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Notation and basic terminology

1 N × 1 vector of ones [1, 1 . . . , 1]T

A, a centre of N-sphere in input space
aH centre of the largest empty sphere, inside SVDD in Hilbert space
AH centre of SVDD sphere in Hilbert space
α, β weights
c centre of an ellipsoid
det(M) determinant of a matrix M
d(x|Xt) distance from x to target class
e edge of a graph
εt target rejection rate
εo outlier acceptance rate
εtr

t target rejection rate estimated on a training set
E N ×N shape matrix of an ellipsoid
EE,c ellipsoid with centre c and shape matrix E
F active learning function
γ complexity parameter of a classifier
Γ gamma function
H Hilbert space
h classifier
hc height of spherical cap
I indicator function
rc radius of spherical cap
K kernel matrix
L Lagrangian, the combination of an error function and constrains
Λ weighted sum of errors
µ mean vector of a dataset
n size of a training set
N dimensionality of input space
N normal distribution
m size of an unlabelled (test) set

M̃ N + 1×N + 1 shape matrix of an ellipsoid
ω class label
p(x) projection of the vector x
p(x|Xt) probability that x belongs to target class
P (x) probability density function of x
P (x|Xt) probability density function of x given Xt

rH radius of the largest empty sphere, inside SVDD in Hilbert space
R, r radius of N-sphere
RH radius of SVDD sphere in Hilbert space
R

N input space
S(A, R),S(a, r) N-sphere with centre A/a and radius R/r
Σ covariance matrix
sv support vector
θ threshold on a probability or a distance



x N × 1 input pattern
ξ slack variable

X− N ×
(

N+1
2

)
matrix of elements xi − xj

X+ N ×
(

N+1
2

)
matrix of elements xi + xj

Xt training set
Xu unlabelled set
Vcap volume of a spherical cap
Vh volume of a classifier
Vo volume of a union between two N-spheres
VS(a,r) volume of N-sphere with a centre a and radius r
V V-statistic

‖ ‖ Euclidian norm ‖x‖ =
√

xTx
≻,� positive definite/semidefinite,
M ≻ 0 symmetric positive definite matrix.

This is equivalent to λ(M) > 0 or xT Mx > 0, ∀x 6= 0
M � 0 symmetric positive semidefinite matrix.

This is equivalent to λ(M) ≥ 0 or
xT Mx ≥ 0, ∀x 6= 0

Abbreviations

1-NN 1-Nearest Neighbour
AUC Area Under ROC Curve
err estimation of error reduction sampling
EM Expectation Maximisation
EM-qbc Expectation Maximisation query by committee
k-NN k Nearest Neighbour
LDA Linear Discriminant Analysis
LPDD Linear Programming Data Description
MST Minimum Spanning Tree
MST DD Minimum Spanning Tree Data Description
MVEB Minimum Volume Enclosing Box
MVEE Minimum Volume Enclosing Ellipsoid
MVEE DD Minimum Volume Enclosing Ellipsoid Data Description
MVES Minimum Volume Enclosing Sphere
MDS Multi Dimensional Scaling
MoG Mixture of Gaussians
MPM Maximum Probability Machine
NFLM Nearest Feature Line Method
ROC Receiver-Operating Characteristic
SOM Self Organising Map
SVM Support Vector Machine
SVDD Support Vector Data Description
qbb Query by Bagging
QDA Quadratic Discriminant Analysis



PCA Principle Components Analysis
pdc Positive Density Correction
ra Random Sampling
us Uncertainty Sampling
vila Variation in Label Assignments
w-us Weighted Uncertainty Sampling





Chapter 1

Introduction

This thesis explores the field of pattern recognition from several perspectives. We will inves-
tigate questions arising both in the fields of supervised and semi-supervised learning, dealing
with diverse issues such as one-class classification, novelty and outlier detection, model se-
lection and enhancement of the classification models by unlabelled data. All topics covered
in the first two parts of the thesis are related to the problem of one-class classification, nov-
elty detection and outlier detection. The third part of the thesis covers such topics as active
and semi-supervised learning, where one enhances the classification models by incorporating
additional knowledge from unlabelled data.

To set the scene for the thesis we want to pick up the terms learning and recognition from
the title and briefly introduce their meaning in our context. Next, the introduction to the
problem of one-class classification is given, followed by the outline of the thesis. All three
main parts of the thesis can be read independently after one has read the introduction.

1.1 Learning from examples

Learning is an ability of all living organisms in particular humans. We all know what learning
is although we have sometimes difficulties to describe it to others. Our description usually
contains words like learn, learnt, learned or learning. We think of learning as referring to two
components - a process and an outcome. Learning comes with focusing on a particular subject
and filtering, rejecting most of other irrelevant things. Moreover, learning is certainly not a
static process, it requires action from a learner, it requires to ask questions.

The field of pattern recognition, which is the background of this thesis, tries to imitate the
ability of learning. However, traditionally pattern recognition heavily focuses on a classification
of two or more classes. In this thesis, we try to get a step closer to the foundations of learning
and recognition. In particular, we are going to study the problem of one-class classification
where the interest is the recognition of a class of objects and not discrimination between a
given set of classes. Moreover, we allow the classifiers to evolve in time by giving them a
possibility to ask questions.

Therefore, we use the word learning as the process of inferring rules from given examples.
The examples are instances of some input space (pattern space), and the rules can consist
of some general observation about the structure of the input space, or have the form of a
functional dependency between the input and some output space.

To show the difference between recognition and discrimination, in context of pattern recog-
nition, we first compare multi-class classification with one-class classification.

1



2 Introduction

In multi-class classification we are given a set of training objects
Xt := {(xi, ωi)|,xi ∈ R

N , i = 1, . . . , n}, each of the objects consisting of a N dimen-
sional pattern xi and its label ωi ∈ ω. Therefore, each object is represented by N features,
measurements and can be visualised as a vector in an N dimensional space. The goal is to
infer a rule which can assign the correct label ωk to a new, previously unseen pattern xk; see
figure 1.1(b). In figure 1.1 each object is represented as a vector in 2D space spanned by two
features.

Further, we assume that for the representation of objects in the input space, R
N , the

continuity assumptions holds. This is a general assumption in pattern recognition: two objects
near in input space, R

N , should also resemble each other in real life. When we are at one
position in the input space, representing an example object, and we change the position
slightly, then this new position should represent a very similar object. When this assumption
is satisfied for a large part of the input space we only need few examples to learn a decision
boundary between classes. However, if the objects from the same class are scattered more or
less randomly huge amounts of labelled examples are needed.
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Figure 1.1: (a) A multi-class classifier. (b) A multi-class classifier. xk a single outlier object.

A general multi-class classification problem is usually decomposed in several two-class
classification problems [Duda et al., 2001]. Therefore, the two class problem is considered the
basic classification problem. In a two-class classification problem, the two classes are labelled
ω(1) and ω(2). For the classification, a function h(x) has to be inferred from the training set.
This function should be constructed such that for a given input vector x an estimate of the
label is obtained, ω = h(x|Xt):

h(x|Xt) : R
N → {ω(1), ω(2)} (1.1)

In figure 1.1(a) an example of a two class classification problem is given. The training objects
are separated by a linear classifier, plotted as a solid line. A single object from a training set
is misclassified. In figure 1.1(b) an additional single test object, xk, is plotted. The object
xk is classified to the ω(1) class. However, we can ask a question if the classifier h(x|Xt) has
sufficient information to classify xk to any of the given classes ω(1) or ω(2). Any test object on
the left side of the decision boundary is classified to ω(1) and on the right to ω(2). Even if the
distance of a test object to any of the objects from the training set is large. Therefore, any
test object, even if it is an outlier is classified to one of the classes represented in a training
set.
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In such a situation we would like to have a third option: a label which allows a classifier
to say ”I do not know”. This suggests to describe the training set by an enclosing boundary.
Only objects that fall inside the boundary are classified to one of the classes represented in
the training set [Tax, 2001]; see figure 1.2(a).

An other solution is to enclose individual classes by separate close boundaries 1.2(b). Only
objects that fall inside any of the boundaries are classified to one of the classes represented in
the training set [Juszczak and Duin, 2003].
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Figure 1.2: (a) A multi-class classifier and a one-class classifier that encloses a training set.
(b) A set of one-class classifiers trained on each of the classes separately.

Objects outside the boundaries are classified as outliers, the ”I do not know” class. The
classifiers that focus on description of classes instead of discriminating between classes are
called one-class classifiers. The name originated from Moya [Moya et al., 1993].

If we expect that during classification outlier objects, or objects from classes that are not
represented in the training set might occur or we only have examples from a single class in
the training set, one-class classifiers should be used instead of, or together with multi-class
classifiers.

To give the reader some intuition in which classification problems one-class classifiers can
be of help we describe the following classification problem.

1.1.1 Practical problem

Imagine that we would like to build a device to classify between the normal and abnormal
condition of a person. Assume that, the device is portable and can be worn all the time
without discomfort. The decision about a condition of the person is made based on various
physiological signals, e.g. ECG, blood pressure, skin resistance, temperature, etc. Generally,
the condition of a particular person is normally healthy. We do not have (or have very few)
examples of abnormal physiological conditions for this particular person. Therefore, based
on given examples, we can only build a boundary descriptor, that describes a set of normal
conditions of the person; the one-class classifier. The descriptor is trained, in the space of
the physiological signals that we are measuring. Figure 1.3 shows a two dimensional measure-
ment space spanned by measurements of temperature and skin resistance. The description
of a normal condition, denoted by a dashed line, is trained on collected examples of normal
conditions. If measurements are not inside the description they are classified as an abnormal
state in person health.
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Figure 1.3: One-class classifier.

Why can we not train a multi-class classifier? Simply
because we have no examples of abnormal physiologi-
cal states. Even if we had a few of these examples, our
task is to detect all abnormal states. We can not ask
the person to be sick, moreover with particular symp-
toms. It is much easer to determine the normal set of
physiological states.

Assume now a different problem. The condition of the person has changed. For example, he
has started to exercise and becomes more healthy or maybe had a stroke and becomes more
unhealthy. This affects the physiological measurements, however, the condition, as stable,
still remains normal for this person. In such cases we need to update the descriptor e.g. by
retraining it on examples of the current conditions.
This practical problem raises two questions:

1. Is it possible to train a classifier only on examples from a single class, in such a way that
examples of the class are inside the description and all other classes are outside it?

2. How to efficiently improve a classifier for classification problems that change in time?

These two pattern recognition problems are the two main topics of the thesis. The next
section gives an introduction to the problem of one-class classification.

1.2 Introduction to one-class classification

In the problem of one-class classification [Moya et al., 1993, Tax, 2001] one of the classes,
called the target class, has to be distinguished from all other possible objects, which are con-
sidered as outliers. The need for solving such a task comes from many practical applications.
Examples are any type of fault detection [Ypma and Duin, 1998] or target detection, e.g. face
detection in images, abnormal behaviour, disease detection [Tarassenko et al., 1995], person
identification, authorship verification [Koppel and Schler, 2004], etc.. The methodology for
handling such situations, however, can also be useful for imbalanced data cases as one-class
classifiers can be trained for each class separately [Juszczak and Duin, 2003]; see figure 1.2(b).
The problem of one-class classification is characterised by the presence of a well sampled tar-
get class. The goal is to determine a proximity function of an object to the target class such
that resembling objects will be accepted as targets and outliers will be rejected. It is assumed
that a well-sampled training set of target objects is available, while no (or very few) outlier
examples are present. The reason for this assumption is practical, since outliers may occur
only occasionally or their measurements might be very costly. Moreover, even when outliers
are available in a training stage, they may not always be trusted, as they are badly sampled,
with unknown priors and ill-defined distributions. In essence, outliers are weakly defined as
they may appear as any kind of deviation or anomaly from the target examples. Still, one-class
classifiers need to be trained to optimise the errors on both classes.
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In principle, one-class classification methods should refer to all possible knowledge that
one has about the target class. The model description of this class should be large enough
to accept most new targets, yet sufficiently tight to reject the majority of outliers. This is,
however, an ill-posed problem since knowledge about a class is deduced from a finite set of
target examples, while the outliers are sampled infrequently or not at all.

