Ghosh, 1996] Tumer, K. and Ghosh, J. (1996). Analysis of decision boundaries
in linearly combined neural classifiers. Pattern Recognition, 29(2):341–348.

[Ullman, 1978] Ullman, N. (1978). Elementary statistics, an applied approach. Wiley and
Sons.

Bibliography 177

[van Breukelen et al., 1997] van Breukelen, M., Duin, R., and Tax, D. (1997). Combining
classifiers for the recognition of handwritten digits. In Pudil P., Novovicova J, and Grim
J, editors, 1st international workshop on statistical techniques in pattern recognition,
pages 13–18. Institute of Information Theory and Automation.

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. Wiley.

[Vesanto et al., 2000] Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J.
(2000). Som toolbox for matlab 5. Report A57, Helsinki University of Technology,
Neural Networks Research Centre, Espoo, Finland.

[Wallace and Dowe, 1999] Wallace, C. and Dowe, D. (1999). Minimum message length and
kolmogorov complexity. Computer Journal, 42(4):270–283.

[Weisstein, 1998] Weisstein, E. (1998). The CRC concise encyclopedia of mathematics.
CRC Press, Boca Raton, FL. http://mathworld.wolfram.com/.

[Wolpert, 1992] Wolpert, D. (1992). Stacked generalization. Neural Networks, 5:241–259.

[Wolpert, 1994] Wolpert, D. (1994). The Mathematics of Generalization. Goehring D.,
Santa Fe Institute.

[Xu et al., 1992] Xu, L., Krzyżak, A., and Suen, C. (1992). Methods of combining multiple
classifiers and their applications to handwriting recognition. IEEE Transactions on
Systems, Man and Cybernetics, 22(3):418–435.

[Ypma and Duin, 1998] Ypma, A. and Duin, R. (1998). Support objects for domain ap-
proximation. In ICANN’98, Skovde (Sweden).

[Ypma and Pajunen, 1999] Ypma, A. and Pajunen, P. (1999). Rotating machine vibration
analysis with second-order independent component analysis. In Proceedings of the First
International Workshop on Independent Component Analysis and Signal Separation,
ICA’99, pages 37–42.

[Ypma et al., 1999] Ypma, A., Tax, D., and Duin, R. (1999). Robust machine fault de-
tection with independent component analysis and support vector data description. In
Hu, Y.-H., Larsen, J., Wilson, E., and Douglas, S., editors, Neural Networks for signal
processing IX, pages 67–76.

[Zadeh, 1965] Zadeh, L. (1965). Fuzzy sets. Information and control, 8:338–353.

SUMMARY ONE-CLASS
CLASSIFICATION

This thesis treats the problem of one-class classification. It starts with an introduction
of the problem of conventional, multi-class classification. Next, it explains the problem of
one-class classification, where it is the goal to distinguish between objects from one class
and all other possible objects. It is assumed that only examples of one of the classes,
the target class, are available. The fact that no examples not belonging to the target class
(outliers) are available, complicates the training of a one-class classifier. It is not enough to
minimize the number of errors the classifier makes on the target set, but it is also required
to minimize in some way the chance that it makes an error on the outlier data. One way
to minimize the chance of error on the outlier data, is to minimize the volume what the
one-class classifier covers in the feature space.

In the second chapter a new type of one-class classifier is presented, the support vector
data description. It models the boundary of the target data by a hypersphere with minimal
volume around the data. The boundary is described by a few training objects, the support
vectors. Analogous to the support vector classifier, the support vector data description
has the ability to replace normal inner products by kernel functions to obtain more flexible
data descriptions. Furthermore, the fact that only the boundary of the data is modelled,
makes the support vector classifier less dependent on the quality of the sampling of the
target class. The SVDD can cope with situations in the exact density of the target class
is unknown, but where just the area in the feature space can be estimated.

In chapters three and four several other one-class classifiers are investigated. Three
types of one-class classifiers are considered, the density estimators, the boundary methods
and the reconstruction methods. On several artificial datasets, each with their own dis-
tribution characteristics, the performance of these methods have been evaluated. Finally
the one-class classifiers are applied to some real world problems, to investigate which data
characteristics can be identified.