Outlier identification is an old topic in statistical data analysis [Barnett and Lewis, 1994],
usually approached through robust statistics. In general, robust statistics emerged as a family
of techniques for estimating the parameters of parametric models while dealing with deviations
from idealised assumptions [Rousseeuw and van Driessen, 1999]. It investigates the effects of
deviations from modelling assumptions, usually those of normality and the independence of
the random errors. Robust parameter estimators are proposed that make use of quantiles,
ranks, trimmed means, medians, censoring of particular observations, sample weighting, etc.
Deviations include all types of rounding errors due to inaccuracy in data collection, contam-
ination by outliers and departure from assumed sample distributions. Outliers are believed
to deviate severely from the characteristics exhibited by the majority of the data, usually
due to errors in data collection, copying or computation. So, they are often assumed to be
caused by human error. Outliers can also arise from sampling errors, where some members
are drawn from a different population than the remaining examples, faulty research methodol-
ogy, or from faulty distributional assumptions. But they can also be legitimate cases sampled
from the correct population. As outliers generally increase the error variance of the para-
metric methods and can seriously bias or influence statistical estimates, their identification
is important. Multivariate methods used for their detection often rely on a robust estimate
of the Mahalanobis distance and the comparison with critical values of the χ2 distribution
[Rousseeuw and van Driessen, 1999].

In general, we distinguish two types of outliers. One of these is the set of atypical examples
of a target class e.g. due to noise. The other is the set of non-target class examples.

1.2.1 One-class classifiers

One-class classifiers are trained to accept target examples and reject outliers. The basic
assumption about an object belonging to a class is that it is similar to other examples within
this class. Let Xt = {xi| xi ∈ R

N , i = 1, . . . , n} be a training set drawn from the target
distribution p(x). Assume a characterisation of this target class by a one-class classifier is
sought. In general, one-class classifiers can be presented in the following form:

h(x|Xt, γ) = I(p(x|Xt, γ) > θ) =

{
1, x is a target,

0, x is an outlier,
(1.2a)

or

h(x|Xt, γ) = I(d(x|Xt, γ) < θ) =

{
1, x is a target,

0, x is an outlier,
(1.2b)

where the function h models the similarity, in equation (1.2a), and the distance in equation
(1.2b), of a vector x to the training, target data Xt. θ is a specified threshold and I(·) is the
indicator function. Furthermore, γ indicates the complexity of the model. The threshold θ is
optimised to reject a certain, usually user-specified, fraction of the target class εtr

t .
εtr

t has to be determined by the user for a given application. For example, one can specify the
maximum number of allowed false alarms in a machine condition monitoring. Apart from the
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Figure 1.4: (a) A one-class classifier with different thresholds denoted by isolines of different
grey values. (b) One dimensional distribution of d(x|Xt, γ). Objects from the target class are
distributed according to p(d(x|Xt)).

threshold θ, the performance of a one-class classifier is determined by the complexity parameter
γ. It would be possible to determine a complexity parameter γ during training when both
errors on the target and outlier class could be estimated e.g. using cross-validation.

Given a fixed target acceptance rate, 1− εtr
t , the threshold θ is derived from the training

set such that the one-class classifier accepts 1− εtr
t of the target class, see figure 1.4. That is,

given n training samples, θ is determined such that:

1

n

n∑

i=1

I{(d(x|Xt) ≥ θ} = εtr
t . (1.3)

where d(x|Xt) is estimated on the training set. To avoid overfitting, a better estimate might
be obtained by using an additional validation set, if one has sufficient amount of data.

1.2.2 Error estimation for one-class classifiers

In general the error of a one-class classifier can be expressed as:

Λ(εt, εo) = λεt + (1− λ)εo, (1.4)

where λ is a trade-off parameter, εo denotes the outlier acceptance rate and εt target rejection
rate. If λ = 0.5 both errors are equally treated. However, because in one-class classification
problems, during training, only examples of the target class are available only εt can be
reliably estimated. The expected error on the outlier class εo can only be estimated by making
additional assumptions. Having given estimates of εt and εo the complexity of a classifier γ
and a threshold θ can be optimised.

As only the probability p(ωt|x) is known, the error on the target class, the target rejection
rate εt can be minimised. The outlier acceptance rate, εo can only be estimated when
example of outliers are used or when additional assumptions about their distribution are
made. Note that those two errors are also called the errors of the first and second kind. Ta-
ble 1.1 shows all possible situations of classifying an object in one-class classification problems.
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Table 1.1: Four situations of classifying an object in one-class classification. The false negative
εo and false positive εt correspond to objects which are wrongly classified. Moreover, the true
positive 1− εt and true negative 1− εo correspond to objects which are correctly classified.

true label

target outlier

target 1− εt εo

estimated label
outlier εt 1− εo

Receiver-Operating Characteristic.

To study the behaviour of one-class classifiers, a Receiver-Operating Characteristics (ROC)
curve can be used [Bradley, 1997, Tax, 2001], which is a function of the true positive ratio
(target acceptance) (1− εt) versus the false positive ratio (outlier acceptance), εo. See figure
1.5 for an example. To estimate the outlier acceptance rate outlier examples are necessary.
Outliers are provided either in a validation stage, or they are generated according to an
assumed distribution. In principle, an one-class classifier is trained with a fixed target rejection
rate εtr

t (or the threshold θ) for which the threshold is determined. This classifier is then
optimised for one point on the ROC curve.
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Figure 1.5: Receiver Operator Characteristics (ROC) curves. The area corresponds to the AUC
measure associated with the ROC curves.

In order to compare the performance of various classifiers, the AUC measure can be used
[Bradley, 1997]. It computes the Area Under the Curve (AUC), which is the total performance
of a one-class classifier integrated over all thresholds:

AUC = 1−
∫ 1

0

εo(εt) dεt = 1−
∫ 1

0

∫

RN

I(d(x|Xt) < θ) dx dθ, (1.5)

where θ is estimated on the target set. An AUC value smaller than 0.5 indicates that a particular
one-class classifier is worse than a random guess. The larger AUC, the better the one-class
classifier is. For instance in figure 1.5, the solid curve indicates better performance since the
corresponding AUC value is larger than the AUC value for the dashed and doted curve. In
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practice, εtr
t may be limited to a tighter range, so the integration above can be performed for

a specified region of interest, such as [0, 0.5], for instance. Moreover, as the costs of making
wrong decisions may differ, additionally a weighting function may be introduced.

1.3 Outline of the thesis

The thesis is divided into three major parts: One-class classifiers, Model selection
in one-class classification and Accommodation of unlabelled data to enhance
classification performance.

Part I: One-class classifiers
In the first part of the thesis one-class classifier models are discussed. We start by giving
an overview of existing one-class classifier models. The models are divided into two groups:
probabilistic models and domain-based (or geometry-based ) models. Next, we propose two
additional domain-based models. The proposed models are based on the minimum volume
enclosing ellipsoid algorithm and the minimum spanning tree algorithm. The performance of
new models are compared with existing classifiers and conclusions are drawn for what type
of problems the proposed models can outperform existing classifiers.

Part II: Model selection in one-class classification
In the second part of the thesis we investigate the problem of model selection in the problem
of one-class classification. We propose a model selection method based on the ratio of two
volumes: the volume of the largest empty N-sphere that can be found inside a one-class
classifier divided by the volume of the one-class classifier. To compute the ratio of two volumes
several subproblems have been solved. In section 6.1.1 we present a formula to compute a
tight approximation of the volume of one-class classifiers consisting of several intersecting
N-spheres such as k-means, k-centres and self-organising maps. The proposed approach can
tightly approximate the volume of a given classifier in any number of dimensions. In the
same section, we derive a formula to compute the volume of a spherical cap in arbitrary
number of dimensions and present a method to check whether more than two N-spheres
have a common region. Next, in section 6.1.2 we propose an algorithm to find the largest
empty N-sphere in one-class classifiers consisting of N-spheres. Here, we propose a method
to check whether a N-sphere is entirely inside a set of intersecting N-spheres. Section 6.1.3
presents an explanation why the presented algorithm does not work for spherical kernel based
one-class classifiers such as SVDD and oc-SVM. Finally, an approximate largest N-sphere search
algorithm is presented in section 6.1.4 that is applicable to any one-class classifiers. The
proposed algorithms are tested on UCI repository datasets and the presented model selection
method is compared with existing methods.

Part III: Accommodation of unlabelled data to enhance classification performance
In the third part of the thesis, we investigate techniques to accommodate unlabelled data into
training of classifiers. First, we formulate and investigate active learning techniques. In active
learning one is interested in sampling of unlabelled data in such a way that after revealing
the true labels of unlabelled objects improves the performance of the classifier significantly.
We proposed two active sampling function: vila which is based on variation in labelled
assignments and pdc which is based on positive density corrections.

Next, we investigate semi-supervised learning techniques. In semi-supervised learning one
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improves the classification performance by adding information about the distribution of unla-
belled objects to the training of classifiers. We propose a semi-supervised algorithm based on
the stability of soft-labels. The density-based classifiers such as LDA, QDA, mixture of Gaussians
and Parzen density estimator is redefined to incorporate soft-labels of unlabelled data.

The thesis is ended by some final conclusions and an outlook to possible feature research
directions.

1.4 Main contributions

In this work, we focus on recognition and learning problems in pattern recognition. The first
and second part of the thesis focus on recognition problems, called the one-class classification
and the third part focuses on learning problems, like active and semi-supervised learning. The
main contributions of the thesis is a set of new algorithms for identification and recognition
purposes.

Recognition problems

In chapter 3, we propose a new one-class classifier based on the concept of the Minimum
Volume Enclosing Ellipsoid (MVEE). A target class is enclosed in the MVEE. Three optimisation
algorithms are analysed by us: a description of a target class by the MVEE, a more robust
version of the MVEE where outliers are expected in a training set, finally, an estimation of the
MVEE where labelled outlier objects are available during training. In chapter 4, we propose
a new one-class classifier based on a structure of a graph. In particular, we introduce a
classifier based on the Minimum Spanning Tree algorithm called a Minimum Spanning Tree
Data Description (MST DD).

In part II of the thesis we propose a model selection criterion based on a ratio of two
volumes: the volume of the largest empty N-sphere that can be found inside a one-class
classifier and the volume of the one-class classifier. In the following sections we introduce
several algorithms to compute this ratio:

In section 6.1.1, we present a formula to compute a tight approximation of the volume
of one-class classifiers consisting of several intersecting N-spheres. In 6.1.2, we propose an
algorithm to find the largest empty N-sphere in one-class classifiers consisting of N-spheres
and a method to check whether a N-sphere is entirely inside a set of intersecting N-spheres.
In appendix B.1, we derive a formula to compute the volume of a spherical cap created by two
overlapping N-spheres. In section 6.1.4, an approximate largest N-sphere search algorithm
inside an arbitrary one-class classifiers is introduced.

Learning problems

In part III of the thesis, we study active and semi-supervised learning. In section 7.1, we
introduce a new active learning method based on positive density corrections pdc. In section
7.2, we introduce a new active learning method based on variation in labelled assignments
(vila). Chapter 8, introduces three new query diversification algorithms, in active-learning,
based on distances, densities and angles between objects. In chapter 9, semi-supervised
algorithm for a Parzen and other density based classifiers is introduced. The algorithm
estimates soft labels and a smoothing parameter using labelled and unlabelled objects.
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Part I: One-class classifiers

You can ask one to classify objects,
But you can not order to recognise them.
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Summary of Part I: One-class classifiers

In this part we take a closer look at classification models that can be used to describe a
target class in the one-class classification problem. We start from a general overview of existing
one-class classification models in chapter 2. The chapter is divided into two sections. The first
section describes statistically-based one-class classifiers and the second, domain-based one-
class classifiers. In following chapters, we introduce new domain-based one-class classifiers.
In chapter 3, a one-class classifier based on the Minimum Volume Enclosing Ellipsoid (MVEE)
algorithm is introduced. In chapter, 4 we introduce a one-class classifier based on the minimum
spanning tree algorithm, Minimum Spanning Tree Data Description (MST DD).
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Chapter 2

Introduction to one-class classification
models

The problem of novelty detection has recently gained a lot of attention as it can
be identified in many practical applications, [Tax et al., 2006, Markou and Singh, 2003a,
Markou and Singh, 2003b]. This problem can be approached in the framework of
one-class classification [Moya et al., 1993, Tax and Duin, 1999, Manevitz and Yousef, 2001,
Pe֒kalska et al., 2003, Koppel and Schler, 2004], in which the specified target class has to be
distinguished from all other possible examples, which are accounted for the outlier class. It is
usually assumed that only target examples are available during training. The reason for the
absence of outlier examples can be the very high measurement costs or the low frequency of
an event, as for instance in the case of a nuclear power plant failure or a rare medical disease.
Another reason lies in either too weak or too broad definition of the outlier class. For instance,
if the target class consists of healthy people, the outlier class refers to the class of people carry-
ing all types of diseases. Even when available, outlier examples can not always be trusted, as
they are badly represented, with unknown priors and ill-defined distributions. Therefore, the
area of interest in one-class classification covers all the problems of novelty detection by the
recognition of a specified and reasonably well sampled and described target class from all kinds
of anomalies, as weakly defined in an outlier class. The applications are any type of fault de-
tection [Ypma and Duin, 1998], abnormal behaviour, rare illnesses [Tarassenko et al., 1995],
authorship verification [Koppel and Schler, 2004], etc.

The principles behind many two- or multi-class classifiers can be used for solving one-class
classification problems. The most common approach is probabilistic [Bishop, 1995]. Basi-
cally, the target class is modelled by some probability density function. Specifying a suitable
threshold allows one to determine the class boundary. A test sample is judged to be a mem-
ber of the target class if the estimated probability is higher than the given threshold. This
can be realised by a parametric method such as the mixture of Gaussians [Sain et al., 1999]
or even a single Gaussian equipped with a threshold [Chow, 1970], or by a non-parametric
method like the Parzen density estimator [Parzen, 1962] or k-nearest neighbour estimators
[Knorr et al., 2000]. Other popular approaches are neural networks, including auto-encoders
[Japkowicz, 1999] or self-organising maps [Parra et al., 1996] and various clustering techniques
such as k-means [Jiang et al., 2001] or k-centres [Hochbaum and Shmoys, 1985].

Alternative solutions to the one-class classification problem have been proposed, that
do not use a probabilistic approach. These methods are based on minimisation of the
volume of a target class domain. This is realised by the use of linear programming
[Campbell and Bennett, 2000, Lanckriet et al., 2003, Pe֒kalska et al., 2003] and quadratic pro-

15
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gramming [Tax and Duin, 1999, Schölkopf et al., 2000a]. In particular, the support vector
one-class classifier, the Support Vector Data Description (SVDD) has been introduced in
[Tax and Duin, 1999]. In the input space, this classifier finds the smallest N -sphere that
encloses all objects from the target class. Other flexible descriptions are enabled by the use of
kernels in the spirit of the support vector machines [Vapnik, 1998]. A similar method, the one-
class SVM (oc-SVM), has been proposed in [Schölkopf et al., 2000a], which uses a hyperplane
to maximally separate data from the origin. In contradiction to the statistical approaches,
domain-based classifiers are not driven by the frequency of appearances of objects, in a repre-
sentation space, but by geometrical shape of a domain of a target class.

Next, we describe both: statistical and domain-based approaches to one-class classification
problems.

There are two basic approaches in characterising the target data. The first one uses a
statistical approach, often involving a density estimation of the target class. This assumes
that the target data is sampled well, and that low density areas in the training set indicate
that these areas have a low probability of containing target objects. However, in cases that a
true sampling is hard to obtain, another approach is required.

The second approach uses a domain-based approach for the characterisation of the target
data. This method tries to describe a boundary around the target class, such that the captured
volume is minimised. When the uniform outlier distribution is assumed this means that the
chance of accepting an outlier object is minimised. The advantage of this approach is that no
probability density on the targets have to be estimated.
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Figure 2.3: The two one-class classifier models: (Left) the statistical approach and (Right)
the domain-based approach. The threshold for both classifiers was set to θ = 0.05.

In figure 2.3 examples of two approaches are shown on 2D dataset with a high data density
in the bottom part. In the left subplot a density estimator is shown. The high density cluster
causes a focus on this region. Due to the low density of the tail on the other end of the
distribution, this data is likely to be considered outliers. The right subplot shows a domain-
based method. This approach ignores the local variation in density. The decision boundary
by this method follows the shaped distribution but does not focus more specifically on the
high density regions. Depending on the high density cluster being a sampling artifact, or a
genuine target density feature, the second respectively the first approach is to be preferred.
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2.1 Statistics-based one-class classifiers

The most common one-class classifiers are density estimators. The density methods estimate
the complete probability density of the target class, given by a training set, and threshold
this density [Chow, 1970, Ben-David and Lindenbaum, 1997]. This approach is often taken to
detect outlier objects in a supervised classification. Here the classifier depends on the class
conditional probabilities and thus the density of the target class is available. The drawback
of the density models is that estimating densities is a hard problem, especially when a limited
amount of data is available. Either the density method imposes a restrictive model on the
data, parametric modelling, which results in a large bias when the model does not fit the
data, or the model is very flexible and requires a large sample size to reliably fit all the free
parameters, i.e. non-parametric modelling. On the other hand, when a sufficient number of
objects is available, a good performance can be achieved.

In practice one often approximates the target density by much simpler models. In these
models a full density estimate is avoided. Instead the target data is characterised by cluster
centres or subspace models. We first discuss some density estimators and then the clustering
methods and subspace methods are treated.

2.1.1 Density-based classifiers

Gaussian density estimation

The most simple statistical model is the normal density [Bishop, 1995]. According to the
Central Limit Theorem, this model is correct when we assume that objects from one class
originate from one prototype and are disturbed by a large number of small independent vari-
ations. For this density model the target-class conditional probability pG(x|ω(t)) that a new
object x belongs to the target class is express as:

pG(x|ω(t)) =
1√

(2π)N det(Σ)
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
(2.1)

the mean µ and covariance matrix Σ have to be estimated, therefore the Gaussian density
estimator has (N + N(N+1)

2
) free parameters (note that the covariance matrix is symmetric).

Although the method is very simple, it imposes a strict unimodal and ellipsoidal density model
on the data. For high dimensional data this model also suffers from very large covariance
matrices, that are hard to estimate since the computation of their inverse becomes easily
ill-defined. An example of a classifier based on a Gaussian density is shown in figure 2.4(a).

The standard estimators for the mean and covariance matrix are not robust
against outliers. Several alternative methods have been proposed in the literature
[Kosinski, 1999]. One alternative is the Minimum Covariance Determinant (MCD) method
by [Rousseeuw and van Driessen, 1999]. Here, only a user-specified fraction of the training
objects is used for fitting a Gaussian distribution. Only that subset is used that results in the
smallest determinant of the covariance matrix. Because the rest of the data is not used, this
procedure is very robust and even a high fraction of outliers does not deteriorate the solution.
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Mixture of Gaussians

An extension of the Gaussian distribution is the mixture of Gaussians; see figure 2.4(b) for an
example, which is a linear combination of Gaussian distributions:

pMoG(x|ω(t)) =
1√

(2π)N

γ∑

j=1

αj
1√

det(Σj)
exp

(
−1

2
(x− µj)

T Σ−1
j (x− µj)

)
(2.2)

where αj are the mixing coefficients. Generally, it has a smaller bias than the single
Gaussian distribution, but requires more data. The number of clusters (γ) has to be defined
beforehand and determines the complexity of the model. The means and covariances have to
be estimated [Sain et al., 1999, Lauer, 2001]. The number of free parameters to be estimated

is (γ(N + N(N+1)
2

)). To reduce the number of free parameters, often just diagonal covariance
matrices are assumed, (2γN). Expectation Minimisation (EM) can be used to estimate the
parameters [Bishop, 1994, Bishop, 1995], where the user also has to supply the maximal
number of iterations in the optimisation.

Parzen density estimator

A third method is the Parzen density estimation [Parzen, 1962, Yeung and Chow, 2002,
Nunez-Garcia et al., 2003]. The estimated density is a mixture of kernels centred on the
individual training objects:

pP (x|ω(t)) =
1

n

n∑

i=1

K(x; xi, γ) (2.3)

The most often used kernel is a Gaussian kernel with diagonal covariance matrices; see figure
2.4(c). Training the Parzen density consists of the determination of the width of the kernel
γ. γ can be optimised by maximising the likelihood [Duin, 1976]. The fixed width in each
feature direction means that the Parzen density estimator is sensitive to the scaling of the
data, especially for lower sample sizes. Because this method contains just a single parameter,
the optimisation can be applied even with a relatively small training set.

The Parzen density estimator can be simplified by assuming independence of the features,
similar to the Naive Bayes classifiers in supervised classification [Hastie et al., 2001]. For each
feature xj a one-dimensional probability density is estimated. The total probability density
is a product of the individual feature densities; see figure 2.4(d). Obviously, this method
ignores the feature correlations and therefore may fail to describe the target class well. On
the other hand, it is very likely that sufficient data is available to estimate one-dimensional
distributions relatively reliably. For high dimensional data, and data without very strong
feature correlations, this density estimator works well [Tax et al., 2006].

More advanced density estimators have been used for outlier detection, like hierarchical
probabilistic models [Baker et al., 1999] or Hidden Markov Models [Yeung and Ding, 2003].
They aim to exploit some characteristics in the dataset, or to use specific model assumptions,
to make the density estimation feasible and efficient. As they are application dependent, we
do not discuss them further.
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2.1.2 Clustering-based classifiers

When density estimation is not feasible, one can approximate the target class by a simpler
model. Instead of a density this model captures the data structure and new objects are
projected onto this model. The reconstruction error, the difference between the original object
x and the projected object p(x), indicates the resemblance of a new object to the original
target distribution. We denote this distance by d(x, Xt), where Xt is the training set. Two
types of models are distinguished: the clustering approaches and the subspace approaches.
The difference between x and p(x), called the reconstruction error, is used to characterise
how well an object fits the model, and how likely this object is an outlier.

The clustering-based classifiers include data clustering or compression methods like Learn-
ing Vector Quantisation (LVQ), k-means clustering [Bishop, 1995, Jiang et al., 2001] or a self-
organising map (SOM) [Kohonen, 1995, Marsland, 2001]. In these methods, the target class is
characterised by a few prototype objects ck ∈ Xt. The minimum distance from the test object
to the nearest prototype object is often used as a distance measure between a new object and
the target class:

d(x, Xt) = min
ck∈Xt

‖x− ck‖ (2.4)

The methods use different approaches to obtain the prototype locations. LVQ and k-means
place the prototypes as best as possible in the mean-square-error sense by iteratively updating
the prototype positions; figure 2.4(e). k-means clustering uses an expectation-maximisation
algorithm to update the prototypes [Dempster et al., 1977, Bishop, 1995], while LVQ applies a
gradient descent type method [Haykin, 1999].