Inspired by the gains in performance which have be obtained when normal classifiers are
combined, we looked at the possibilities of combining one-class classifiers in the last chap-
ter. Due to the different characteristics of one-class classifiers with respect to conventional
two-class classifiers, other results for combining classifiers is expected. One concern is that
some one-class classifiers output not a posterior probability for the target class, but output
a distance to a model. This distance should be mapped to a posterior probability before
the outputs of several one-class classifiers can be combined. The results of experiments
show, that combining one-class classifiers often improve results, especially when classifiers

180 Summary

trained on different feature sets are combined.

David M.J. Tax

SAMENVATTING ONE-CLASS
CLASSIFICATION

Dit proefschrift behandelt het probleem van “één-klasse klassificatie” (one-class classifi-
cation). Het begint met een introductie van de conventionele, twee-klasse klassificatie.
Vervolgens legt het het probleem van one-class classification uit, waar het de bedoeling is
om objecten uit één klasse te onderscheiden van alle andere objecten. Er wordt aangenomen
dat alleen voorbeelden van één van de klassen aanwezig zijn, de “doel-klasse” (target class).
Het feit dat er geen voorbeelden beschikbaar zijn die niet tot de target class behoren (de
uitbijters of “outliers”), compliceert de training van een één-klasse klassificator. Het is
niet voldoende dat het aantal fouten dat de klassificator maakt op de target klasse wordt
geminimaliseerd, maar het is ook vereist dat op een of andere manier de kans wordt gemi-
nimaliseerd dat het een fout maakt op de outliers. Een manier om de kans op een fout op
de outlier klasse te minimaliseren, is om het volume dat de één-klasse klassificator inneemt
in de kenmerkruimte, te minimaliseren.

In het tweede hoofdstuk hebben we een one-class klassificator, de “support vector data
description” (de support vector data beschrijving), gepresenteerd. Het modelleert de rand
van de target data met een hyperbol met minimum volume rond de data. Analoog aan
de “support vector classifier” (support vector klassificator) heeft de support vector data
description de mogelijkheid om normale inproducten te vervangen door kernel functies
waardoor flexibelere data beschrijvingen verkregen kan worden. Het feit dat alleen de rand
van de data wordt gemodelleerd, maakt dat de support vector data description minder
afhankelijk is van de kwaliteit van de trekkingen uit de target klasse. De support vector
data description kan omgaan met situaties waarin de exacte dichtheid van de target klasse
onbekend is, maar waarin alleen het gebied in de kenmerkruimte kan worden geschat.

In hoofdstukken drie en vier worden verschillende andere klassificatoren onderzocht.
Drie types van één-klasse klassificatoren worden bekeken, de dichtheidsschatters, de grens
methodes en de reconstructie methodes. Op verschillende kunstmatige datasets, elk met
hun eigen karakteristieken, worden de prestaties van de klassificatoren geëvalueerd. Tenslotte
zijn de één-klasse klassificatoren toegepast op echte problemen, om te zien welke data
karakteristieken kunnen worden gëıdentificeerd.

Gëınspireerd door de prestatie-winst die gehaald wordt wanneer verschillende klassifi-
catoren worden gecombineerd, hebben we in het laatste hoofdstuk gekeken naar de mo-
gelijkheden om één-klasse klassificatoren te combineren. Door het verschil in karakter
tussen één-klasse klassificatoren en conventionele twee-klass klassificatoren, kunnen andere
resultaten verwacht worden. Een zorg is dat sommige klassificatoren geen a posterior kans-

182 Samenvatting

dichtheid opleveren, maar een afstand tot een model. Deze afstand zal getransformeerd
moeten worden naar een kansdichtheid voordat de uitvoer van de verschillende klassifica-
toren gecombineerd kunnen worden. De resultaten van de experimenten laten zien dat het
combineren van één-klasse klassificatoren de prestaties vaak verbeteren, in het bijzonder
wanneer klassificatoren die op verschillende kenmerk-sets zijn getraind.