SOM incorporates an extra constraint to form a low-dimensional manifold, often 2 or 3
dimensional, which makes it possible to visualise high dimensional data in a 2 or 3D plot.
Because distances to the prototypes are used, these methods are sensitive to rescaling of
features. The number of prototypes should be given by the user and sometimes also the
number of training epochs is required.

Nearest neighbour

A method that avoids the optimisation of the prototype locations, is the nearest neigh-
bour method. It uses all objects in the training set as prototypes [Knorr et al., 2000,
Harmeling et al., 2005], but obviously, some condensing can be applied [Hart, 1968]. When
many more objects are available, one can utilise not only the nearest prototype, but also take
information of the next nearest neighbours into account. We denote the k nearest neighbour
of an object x in Xt as x(k). One can define several distance measures:

dk(x, Xt) = ‖x− x(k)‖ distance to the k-th nearest neighbour (2.5a)

da(x, Xt) =
1

k

k∑

i=1

‖x− x(i)‖ average distance to the k nearest neighbours (2.5b)

dµ(x, Xt) = ‖x− 1

k

k∑

i=1

x(i)‖ distance to the average of the k nearest neighbours (2.5c)

The first measure (2.5a) only considers the distance to the k-th nearest neighbour. Measures
(2.5b) and (2.5c) include some information of closer neighbours. (2.5b) averages the distances
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of the neighbours, making it more sensitive to density changes in the data; see figure 2.4(f).
(2.5c) computes the distance to the average of the neighbours. It therefore becomes sensitive
to the direction in which the neighbours are distributed. Obviously, when k = 1, all three
methods are identical. It appears that these methods work well in higher dimensional feature
spaces [Harmeling et al., 2005]. The density estimation in these spaces fails, but the nearest
neighbour distances are still indicative for outliers.

To incorporate information of the local density, one can look at the local nearest neighbour
distances. One can compare the distance of a new object x to its nearest neighbour x(1) in
Xt, with the nearest neighbour distance of this object [Tax, 2001]. When this first distance is
larger than the second, object x is likely an outlier. Indicating the first nearest neighbour by
x(1) and its nearest neighbour by x(1)(x(1)), this classifier can be described by:

dNN(x, Xt) =
‖x− x(1)‖

‖x(1) − x(1)(x(1))‖
(2.6)

This method is very noise sensitive, and a single outlier in the training set results in a very
high false positive rate. On the other hand, it can work with a very low sample size and does
not contain free parameters to optimise.

2.1.3 Subspace-based classifiers

The second type of reconstruction methods includes the subspace models. When the data is
very high dimensional this method might be preferred since the nearest neighbour distance
loses its meaning. [Beyer et al., 1999]. In such cases it can often be assumed that the target
data is distributed in subspaces of much lower dimensionality.

For data in a linear subspace often Principal Component Analysis (PCA) [Jolliffe, 1986] is
used. PCA finds the orthogonal subspace which captures the variance in the data as best as
possible, in the square error sense. When the basis vectors w are stored in an N ×N ′ matrix,
object x is reconstructed onto this subspace by:

p(x) = w(wTw)−1wTx = Px, (2.7a)

dPCA(x, Xt) = ‖x− p(x)‖ (2.7b)

The number of basis vectors N ′ is optimised to preserve a certain, user defined, fraction of
the variance in the data. Similar to (2.4), the Euclidean distance from the original x and the
reconstructed object p(x) is used as resemblance measure [Tax, 2001, Shyu et al., 2003]. An
example of the PCA-based classifier is shown in figure 2.4(g).

There are several non-linear subspace methods. Next to the self-organising map,
there are the auto-encoders, auto-associative or Diabolo networks [Baldi and Hornik, 1989,
Surace et al., 1997]. These are neural network approaches that learn a low dimensional non-
linear representation of the data. A standard feedforward neural network is trained to repro-
duce the input patterns x at its output layer. One of their hidden layers contains a small
number of hidden units which works like an information bottleneck. Similar to (2.4), the
difference between the input x and output p(x) defines the reconstruction error. To obtain a
small reconstruction error, the networks are forced to train a very compact representation of
the data. When just one hidden layer is used, a linear Principal Component solution is found
[Bourlard and Kamp, 1988]. Using more hidden layers with non-linear transfer functions the
neural network describes a more flexible, non-linear subspace. Although this method is very



2.2 Domain-based one-class classifiers 21

−5 0 5

−5

0

5

(a) Gaussian density

−5 0 5

−5

0

5

(b) MoG density

−5 0 5

−5

0

5

(c) Parzen density

−5 0 5

−5

0

5
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Figure 2.4: Examples of statistics and domain driven one-class classifiers (continuous line).
The principles behind some one-class classifiers are denoted by dotted lines. The threshold
was set to reject θ = 0.01 of the target class. For 1-NN the threshold was set on the averaged
nearest neighbour distance.

flexible, it requires a predefined number of layers, the sizes of the layers and learning rates.
It can happen that the resulting decision boundary is actually not closed around the target
class.

2.2 Domain-based one-class classifiers

In the domain-based methods just the boundary of the target class is determined. Because
hardly any information on the statistics of the target data is used, these methods become
insensitive to the specific sampling and density of the target class. Such methods describe
the target class boundary, or the domain, and not the class density. This can be a large
advantage for applications where only the domain in feature space can be indicated, but the
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genuine density distribution is unknown. By their focus on the decision boundary, these
methods are often most influenced by the outliers in the training set, and are very dependent
on the suitable scaling of the features.

k-centres one-class classifier

The first approach is the k-centres method that covers the dataset with balls with equal radius
[Hochbaum and Shmoys, 1985, Ypma and Duin, 1998], it has a resemblance with the covering
numbers by Kolmogorov [Kolmogorov and Tikhomirov, 1961], also called the k-medoids clus-
tering [Hastie et al., 2001]. The k ball centres ck are placed such that the maximum distance
of training objects to the nearest centre is minimised. The distance from the target class to a
new object is measured as a distance to the closest centre:

dk−c(x, Xt) = min
ck∈Xt

‖x− ck‖ (2.8)

To optimise ck a forward search after a random initialisation is used and like in the mixture
of Gaussians the number of balls, k, has to be set beforehand. Unfortunately, by the equal
radii for all of the balls and the difficult optimisation, it appears that this procedure is
very unstable. Usually the best solution over a set of random initialisations is chosen. This
requires that the user has to supply a maximum number of trials.

SVDD

A more flexible approach is the Support Vector Data Description (SVDD) method. It finds
the hypersphere, parameterised by a centre a and a radius R, around the dataset that has
minimal volume [Tax and Duin, 2004]. Its optimisation is basically:

min
a,R

R2 (2.9a)

s.t. ‖xi − a‖2 ≤ R2, i = 1, . . . , n (2.9b)

It is the one-class variant of the support vector machine [Vapnik, 1998] and it has a similar
type of quadratic optimisation problem to solve during its training. Analogous to the normal
support vector machine, a dual formulation can be derived that is completely in terms of inner
products. By replacing the normal inner products (xi · xj) by a kernel function K(xi,xj) the
flexibility of the model can be increased. The distance of a test object x to the sphere centre,
in feature space, can then be computed by:

dSV DD(x, Xt) = K(x,x)− 2
∑

i

αiK(x,xi) +
∑

i,j

αiαjK(xi,xj) (2.10)

The weights αi are obtained by quadratic optimisation [Tax, 2001]. To make the SVDD more
robust, slack variables can be introduced that allow to have a few training objects outside
the boundary. The SVDD can be extended to include outlier objects in its training. Instead
of using only the constraints that the target objects should be inside the hypersphere,
constraints can be added to force the outliers outside the hypersphere. In that case we obtain
a classifier, with the extra feature that it encloses the target class completely [Tax, 2001].
We describe SVDD in more details in the next chapter.
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One-class Support Vector Machine

When domain-based classifiers are applied to data represented in a vector space, they should
envelop the target class from all sides because outliers can be expected in all directions. This
constrains the geometrical shape of the classifier. In most cases these classifiers are ball-shaped,
or consist of several balls. This shape constraint can be removed, when one transforms the
data to a new representation. Consider for instance a similarity representation. Objects are
now not represented by externally defined features, but by their relative similarity to other
objects. The radial basis function kernel in the support vector machine is an example. Objects
close to the target data have high similarities, and are represented far away from the origin
of the similarity space. Outliers on the other hand, are mapped close to the origin of this
similarity space. Outliers that are widely scattered in the original feature space, are therefore
focused in a very specific corner in the similarity space by this transformation. This simplifies
the construction of a classifier significantly.

This approach to outlier detection is followed by [Schölkopf et al., 2001,
Manevitz and Yousef, 2001, Rätsch et al., 2002]. One tries to find the optimal linear
hyperplane that separates the target data with the largest margin from the origin. It results
in a optimisation problem that is very similar to the support vector machine or the SVDD, and
is also called the One-Class Support Vector Machine, oc-SVM. It can be kernelised, and in
practice most often the RBF kernel is applied. But other similarity measures, like a Hausdorff
distance kernel to compare images [Barla et al., 2002], can be used as well. It appears that
when one uses an RBF kernel in the SVDD, it reduces to the oc-SVM. In that case K(x,x) = 1
and the classifier becomes linear in terms of K(x,xi):

doc−SV M(x, Xt) = −
∑

i

αiK(x,xi) (2.11)

Furthermore, the quadratic optimisation of the classifier can be simplified to a linear
programming approach, resulting in the LP one-class classifier [Campbell and Bennett, 2000].

Single-Class Minimax Probability Machine

A similar approach is taken in the Single-Class Minimax Probability Machine (MPM)
[Lanckriet et al., 2003]; see figure 2.4(h). Here a hyperplane is fitted such that the Ma-
halanobis distance from the origin to the closest point on the hyperplane is maximised.
The Mahalanobis distance uses the covariance matrix of the target data, thus taking some
information on the distribution of the target class into account. The final classifier is identical
to (2.11), but the weights αi are not sparse. The optimisation on the other hand appears to
be much simpler, it requires the inverse of an adapted kernel matrix.

Linear programming data description

When instead of similarities, like the RBF kernel representation, distances between objects x
and the training set Xt are given, the outliers are not close to the origin, but far away. To
obtain a tight description of the target class in this case, one should put a decision boundary as
close as possible to the origin. One can thus minimise the L1 distance ρ of a hyperplane to the
origin in the distance representation, and the Linear Programming Data Description (LPDD)
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is obtained [Pe֒kalska et al., 2003]; see figure 2.4(i). It results in the following formulation:

min ρ +
1

ν n

n∑

i=1

ξi (2.12a)

s.t. wT‖xi − xj‖1 ≤ ρ + ξi, i, j = 1, 2, . . . , n (2.12b)

∑

j

wj = 1, wj ≥ 0, ρ ≥ 0, ξi ≥ 0. (2.12c)

Here, ν is a user defined complexity parameter, indicating how strictly all training objects
should be classified as target objects. The final classifier is linear in the distance representation:

dLPDD(x, Xt) =
∑

i

wi‖x− xi‖1 − ρ (2.13)

In order to make the classifier robust against outliers in the training set i.e. objects
with large values for ‖x − xi‖1, the distances can be transformed by the sigmoid function
sigm(‖x− xi‖1), such that for large values, the resulted value is bounded. For the sigmoid a
suitable parameter for its slope has to be defined.