David M.J. Tax

CURRICULUM VITAE

David Tax was born in Ede on June 17, 1973. He obtained his VWO diploma at the
Marnix College in Ede. In 1991 he went to Nijmegen to study Physics at the University of
Nijmegen. He obtained his Masters degree in 1996. The subject of his Masters thesis was
“Learning of Structure by Many-Take-All Neural Networks.”. The reseach was conducted
at the Department of Medical Physics and Biophysics under the supervision of H.J. Kappen.

In 1996 he started his Ph.D. research at the Pattern Recognition Group. This research
is titled ’Confidence levels in Neural Networks’. The activities at the Pattern Recognition
Group took place under supervision of dr. ir. R.P.W. Duin.

ACKNOWLEDGEMENTS

In the life of a (graduate) student the main focus is on learning and teaching science.
Although this might sound pretty dry, this is not just thinking hard, programming and
writing. It also includes presentations, discussions, and drinking beers with your colleagues.
The large number of topics which is covered in our group makes it possible to regularly
discuss the relative merits of the double (or triple) Hough transform, the confocal micro-
scope and the dynamics (or statics) in robo-soccer. Although it is funny to makes jokes
about it, it also forces you to think about what you are doing and how to present your-
self. It is not only very rewarding to work with equal minded people, spending your time
with Mike, Judith, Cris, Bernd, Michiel, Peter, Frank, Gerold and Marjolein after (and
during) working hours is always fun. This is not possible when there isn’t large support
from the rest of the group. Thanks Ted, Bob, Lucas, Albert, Frans, Piet, Pieter, Wim
and my predecessors Aarnoud, Stephanie and Eddy! Our group keeps alive the history of
’gezelligheid’.

I especially want to thank the foreign people in our group. They showed me what
problems foreigners encounter when they try to adapt to Dutch customs and habits. They
made me aware of what I take for granted and what courage and perseverance you need
to survive in a completely strange country. I humbly apologize for our bread, but I will
defend Dutch coffee with my life.1

The most important person I would like to thank is my supervisor, Bob Duin. Having
Bob as supervisor gives you the freedom to pursue your individual interest. Furthermore,
he gives you the feeling that you can do something useful, he points out, very accurately,
how to avoid obvious (and not so obvious) scientific mistakes and he is always available
when you have something on your mind (may it good or bad). He saved me many years
in my promotion, and, most importantly, kept me enthousiastic for science. Thanks Bob!

The most valuable times during my promotion were the discussions with Bob, my room
mates Dick, Alex, Ela and, almost room mates, Pavel and Marina. All topics could be
discussed, from the most basic to the most esoteric. During the survival of conferences
(from Heijen to Barcelona), dagjes-uit, courses and cinema’s, I got intimate views of these
people and this makes discussions far more interesting. The possibility to discuss not
only the present research topics with them but also more general problems of life (how to
communicate with bricks?) gives me the reassurance that we are not mere colleagues. This
is why I’m doing all this and I tremendiously enjoyed it. Thanks guys!

Finally, my parents and my sister, where would I be without them? (Not here) Thanks
for everything!

1 At this time I should not forget the tea: Ela, dzi ↪ekuj ↪e bardzo za herbat ↪e i twój uśmiech!

INDEX

0-1 loss, 4

apple, 1
AR features, 110
area

of error, 61
artificial datasets, 42, 86, 120, 158
atypical dataset, 91, 103, 107
atypical training set, 91
AUC, 61
auto-encoder, 77
average nearest neighbor distance, 33, 34,

38
average rank, 134

banana dataset, 24, 30, 34, 38, 42, 44, 45,
48, 58, 70, 90, 100, 101, 111

Bayes classifier, 7
Bayes rule, 7, 16, 119, 123, 124
Bayesian approach, 17
bias, 9, 64, 114, 118, 121
bias-variance dilemma, 10, 64, 95, 121
binary output, 124, 125
bottleneck layer, 78
boundary methods, 67

C, 22, 23, 37, 38, 151, 153
optimization of, 37

central limit theorem, 134, 135
classification, 1, 117
clustering, 133
combining

conventional classifiers, 13, 117
one-class classifiers, 122

combining rules, 125
comparison of data sets, 15
configuration, 63

constraints, 17, 117
in ν-SVC, 40
in SVDD, 22, 151
topological, 75

continuity assumption, 2, 11
correlated feature spaces, 120
covering numbers, 68
cross entropy, 5
cross validation, 6
curse of dimensionality, 8, 17, 44, 64, 109

data description, see one-class classifica-
tion

density models, 64
diabolo network, 77
digit recognition problem, 112, 161
discordancy test, 64
distance, 57, 67, 68, 73, 81

and inner products, 29
Euclidean, 19, 29
robust, 71

ellipse dataset, 42–45, 89, 97, 102
EM algorithm, 66, 74, 77
empirical error, 7, 17
envelope spectrum, 110
error, 11, 60

in database retrieval, 134
in probability estimates, 118
in SVDD, 22
kind I and II, 15, 27
of one-class classifiers, 60, 61
reconstruction, 73
structural, 11
true, 11

essential support vectors, 35
Euclidean distance, 29, 73, 125, 126

187

188 Index

evidence, 117
example outliers, 105
experiments, 87, 156

on non-artificial data, 49

false negative, 49
false negatives, 15, 26, 27
false positive, 49
false positives, 15, 26, 27
feature vector, 2
free parameters, 63

gamma function, 59
Gauss dataset, 42, 44, 45, 48, 89, 90, 93–

101, 104–106, 124
Gaussian distribution, 47, 63, 65
Gaussian kernel, 32, 37, 42, 72
generalization, 6, 17, 18, 35
generation of outlier objects, 87
glass dataset, 42, 44, 46

handwritten digits, 112, 161
hyperplane, 39
hypersphere, 21, 23, 32, 39, 43

i.i.d., 25, 91, 123
identity operation, 77
image database retrieval, 131
image segmentation, 133
imbalanced datasets, 15
imox dataset, 42, 44–47
independent data representation, 118
independent test set, 7, 58
indicator function, 24
integrating out, 61
Iris dataset, 42, 44, 46, 47

k-centers, 68
k-means clustering, 73
kernel, 24, 28

Gaussian, 32, 42
polynomial, 30

kernel function, 28
kernel trick, 29

Lagrange multipliers, 22, 23, 26, 35, 151
Lagrangian, 22, 26, 151
learning from examples, 2
learning rate, 75, 79
Learning Vector Quantization, 73
leave-one-out estimation, 35, 60
list of methods, 95
Local Outlier Factor, 71
logarithmic opinion pool, see product rule

machine diagnostics problem, 15, 49
magic parameters, 63, 79, 81, 85

settings in experiments, 86
Mahanalobis distance, 66
majority vote, 124
manifold, 75
mapping, 76, 78
margin ρ, 39
mean rule, 117, 125
mean square error, 5
Mercer kernel, 28
missing values, 2
mixture of Gaussians, 66
mixture of PCA’s, 77
MoG, see mixture of Gaussians
monitoring, 15, 109
MUSIC spectrum, 110

nearest neighbor method, 69, 155
negative examples, 17, 24, 25, 49, 81
neural network, 74, 77
noise, 5, 32, 72, 79, 80, 118
non-parametric model, 67
normal density, 49, 65, 66, 77, 94, 160
normal distribution, 89, 135
ν-SVC, 40

Occam’s razor, 11
one-class classification, 1, 13
outlier detection, see one-class classifica-

tion
outlier distribution, 16, 47, 58, 122, 124,

158
outlier object, 14, 24

Index 189

in target set, 47
outlier objects

in target set, 104
overfitting, 7, 60, 85, 118

pancake dataset, 88, 90, 101, 102, 159
Parzen density, 33, 47, 63, 67

weighted, 34
pear, 1
polynomial kernel, 30, 37
posterior class probability, 118, 123

in One-Class classifiers, 123
power spectrum, 110
Principal Component Analysis, 76
prior knowledge, 11, 18, 85, 117, 140
product rule, 118, 125, 126
pump data, 49, 109

quadratic optimization, 27, 34, 151
quadratic programming, 23, 152

radius of SVDD, 44
rank based combining, 117
ranking error, 137
ranking measure, 135, 137
receiver-operating characteristic curve, 50,