We have not described all proposals for a one-class classifier in the literature, but most of
the principles and assumptions behind their architectures and assumptions have been covered.
The next sections introduce some new one-class classifiers. We also compare performances of
one-class classifiers for various types of data.



Chapter 3

Minimum volume enclosing ellipsoid
data description

In this section we propose to use the minimum volume enclosing N-ellipsoid (MVEE)1 as a
description of a target class. We investigate several variants of such descriptor. We start from
determining the MVEE based only on given training-target objects. The MVEE is estimated as the
smallest volume N-ellipsoid that encloses all target objects. Secondly, the robust estimation of
the MVEE is investigated. Therefore, we assume that some outliers are present in the training
data. By introducing slack variables we allow some training objects to be outside the ellipsoid
. Finally, we investigate the estimation of the MVEE when few labelled outlier objects are
available. We introduce slack variables for both classes and we minimise the volume of MVEE is
such a way that the sum of slacks is also minimised. If objects from target or outlier class are
misclassified the value of their slack variables are proportional to their distances to the surface
of the N-ellipsoid. We allow misclassifications of objects from both classes if the volume of
the N-ellipsoid is sufficiently small. An additional parameter is introduced that determines
the trade-off between the volume of an N-ellipsoid and the sum of slack variables.

We expect that objects from the target class are close in the representation space R
N . This

standard assumption is called the compactness hypothesis [Duin, 1999] and it characterises
well behaved representations. The second assumption we make is a more strict one: we assume
unimodality of the target class. Therefore, this suggests that we can enclose objects from the
target class in some kind of a hull, possibly an N-sphere. However we also want our model
to be scale invariant. This is why we use the affine deformations of an N-sphere, which is an
N-ellipsoid.

The minimum-volume enclosing N-ellipsoid problem has been studied for over 50 years.
As early as 1948 (possibly even earlier), [John, 1948] discussed this problem in his work on
optimality conditions. [Barnes, 1982] provides an algorithm for this problem based on a ma-
trix eigenvalue decomposition. [Khachiyan and Todd, 1993] first used interior-point methods
in developing an algorithm and a complexity bound for the closely related maximum-volume
inscribed N-ellipsoid problem (MVIE), together with a linear reduction from MVEE to MVIE; the
complexity of their algorithm for finding an ǫ-optimal N-ellipsoid is O(n3.5 ln(nR

ǫ
) ln(N ln R

ǫ
))

arithmetic operations, where N is the dimensionality of data and n the number of objects.
Here, R is defined such that the convex hull of the given points contains the unit N-sphere
centred at the origin and is contained in the concentric N-sphere of a given radius R, and ǫ
is a relative measure of non-optimality. [Nesterov and Nemirovskii, 1994] obtain a complex-

1Similar to a N-sphere an N-ellipsoid denotes an ellipsoid in N dimensions.
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ity bound of O(n3.5 ln(nR
ǫ

)) operations, and more recently [Khachiyan, 1996] has reduced this
to O(n3.5 ln(n

ǫ
)) operations. [Zhang, 1998] presents interior-point algorithms for the maxi-

mum volume inscribe N-ellipsoid, based on various equation system reduction schemes. In
2003, [Zhang and Gao, 2003] extended their earlier results and compare different practical al-
gorithms for the maximum-volume inscribed N-ellipsoid problem. [Vandenberghe et al., 1998]
and [Toh, 1999] also consider the minimum volume N-ellipsoid problem as a special case of
the more general maximum determinant problem.

In this section we investigate several variations of the maximum determinant formulation
of the MVEE problem [Toh, 1999], to be applied to the one-class classification problem. In
particular, we introduce the robust estimation of the MVEE and the estimation of an ellipsoid
when some labelled outlier objects are available.

3.1 Minimum Volume Enclosing Ellipsoid

Our concern is with covering n given points Xt := {xi,xi ∈ R
N , i =, 1 . . . , n} with an ellipsoid

of the minimum volume. To avoid trivialities, we make the following assumption, which
guarantees that any ellipsoid containing {x1,x2 . . .xn} can be computed in R

N :

Assumption 3.1 There is a subset of objects {x1, . . . ,xN+1} ⊂ Xt which is affinely indepen-
dent.

This assumption is necessary since the computation of not fully dimensional ellipsoid is not
trivial [Boyd and Vandenberghe, 2003].

We now state the formal definition of an ellipsoid.

Definition 3.1 An ellipsoid E ⊆ R
N is a set described by a centre c ∈ R

N and an N × N
symmetric positive definite matrix E such that

EE,c := {x ∈ R
N |(x− c)T E(x− c) ≤ 1} (3.1)

where E determines shape and orientation of the N -ellipsoid EE,c. In particular, the axes of E
are eigenvectors of E and the length of the axes is given by [

√
λ1, . . . ,

√
λN ], where [λ1, . . . , λN ]

are the corresponding eigenvalues of the matrix E.
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We denote the positive definiteness of E by E ≻ 0, this
is equivalent to xT Ex > 0, ∀x ∈ R

N or λi > 0,∀i. When
E is not positive definite (E 6≻ 0) or semipositive defi-
nite (E 6� 0), equation (3.1) describes any quadratic set.
As we note further in this section and appendix A, the
positive definite cone R

N
+ of feasible solutions of E helps

us to model such a descriptor. We can also note that the
ellipse E induces a norm on R

N via ‖x‖E :=
√

xT Ex.
Therefore, Euclidian distances are treated differently in
different directions. −5 0 5

−5

0

5

c

Figure 3.1: Minimum volume en-
closing ellipsoid.

The volume of EE,c is given by the following formula [Grötschel et al., 1998]:

VEE,c
=

π
N
2

Γ(π
2

+ 1)

1√
det(E)

=
π

N
2

Γ(π
2

+ 1)

N∏

i=1

1√
λi

(3.2)

where the first ratio is the volume of the unit N-sphere. By taking the logarithm of equation
(3.2):

ln VEE,c
= ln

(
π

N
2

Γ(π
2

+ 1)

)
− ln

√
det(E) (3.3)

Thus we can see that minimising the volume of E is equivalent to maximising the square root
of the determinant of the matrix E. Under the assumption 1, a natural formulation of a
minimum volume ellipsoid enclosing all data xi ∈ Xt is:

min
E

−
√

det(E), (3.4a)

s.t. (xi − c)T E(xi − c) ≤ 1, ∀i = 1, . . . , n, (3.4b)

E ≻ 0. (3.4c)

Such formulation of the problem of finding minimum volume ellipsoid that encloses all objects
xi is not a convex program [Nesterov and Nemirovskii, 1994]. However by changing variables:

M =
√

E z = c
√

E (3.5)

we get convex and simpler problem. Where we used the property of determinant
(det(X))k = det(Xk), the square root of the matrix X is defined as

√
X = V T

√
D[dii]V ,

where
√

D[dii] is an element-wise square root of eigenvalues.
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Now we can rewrite the problem (3.4) as:

min
M

− ln det(M) (3.6a)

s.t. (Mxi − z)T (Mxi − z) ≤ 1, ∀i = 1, . . . , n (3.6b)

M ≻ 0. (3.6c)

which is now a convex program. Such formulation of the problem of finding the minimum
volume enclosing ellipsoid can be solve using the conic programming [Lobo et al., 1998].

However, the optimisation (3.6) can be simplified further by mapping data from R
N to

R
N+1 and then compute the MVEE in the augmented space; see figure 3.2. The mapping is

done by adding one additional feature, equal to a constant, to each object xi ∈ Xt. In our case
the constant equals one. Next, we minimise the volume of the ellipsoid in R

N+1 centred at the
origin. To show that those two optimisations are equivalent, due to linear transformations,
we denote the set of parameters as:

R
N → R

N+1, xi → x̃i, E → M̃, c→ 0 (3.7)

Therefore, the volume of the new ellipsoid EM̃,0 centred at the origin is optimised. To show
that the parameters of the ellipsoid EE,c can be computed from the parameters of the ellipsoid
EM̃,0 we decompose x̃ and the shape matrix M̃ as follows:

x̃i =

[
1
xi

]
, M̃ =

(
s vT

v H

)
(3.8)

to decide whether any object xi is inside or outside the ellipsoid EM̃,0, it is first mapped to

R
N+1 and then multiplied by the shape matrix M̃ :

[
1
xi

]T (
s vT

v H

)[
1
xi

]
= s + 2xT

i v + xT
i Hxi

= s− 2xT
i H z̃ + xT

i Hxi

(3.9)

Since the intersection of the ellipsoid EM̃,0 with the subspace of the data is an ellipsoid in R
N ,

equation equation (3.9) should satisfy the following inequalities:

x̃T
i M̃ x̃i ≤ 1

(xi − z̃)T H(xi − z̃) + s− z̃T H z̃ ≤ 1

(xi − z̃)T δ−1H(xi − z̃) ≤ 1, where δ = 1 + z̃T H z̃− s

(3.10)

where we substituted v by −H z̃. By comparing inequality (3.10) with inequality (3.6) we can
see that:

z = z̃, M = δ−1H
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(a) (b) (c)

Figure 3.2: Different projections of an ellipsoid computed in R
N+1 (here N = 2), denoted

by gray coloured patch and an ellipsoid in R
N denoted by black line. The centres of ellipsoids

are denoted by {◦} and {x} respectively and the data is denoted by {•}. (a) View on added
feature R

N → R
N+1 (b) General view in R

N+1. (c) Projection of the ellipsoids and data to
original R

N .

Therefore, the minimisation (3.6) can be rewritten as:

min
M̃

− ln det(M̃), (3.11a)

s.t. x̃T
i M̃ x̃i ≤ 1, ∀x̃i ∈ X̃t, (3.11b)

M̃ ≻ 0. (3.11c)

The dual of the minimisation (3.11) is (see Appendix A.2 for a derivation):

max
αi

ln det
n∑

i=1

αix̃ix̃
T
i , (3.12a)

s.t.
n∑

i=1

αi = N + 1, (3.12b)

0 ≤ αi ≤ 1, ∀i = 1, . . . n. (3.12c)

Where αi = 0 for all objects x̃i ∈ X̃t inside the ellipsoid EM̃,0 and αi 6= 0 for objects on the
surface of the ellipsoid. Only objects for which αi 6= 0 determine the ellipsoid.
The centre c and the shape matrix E of ellipsoid EE,c is computed from this sparse solution:

M̃ =

(
s vT

v H

)
=

n∑

i=1

αix̃ix̃
T
i

E = (δ−1H)T (δ−1H) and c = −H−1v(E)−1/2

(3.13)

Next, we use the MVEE to describe a target class in one-class classification problems.
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Figure 3.3: Examples of the MVEE for three datasets.
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data description.

Figure 3.3 shows three examples of the minimum volume el-
lipsoid estimated on 2D toy problems. We can see that for
the first problem, figure 3.3(a), the MVEE model fits well the
given data. However, because at least N + 1 training objects
need to be on the surface of the MVEE, we expect a large target
rejection rate. Therefore, we change the threshold from 1 to
1 + (xi − c)T E(xi − c), where xi is the closest object, inside
the MVEE, to the surface of the MVEE; see figure 3.4.

For the problem in figure 3.3(b), a more flexible descriptor is needed, e.g. the minimum
spanning tree data descriptor described in next section. However, if we fit the ellipsoidal
description to the data, there is going to be either a large part of a genuine target class
outside the descriptor or large empty region inside the descriptor. Such empty region might
be an indication of a region in a representation space where a non-target class is located.

In figure 3.3(c) the data distribution has an ellipsoidal shape, however the estimation of
parameters, E and c, of the ellipsoid is largely influenced by a single object. We can pose
the following question whether this object is a genuine target object or atypical, therefore an
outlier object in the training set? In the next section, we change optimisation (3.6) into a
more robust estimator of the MVEE, so that the parameters E and c are only dependent on the
bulk of data.