60
reconstruction error, 18, 73
reconstruction methods, 72
regularization, 50, 65, 81, 82
regularization parameter, 11
reliability, 106
resemblance, 57, 124
rigid hypersphere, 43
robustness, 73, 79, 119

in distance definition, 71
of combining rules, 122
of One-Class classifiers, 63

ROC-curve, see receiver-operating char-
acteristic curve

sample size, 6, 8, 43, 64, 68, 71, 94, 160
small, 8, 18, 76, 95, 156

scaling of features, 31, 97, 137

Self-Organizing Map, 73, 75
slack variables, 22, 40
sonar dataset, 42, 44–46
statistical pattern recognition, 2
stopping criterion, 75, 79
structural error, 12, 17

in SVDD, 22, 25, 151
subspace, 73, 75–77, 90, 101, 110

non-linear, 78
support vector, 35, 152

data description, 21
definition, 23
number of, 43
on boundary, 24

support vector data description, 21, 151
with example outliers, 24

SVDD, see support vector data descrip-
tion

t-distribution, 156
target error, 35
target object, 14, 87
test set, 6, 87
three-Gauss dataset, 89, 98–100, 107, 108
threshold, 57, 60, 64, 79
time series, 49, 109
total retrieval error, 134
tradeoff parameter C, 22

optimization of, 37
training set, 2, 3, 6, 123
true error, 6, 11

underfitting, 9
uniform distribution, 58, 70, 156, 160
unit norm, 40
unit variance, 32, 42
user defined parameters, 63

variance, 9, 32, 76, 86, 121, 133
vibration data, 49, 109
volume, 22, 58, 64, 68, 160

estimation, 58
of hypercube, 59
of hypersphere, 59

190 Index

weights, 4, 23
width parameter s, 33, 37, 38, 47

X , 2
XT , 58

Z, 58

	Notation
	Introduction
	Learning from examples
	Generalization
	One-class classification
	One-class and two-class classification
	One-class classification methods
	Outlook of this thesis

	Support Vector Data Description
	Spherical data description
	Data description with negative examples
	Flexible descriptions
	Target error estimate
	The -SVC
	Data description characteristics
	Rigid hypersphere
	Flexible descriptions
	Training with outliers
	Outliers in the target set

	Machine diagnostics experiments
	Conclusions

	One-class classification
	Considerations
	Volume estimation
	Error definition

	Characteristics of one-class approaches
	Density methods
	Gaussian model
	Mixture of Gaussians
	Parzen density estimation

	Boundary methods
	K-centers
	Nearest neighbor method
	Support vector data description

	Reconstruction methods
	k-means, LVQ, SOM
	Principal Component Analysis
	Mixtures of Principal Component Analyzers
	Auto-Encoders and Diabolo networks

	Robustness and outliers
	Number of parameters
	Discussion

	Experiments
	Parameter settings
	The datasets
	Artificial outlier distributions
	Well-sampled target distributions
	Atypical training data

	The error for one-class classifiers
	Sample size
	Scaling
	Multimodality
	Non-convexity
	Subspace
	Atypical training set
	The presence of outliers
	Guaranteed performance and time consumption
	Pump vibration data
	Handwritten digit data
	Conclusions

	Combining Descriptions
	Combining conventional classifiers
	Differences between averaging and multiplying

	Combining one-class classifiers
	Combining rules
	Combining experiments
	Combining different feature sets

	Combining to include prior knowledge
	Image database retrieval
	Evaluation performance
	Original features
	Separating the feature sets

	Conclusion

	Conclusions
	What has been done in this thesis?
	What can be concluded from this thesis?
	What can be done in the future?
	Appendix
	Support Vector Data Description
	Nearest Neighbor Data Description
	1-dimensional data
	2-dimensional data
	Data in a subspace
	Empty areas

	Handwritten digits dataset
	Individual classifiers
	Combining classifiers
	Combining featuresets

	Bibliography
	Summary One-class classification
	Samenvatting One-class classification
	Curriculum vitae
	Acknowledgements
	Index