3.2 Robust estimation of the minimum volume enclos-

ing N-ellipsoid

We have noticed that in figure 3.3(c) although the bulk of data has an ellipsoidal shape the
MVEE is mostly determined by a single object which is remote from the bulk of the data. We
can pose two hypotheses: either the object is a genuine target object and the large empty
region inside the ellipsoid is due to sampling of the target class or since the object is remote
from the bulk of the data we treat it as an outlier, i.e. an atypical target object.

To determine the bulk of the data and a set of potential outliers in the training set we
assign a slack variable ξi ≥ 0 to each object from the training set Xt. During the optimisation
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of the MVEE we add the sum of slacks to the determinant of the matrix M̃ . Additionally, a
parameter C ≥ 0 is introduced, to determine the trade-off between the volume of E and the
sum of slacks. The value of C is crucial, it indicates whether we focus more on the minimisation
of the volume of the ellipsoid E or on enclosing a large fraction of the data. The optimisation
(3.6) can be now written as:

min
M̃,ξi

− ln det(M̃) + C

n∑

i=1

ξi, (3.14a)

s.t. x̃T
i M̃ x̃i ≤ 1 + ξi, ∀i = 1, . . . , n, (3.14b)

M̃ ≻ 0, ξi ≥ 0, ∀i = 1, . . . , n. (3.14c)

Setting the parameter C is not straightforward, there is no natural indication of its value.
However, we can notice that the optimisation of (3.14) resemble the optimisation of SVM and
as in ν-SVM [Schölkopf et al., 2000b] we can modify the optimisation such that the parameter
becomes easier to set. By using a similar trick as [Schölkopf et al., 2000b] we modify the
optimisation (3.14) into:

min
M̃,ξi

− ln det(M̃) +
1

n

n∑

i=1

ξi + νρ, (3.15a)

s.t. x̃T
i M̃ x̃i ≤ ρ + ξi, ∀i = 1, . . . , n, (3.15b)

M̃ ≻ 0, ξi ≥ 0, ρ ≥ 0, ∀i = 1, . . . , n. (3.15c)

where ν is now a user specified parameter that equals the fraction of objects outside the
optimised ellipsoid EE,c.
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Figure 3.5: Robust MVEE computed by (3.14) with different value of trade-off parameter ν.
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The dual of the minimisation is (see appendix A.3 for derivation):

max
αi

ln det
n∑

i=1

αix̃ix̃
T
i , (3.16a)

s.t.
n∑

i=1

αi = ν, (3.16b)

0 ≤ αi ≤
1

n
, ∀i = 1, . . . , n. (3.16c)

ρ∗ and slack variables ξ∗i can be computed from the Kuhn-Tucker conditions for the optimal
solutions (denoted by ∗):

α∗
i (ρ∗ + ξ∗i − x̃T

i M̃∗x̃i) = 0, ∀(α∗
i =

1

n
)

where ρ∗ = x̃T
i M̃∗x̃i − ξ∗i , ∀(0 ≤ α∗

i <
1

n
)

(3.17a)

(
1

n
− α∗

i )ξ∗i = 0, ∀(0 ≤ α∗
i <

1

n
) (3.17b)

By introducing ξi and ν we allow that the fraction ν of objects
from the target class is outside the ellipsoid E . Figure 3.5
shows the same data as in figure 3.3(c), however now the
ellipsoid is optimised only on a certain fraction of the target
class. Objects outside the description are determined by the
optimised weights αi. Training objects inside an ellipsoid EE,c

have α∗
i = 0, objects on the surface the ellipsoid 0 < α∗

i < 1
n
,

and objects outside the ellipsoid α∗
i = 1

n
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Figure 3.6: Robust MVEE

with ν = 0.05

Comparing the presented estimator to the existing robust solutions e.g. the minimum covari-
ance determinant [Rousseeuw and van Driessen, 1999] the presented approach is posed as a
conic problem therefore it does not need reversal recomputations as existing methods.

3.3 Estimation of the minimum volume enclosing

N-ellipsoid in the presence of an outlier class

In this section we investigate the algorithm to determine the ellipsoid, that describes the target
class, when a few labelled, outlier objects are available during training. There are several ways
in which we can formulate the optimisation problem. For example, giving n target objects
and m outlier objects, (k = n+m), one can demand that the optimised ellipsoid has all target
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objects inside and the sum of distances from the misclassified outlier objects to the surface of
the ellipsoid is minimal. This optimisation problem can be formulated as follows:

min
ξi

−
m∑

j=1

ξj, (3.18a)

s.t. x̃T
i M̃ x̃i ≤ 1, ∀i = 1, . . . , n, (3.18b)

x̃T
j M̃ x̃j ≥ 1− ξj, ∀j = 1, . . . ,m, (3.18c)

M̃ ≻ 0, ξj ≥ 0, ∀j = 1, . . . ,m. (3.18d)
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Figure 3.7: MVEE computed by (3.18) (a) and (3.19) (b), denoted by the continues line. The
doted line denotes MVEE computed by (3.12). The target objects are marked {•} and a single
outlier object by {+}.

The example of an ellipsoid given by the optimisation 3.18 is shown in the left figure 3.7,
it is denoted by the continuous line. For comparison we also plot the ellipsoid given by the
optimisation (3.12). The target class is denoted as {•} and a single outlier object by {+}.
It should be noticed that (3.18) does not guarantee small volume of the ellipsoid. Since we
minimise sum of slacks, there is not a unique solution to the optimisation. However, by adding
an additional constraint that the ellipsoid should have a minimum volume a unique solution
can be obtained.

min
M̃,ξi,ξj

− ln det(M̃) + C1

n∑

i=1

ξi + C2

m∑

j=1

ξj, (3.19a)

s.t. x̃T
i M̃ x̃i ≤ 1 + ξi, ∀i = 1, . . . , n, (3.19b)

x̃T
j M̃ x̃j ≥ 1− ξj, ∀j = 1, . . . ,m, (3.19c)

M̃ ≻ 0, ξi, ξj ≥ 0, ∀(i, j). (3.19d)
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where C1 and C2 are two trade-off parameters that allow to treat errors on the target and
outlier classes differently. Similarly to the optimisation problem (3.15) we can rewrite (3.19)
into:

min
M̃,ξi

− ln det(M̃) +
1

k

k∑

i=1

ξi + νρ, (3.20a)

s.t. ωix̃
T
i M̃ x̃i ≤ ωiρ + ξi, ∀i = 1, . . . , k, (3.20b)

M̃ ≻ 0, ξi, ν ≥ 0, ωi ∈ {1,−1}. (3.20c)

which simplifies the dual. ωi denotes the label of object xi ∈ Xt, i.e. ωi = 1 for the target
objects and ωi = −1 for the outlier objects. k = m + n and ν is a user specified parameter
indicating the fraction of allowed misclassifications from both classes.

The dual to minimisation (3.20) is (see appendix A.4 for a derivation):

max
αi

ln det
k∑

i=1

ωiαixix
T
i (3.21a)

s.t.
k∑

i=1

ωiαi = ν, (3.21b)

0 ≤ αi ≤
1

k
, ∀i = 1, . . . , k. (3.21c)

ρ∗ and ξ∗i can be computed from Kuhn-Tucker conditions of the optimal solution:

α∗
i (ωiρ

∗ + ξ∗i − ωix
T
i M̃∗xi) = 0, ∀(α∗

i =
1

k
), (3.22a)

(
1

k
− α∗

i )ξ∗i = 0, ∀(0 ≤ α∗
i ≤

1

k
). (3.22b)

The optimisation (3.20) does not only minimise the slacks ξi but also the volume of the ellipsoid
E . Therefore given ν the solution is unique. An example of an ellipsoid obtained by (3.21)
is shown in figure 3.7(b). We can see that volume of the obtained ellipsoid is smaller than
the ellipsoid in figure 3.7(a). The volume of the ellipsoid optimised by (3.19) is also smaller
than the volume of the MVEE, however one of target objects is misclassified by the optimised
ellipsoid in figure 3.7(b).

3.4 Experiments

In this section we compare the performance of the minimum volume enclosing ellipsoid data
description with several similar parametric models: minimum volume enclosing box (MVEB),
minimum volume enclosing sphere (MVES) and a single Gaussian description. The problems
(3.12), (3.16) and (3.21) are optimised using YALMIP [Löfberg, 2004] and SeDuMi [Sturm, 1999]
optimisation packages.
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Figure 3.8: The minimum volume enclosing box (dotted line), sphere (dashed line), ellipsoid
(continuous line), trained on two datasets.

First we compare the MVEE to the minimum volume box and the minimum volume N-sphere.
The minimum volume enclosing box is defined as a set of 2N hyperplanes perpendicular to
coordinate axes:

I{min
xi∈Xt

xij ≤ xj ≤ max
xi∈Xt

xij}, ∀j = 1, . . . , N (3.23)

The output of the classifier is defined as a distance to the closest hyperplane. The smallest
enclosing N-sphere can be computed by (2.9) using a linear kernel xT

i xj. The number of
parameters to be estimated is N + 1. Finally, the number of parameters in the MVEE is
N2 + N . Examples of the decision boundaries computed by these three classifiers are shown
in figure 3.8. The classifiers are computed with the threshold θ = 0.05.

In tables 3.1 and 3.2 the volume of the classifiers and the classification error, Λ, for each
of the three classifiers are shown. The classifiers were trained on letter and mfeat-kar datasets
[Hettich et al., 1998]. Each of the classes in the datasets was set to be a target class and all
other classes to be an outlier class. The letter dataset is a 16 dimensional problem with about
750 objects per class. The dataset contains the 26 capital latin letters. The mfeat-kar dataset
is a 64 dimensional problem with 200 objects per class. The classes consist of ten arabic digits.
The target class was split half-half on training and test set and the classifiers were only trained
on a target class. The volume of classifiers was computed for the threshold set to accept all
training objects.

From the tables it can be seen that for the two recognition problems, letters and digits, the
ellipsoidal description has the smallest classification error. This indicates that such description
fits the problem well. Moreover, the volume of the ellipsoids is several orders smaller than
volumes of MVEB and MVES. This also indicates good fit on the target class. A descriptor with a
small volume might reject outlier objects that were not represented in the test set, non-digit or
letter classes. Although one might argue that the MVEE is the most complex of three classifiers
and the computationally most expensive to train, the MVEE required only to compute max and
min feature values, MVES can be computed by linear programming, to compute MVEE we need
to use conic programming.

We also compare the performance of the MVEE with a single Gaussian description.
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Table 3.1: Results for four classifiers trained on each of UCI letter dataset’s classes. VB, VS ,
VG and VE denote volumes of MVEB, MVES, a single Gauss and MVEE. The volumes in the table
should be multiply by factors from the first row. ΛB, ΛS , ΛG and ΛE are respective mean
errors of the classifiers on a test set.

target class VB × 1014 VS × 1016 VG × 1014 VE × 1010 ΛB ΛS ΛG ΛE

A 15.0(1.9) 8.2(2.3) 1.4(1.7) 11.3(2.7) 41.1(1.1) 34.7(0.9) 8.4(3.1) 6.9(1.0)
B 0.9(0.3) 11.5(5.9) 1.0(0.5) 1.9(0.4) 43.5(0.6) 39.4(1.4) 11.5(2.0) 8.5(1.1)
C 3.9(1.0) 2.5(0.8) 0.3(0.1) 4.4(0.5) 43.7(0.5) 35.4(2.5) 13.0(1.8) 9.5(0.9)
D 5.9(1.3) 4.4(0.7) 0.6(0.3) 4.8(0.8) 42.8(0.5) 40.5(0.4) 14.4(1.4) 8.6(1.0)
E 3.9(1.2) 1.7(0.2) 0.1(0.1) 4.4(0.5) 42.1(0.7) 33.8(1.3) 14.1(2.3) 9.6(1.2)
F 7.2(1.8) 7.1(2.1) 0.9(1.2) 6.8(1.5) 44.1(0.4) 40.3(1.9) 16.8(4.0) 9.4(1.3)
G 4.4(1.2) 3.7(1.1) 0.3(0.10) 9.6(1.6) 42.4(0.4) 35.8(1.1) 16.6(0.7) 9.5(1.2)
H 14.4(3.4) 14.8(2.0) 0.10(0.09) 65.1(10.7) 44.4(0.4) 44.8(0.3) 29.4(2.4) 13.4(1.2)
I 1.5(0.3) 2.5(0.2) 41.3(31.4) 7.6(2.6) 43.9(0.2) 40.1(0.6) 19.8(2.7) 7.6(1.5)
J 20.8(3.8) 8.1(1.7) 0.03(0.03) 14.0(2.2) 45.6(0.4) 38.1(0.8) 10.9(1.0) 9.6(1.3)
K 15.9(3.0) 16.6(5.2) 0.01(0.00) 22.0(2.6) 42.3(0.4) 45.3(0.4) 14.7(1.4) 10.5(0.8)
N 37.2(7.2) 51.6(7.8) 0.8(0.7) 13.8(2.1) 43.1(0.2) 43.6(1.3) 18.0(2.3) 8.8(1.5)
M 275.8(69.7) 161.4(66.8) 0.04(0.05) 252.7(37.0) 34.0(1.4) 40.2(0.9) 26.8(3.8) 8.2(1.2)
L 41.3(14.5) 35.3(13.3) 0.10(0.06) 47.3(12.6) 40.6(0.7) 44.2(0.9) 14.5(1.9) 7.6(1.2)
O 1.6(0.5) 4.5(1.6) 13.7(10.1) 3.0(0.8) 42.9(0.2) 36.2(0.8) 14.8(1.9) 7.7(1.1)
P 8.4(2.0) 6.0(0.9) 0.3(0.6) 11.1(2.0) 42.3(1.5) 39.9(0.4) 17.4(5.0) 9.3(1.1)
Q 31.6(6.4) 20.2(5.3) 0.6(0.6) 20.8(2.3) 40.0(0.3) 41.8(1.3) 20.8(2.4) 8.5(0.8)
R 1.8(0.4) 8.8(1.8) 0.2(0.1) 3.8(0.5) 43.4(0.8) 39.9(0.9) 11.7(1.2) 9.2(0.9)
S 12.1(2.3) 9.2(1.3) 0.06(0.06) 21.8(6.0) 43.3(0.2) 38.4(0.5) 20.3(3.2) 9.8(1.6)
T 7.5(0.9) 7.4(0.4) 0.6(0.4) 9.6(2.2) 44.1(0.5) 41.5(0.5) 17.3(2.1) 7.5(0.9)
U 18.2(2.5) 16.0(3.0) 0.1(0.1) 22.5(5.0) 42.6(1.3) 41.9(0.7) 10.8(1.9) 7.2(1.3)
V 3.9(0.6) 4.5(0.5) 0.5(0.4) 4.8(1.1) 42.9(1.0) 37.5(0.4) 5.8(0.6) 7.6(1.4)
W 11.0(4.0) 85.2(42.3) 0.2(0.09) 21.0(6.7) 41.0(1.9) 41.7(3.6) 7.7(0.7) 6.6(1.5)
X 3.5(0.9) 5.9(1.5) 0.7(1.1) 3.8(0.9) 41.1(0.2) 43.1(0.4) 12.8(2.0) 8.5(1.2)
Y 21.3(3.1) 10.1(4.6) 0.04(0.03) 95.8(10.7) 43.2(0.7) 39.4(1.4) 12.3(1.2) 9.4(0.8)
Z 4.8(2.1) 9.7(1.8) 4.9(7.3) 13.0(5.0) 42.2(0.5) 39.2(1.3) 20.9(6.2) 8.7(1.1)

Table 3.2: Results for four classifiers trained on each of UCI mfeat-kar dataset’s classes. VB,
VS , VG and VE denote volumes of MVEB, MVES, a single Gauss and MVEE. The volumes in the
table should be multiply by factors from the first row. ΛB, ΛS , ΛG and ΛE are respective mean
errors of the classifiers on a test set.

target class VB × 1055 VS × 1064 VG × 1045 VE × 1031 ΛB ΛS ΛG ΛE

0 10.1(0.6) 0.3(0.1) 758.4(505.2) 6.7(2.6) 39.6(3.9) 49.9(0.2) 10.6(2.9) 7.4(1.7)
1 355.6(22.0) 171.5(39.1) 3.1(2.3) 335.2(90.0) 36.2(3.5) 49.5(0.4) 15.0(2.6) 13.7(4.3)
2 100.9(5.1) 0.5(0.1) 17.3(9.6) 21.6(5.5) 37.3(3.3) 49.8(0.3) 7.5(2.7) 6.8(1.6)
3 732.8(38.5) 3.9(1.2) 0.3(0.1) 1.7(0.5)× 103 36.2(2.4) 49.9(0.2) 14.5(2.6) 13.5(3.3)
4 2744.7(118.0) 0.9(0.2) 40.8(17.5) 26.6(9.1) 34.9(2.8) 49.8(0.3) 9.1(2.4) 8.0(1.6)
5 4848.6(252.9) 3.8(0.5) 0.01(0.01) 3.5(1.0)× 104 40.8(2.9) 49.4(0.5) 16.7(3.5) 16.5(2.3)
6 371.9(9.1) 0.2(0.04) 18.4(10.3) 97.6(44.1) 34.6(4.1) 49.2(0.4) 12.2(1.6) 8.1(3.5)
7 0.04(0.00) 0.2(0.06) 8.6.(0.8)× 106 0.00(0.00) 29.9(3.4) 49.2(0.5) 6.3(3.5) 6.3(1.7)
8 1.5(0.6)× 104 1.0(0.3) 0.01(0.00) 1.9(0.4)× 105 43.8(2.1) 49.9(0.2) 15.1(2.5) 14.7(1.7)
9 4.0(0.2) 0.4(0.08) 52.7(31.2) 14.9(3.4) 37.9(3.4) 49.6(0.4) 11.3(2.6) 9.3(1.9)
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Figure 3.9: The single Gaus-
sian data description (dashed
line) and the minimum volume
enclosing ellipsoid data descrip-
tion (solid line).

Both classifiers are based on ellipsoids. Although a
Gaussian is based on a covariance matrix of the objects
and the MVEE on the objects on the surface of an ellip-
soid. The difference is clearly visible in figure 3.9. The
volume of a Gaussian data description is larger than the
volume of the MVEE. Therefore, in general we expect a
larger outlier acceptance rate, this can be an undesirable
behaviour in applications where robust statistics are re-
quired. Moreover, the Gaussian description is sensitive
to the type of sampling. If the probability density of a
training set does not represent the probability density of
a test set the estimated decision boundary is incorrect.
For example, imagine a recognition problem in which
one trains a classifier to recognise an apple. One of the
features we are using is colour. However, the proba-
bility of encountering, e.g. a red apple, is different in
different places on the Earth. Therefore, the probabil-
ity density function differs for different test sets, form
different places. However, class domains do not change
because the same apple encountered in different places
is classified with the same label.

In such recognition problems the MVEE outperforms a single Gaussian description. On the
other hand when large and representative training set is available the Gaussian might be a
better model to describe such problem.

In tables 3.1 and 3.2 we compare the errors and the volumes of the two descriptors. The
volume of a Gaussian, with a threshold θ on the pdf of the target class and a covariance matrix
Σ, is computed from equation (3.2). The volume of an ellipsoid with the shape matrix E given
by (see appendix A.1 for derivation):

E =
Σ−1

−2 ln(
√

(2π)Nθ det(Σ))
(3.24)

From the tables we can see that the volume of a Gaussian description is always larger than
the volume of the MVEE. Also on letter dataset the MVEE outperform the Gaussian description.
However, for high dimensional mfeat-kar data the difference in AUCs are not significant. This
is because in high dimensions also the Gaussian description is mostly influenced by objects
on the surface. If data is normally distributed, almost entire dataset is on the surface of the
ellipsoid computed by the Gaussian description.

3.5 Conclusions

We have introduced a new one-class classifier based on the minimum volume enclosing ellipsoid
(MVEE) algorithm. The basic MVEE algorithm has been extended to cope with outliers present in
the training set. Such an algorithm is similar to robust statistics, as the classifier is estimated
on a fraction of objects, that minimises the classifier volume. The estimated fraction of outliers
present in the data is set by the classifier parameter ν.
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In some recognition problems labelled outlier objects might be available during training.
The third proposed algorithm based on MVEE takes to account also labelled outlier objects.
The classifier has the trade-off parameter between its volume and the fraction of misclassified
target and outlier objects.

The proposed classifiers are examples of domain-based one-class classifiers, therefore they
suffer less from different sampling methods. The classifiers can achieve good performance
on the training data that it is not sampled independently and identically from the class
distribution.

We have compared the MVEE with other parametric one-class classifiers: the minimum
volume enclosing box, the minimum volume enclosing sphere and the single Gaussian data
description. In recognition problems where data is normally distributed but has not been
sampled according to its distribution the presented algorithms outperform the single Gaussian
and other parametric models. However, when normally distributed target class has been
sampled well the single Gaussian and the MVEE have similar performance.

As computation of the MVEE is based on outer products between objects. The kernel trick,
as based on inner product relations between objects, can not be used. However, we can
”kernelise” the MVEE algorithm by first mapping the data to a Hilbert space and then mapping
it to lower dimensional space by the kernel PCA. The MVEE can be trained on such data giving
a non-ellipsoidal shape of a decision boundary.
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Minimum spanning tree data
description
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Figure 4.1: The distance of
a new object xk to a MST DD is
measured as the smallest dis-
tance between xk and its pro-
jection p(xk) on an edge of a
graph.

In this section a new one-class classifier is proposed.
To describe the target class, the classifier describes the
training data by a graph, in particular, a Minimum Span-
ning Tree (MST). The classifier is density independent
therefore it is an example of a domain-driven one-class
classifier.
Our goal is to show that although several one-class clas-
sifiers have been proposed, as has been discussed in the
last section, many of them are based on similar assump-
tions. Therefore, the type of recognition problems that
can be handled is also similar.
Most one-class classifiers presented in the previous sec-
tion minimise the spherical volume of a region that cap-
tures the target class, e.g. SVDD or estimates parameters
of an assumed model e.g. µ and Σ of a Gaussian distri-
bution.

This means by assuming some model, e.g. a sphere or a Gaussian density, one fits the
model as good as possible to the given target data. On the other hand classifiers like Parzen
or nearest neighbour are nonparametric models, they can model any type of distribution,
however to do so they require a large amount of data, especially in high dimensional spaces.

Here, we propose a non-parametric classifier which is based on a graph representation of
the training data. The graph is trained to capture the underlining structure of the data. The
basic elements of this classifier are not only vertices but also the edges of the graph. This gives
a much richer representation of the data. By considering edges of a graph as objects from the
target class additional virtual target objects are generated. If our assumptions about the data
are correct, this can help to model a target distribution in high dimensional spaces for small
sample size problems.

[Li and Lu, 1999] introduced a similar classifier, called the Nearest Feature Line Method
(NFLM). In the NFLM one describes a training set by a set of lines between all pairs of objects
from particular class. The new object is classified to one the classes from the training set.

39
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The classification is based on the distance to the nearest line, from the set. In the paper,
it has been shown that the proposed classifier performs well in face recognition problems in
comparison to nearest neighbour methods. However, the NKLM method has several drawbacks.
A test object can be close to a line determined by two training objects, but far from any object
in the training set, therefore the method is sensitive to outliers. Moreover, for a large training
set the testing stage can be computationally expensive as it is required to compute distance
to 1

2

∑C
j=1 nj(nj − 1) lines for each test object. Where nj is a number of objects in a class j

and C is the number of classes.
The idea of describing a dataset by a graph is also not entirely new, during training of a

self-organising map one usually fits a 2D or 3D grid to represent an underling distribution of
the data. However, the result of the training of a SOM is a set of vertices and the edges of the
graph are neglected. Moreover, the size and the dimensionality of the grid should be specified
beforehand. Here, we would like to describe the target data using the entire graph, including
the edges. Moreover, we are interested in a graph description where the structure of the graph
is learned from the data and not specified beforehand.

First, we assume that the target data is distributed in a high dimensional space along a non-
smooth manifold; see figure 4.1. As has been shown by many researches such problems exist
usually when data is represented by row measurements e.g. pixels in hand written characters,
faces, gesture recognition. Since some pixels (features) have small variance, e.g. corner pixels,
information about the data is usually distributed on a lower dimensional manifold than size
of an image. Most of the existing one-class classifiers fail to describe such data correctly as
they are based on a Gaussian or a spherical distribution. They include large regions of the
space perpendicular to the data manifold. This may cause a large outlier acceptance rate.

We could describe the data manifold by non-parametric density estimation e.g. Parzen or
nearest neighbour. However, the finite training set size makes it usually difficult to accurately
approximate the density of a target class by non-parametric models. An other possibility would
be to use subspace methods e.g. kernel PCA [Schölkopf et al., 1998]. However parameters of
such description (parameters of a kernel as well as intrinsic dimensionality of data) have to be
estimated from the given data or to be set by a user.

Also several techniques that are used for the visualisation of high dimensional data could
be used here. For example, techniques like: isomap [Tenenbaum et al., 2000], local linear
embedding [Roweis and Saul, 2000] or multi-dimensional scaling [Gower, 1986]. However, it
is difficult to apply such algorithms to new data without recomputing the model itself. In
addition such algorithms required several parameters to be specified beforehand. Moreover,
the volume of these descriptions are infinite, this again might cause a high outlier acceptance
rate.

Because we compute a connected graph, our second assumption about data is that the
target class is at most unimodal. Therefore, we can assume that there is at least a single path,

which we denote as xi
path−→ xj, between two objects {xi,xj} ∈ Xt such that each object on

that a path also belongs to the target class.

4.1 Minimum Spanning Tree

Since we assumed a small sample size problem, we are interested in a simple graph description,
with as few parameters as possible. Our choice is to use the Minimum Spanning Tree (MST) as a
graph descriptor of the target class. MST does not have any parameter to set and it is sufficiently
flexible to follow a difficult shape of the target class of a non smooth manifold. Moreover, as
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during estimation of MST one minimises the total sum of lengths of edges, the estimation of
the MST can be related to the idea of the maximum likelihood model selection or the minimum
description length. Therefore, for any pair {xi,xj} ∈ Xt we estimate a single path in a graph.
Given the training set Xt by estimating MST one minimises the volume of the target class
descriptor and maximises the probability that objects in the neighbourhood of the estimated
edges of the graph also belong to the target class. In addition we are looking for the graph
with the minimum sum of length of edges which fulfill our assumption about data this can be
related to the minimum description length criterion [Kolmogorov and Tikhomirov, 1961].
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Figure 4.2: Examples of solution given by MST DD for different thresholds θ. The complexity
γ is fixed, the entire MST is considered γ = max.

Training the classifier can be formulated as solving the standard MST problem 1. We are
given a N × n data matrix Xt, from which an n × n adjacency matrix A is computed. The
elements of the adjacency matrix are Euclidian distances between objects eij = ‖xi−xj‖. The
path between two objects {xi,xj} ∈ Xt is defined as a set of edges from the adjacency matrix:

(xi
path−→ xj) ≡ {{eq

kl}pq=1 : eq
kl ∈ A, 1 ≤ k, l ≤ n} (4.1a)

where e1
i·, e

p
·j and eq

·l, e
q+1
l· ∀1≤q≤p−1, 1≤l≤n (4.1b)

where · denotes any index value. Since we would like to compute a connected graph without
loops, this can be formulated as the problem of finding n−1 edges with the following properties:

min
n−1∑

i6=j

(xi
path−→ xj) (4.2a)

s.t ∃!(xi
path−→ xj), ∀{xi,xj} ∈ Xt, i, j = 1, . . . , n. (4.2b)

As the MST problem rises in many theoretical and practical problems several algorithms have
been proposed. The most popular algorithms are the Prim’s [Prim, 1957] and Kruskal’s
[Kruskal, 1956]. The basic structure of the algorithms is presented below. We initial each
algorithm with an edge e∗ of the minimum length.

1[Graham and Hell, 1985] gives a history of the problem, which originates to the work of Czekanowski in
1909.
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Prim MST(Xt)
n vertices xj ∈ Xt, n× n edges eij ∈ A
initialise MST← MST ∪ {e∗},
A← A \ {e∗}
while (|MST| < n− 1)

e∗ij = min(e ∈ A)
s.t. xi ∈ MST, xj ∈ Xt,
MST← MST ∪ {eij}
A← A \ {eij}, Xt ← Xt \ {xj}

end
Algorithm 4.1: Prim’s algorithm.

Kruskal MST(Xt)
n vertices xj ∈ Xt, n× n edges eij ∈ A
initialise MST← MST ∪ {e∗},
A← A \ {e∗}
while (|MST| < n− 1)

e∗ij = min(e ∈ A)
s.t. {xi,xj} 6∈ MST,
MST← MST ∪ {eij}
A← A \ {eij}

end
Algorithm 4.2: Kruskal’s algorithm

The algorithms differ in that the Prim’s algorithm requires that the next edge added be
incident with a vertex in the partial tree, MST, whereas the Kruskal’s algorithm just adds the
next edge that does not form a circuit.

Since the computation complexity of MST is O((n − 1)2 log(n − 1)), it is lower than com-
putation complexity of most machine learning algorithms e.g. SVM O(n3). Recently even less
computationally expensive algorithms have been proposed [Cormen et al., 1990].

4.2 MST DD

The minimum spanning tree data description (MST DD) models a target class by n − 1 edges
of the MST. A new object x is mapped on the n− 1 lines determined by n training objects; see
figure 4.1. The projection of x onto a single line determined by xi,xj ∈ Xt is computed as:

peij
(x) =

[(
xi − xj

‖xi − xj‖

)T

(x− xi)

]
xi − xj

‖xi − xj‖
+ xi (4.3)

The distance of a new objects x to the target class is computed as the minimum distance to
the set of n − 1 edges, therefore either to the line that is determined by each pair in MST or
to training objects Xt that define ends of edges.

if (min(xi,xj) < peij
(x) < max(xi,xj))

dMST DD(x, Xt) = min
eij∈MST

min(‖x− peij
(x)‖, ‖x− xi‖, ‖x− xj‖) (4.4a)

else

dMST DD(x, Xt) = min
eij∈MST

min(‖x− xi‖, ‖x− xj‖) (4.4b)

The decision whether x belongs to the target or outlier class is based on the threshold set on
the distance dMST DD(x, Xt).

hMST DD ≡ I(dMST DD(x, Xt) ≤ θ) (4.5)

The threshold can be determined based on distances between objects in MST, e.g. the mean
length of the edges in the MST. In such a case, MST DD has not got any parameter to be set or
optimised.
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In figure 4.2 examples of the MST DD solutions for a 2D toy problem are shown. We can
see that the MST classifier describes the data in a different way than standard classifiers shown
in figure 2.4. It rather emphasises relations between objects than densities or regions in the
target data. Additionally, we also notice from figure 4.2 that the graph can be simplified, by
removing some edges without changing the class description causing not connected objects.
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Figure 4.3: Examples of solution given by MST DD the same threshold θ and different value of
the complexity γ.

4.3 Complexity parameter

We define the longest path in the MST as the first principal
direction of the graph. The first principle direction is the
nonlinear path along which the variance in the training set
is maximum. The second longest path, without edges that
are part of the first principal direction represents the second
principal direction, as so on. Figure on the right shows the
first and second principle direction in MST denoted by dotted
and dashed lines respectively.
We can simplify the graph representation of data by consid-
ering only a number of principle directions. The computa-
tion of all paths in the graph can be done using Dijkstra’s
algorithm, O(n3), or the Jordan’s algorithm, O(n2 log(n)),
[Cormen et al., 1990]. To simplify the graph description of
the target data we use the Jordan’s algorithm since it is more
computationally efficient and moreover it allows to compute
all paths in MST simultaneously.
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Figure 4.4: First (dot-
ted line) and second
(dashed line) principal
directions in MST.

From the initial n× n adjacent matrix we have simplified a description of the target data
to n− 1 edges. In addition, we introduce a complexity parameter γ which specifies how many
principle directions should be used to describe the target data. Now, the threshold θ can be
set as the error on the fraction of objects, from the training set, that has not been used to
describe the target class.
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Figure 4.3 shows the MST DD with a fixed value of the threshold, θ = 0.2, and several values
of a complexity parameter γ. We can see that the simplest classifier, γ = 1, describes the
region of the data almost as good as the MST DD with maximum complexity, equals to the
complete MST. This is because the intrinsic dimensionality of the data in figure 4.3 equals one.
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Figure 4.5: Simplified
MDS DD.

Therefore, it is sufficient to use a single principle direc-
tion to describe our 2D toy problem. We can simplify
the classifier even further by removing superfluous ver-
texes and associated edges. From the existing graph a
vertex and two associate edges are removed if a distance
between the vertex and its projections onto the new edge
is larger than a specified constant. We use equation
(4.3) to compute the projection of the vertex to the new
edge. If for {xi,xj,xk} ∈ Xt, {eik, ekj} ∈ MST and
‖xk − peij

(xk)‖ ≥ ǫ edges eik and ekj are replaced with
an edge eij in MST DD. Therefore, the complexity of a
classifier can be adjusted to the complexity of the data.
The result of such a simplification of an MST DD is shown
in figure 4.5.

Because in one-class classification problems an outlier class might be not available during
training, the complexity parameter γ needs to be estimated using some assumptions about
the distribution of the outlier class or using some other criterion. This problem is discussed
in the next chapter.

4.4 Experiments

In table 4.1 the comparison of the performance between the MST DD and other one-class clas-
sifiers is shown. The comparison is based on the value of AUC. Results for five UCI reposi-
tory [Hettich et al., 1998] datasets are shown. The name of a target class is indicated in the
brackets, after the name of a dataset. The size of the target class, the outlier class and the
dimensionality of the problem are stated below the names of the datasets. Complexity param-
eters for Parzen and kNN were optimised by the leave-one-out error criterion. For k-means,
k-centres, MoG and SOM, γ was set to 5. One-class PCA retains 0.95 variance of the training set.
For SVDD, MPM and LPDD, γ = 1. In MST DD the complete MST is used, γ = max. The target
class was split half-half between a training and test set and the experiments were repeated 20
times. The threshold was set to 0.1 for all classifiers.

The datasets represent a collection of a small sample size problems, were number of samples
is smaller or similar to the number of dimensions. Therefore, we can see that the MST DD always
performs best but not always significantly.

How similar the prediction of MST DD, is to that of other classifiers can be seen in figure
4.6. The two figures show the characterisation of one-class classifiers by their label disagree-
ments [Duin et al., 2004]. The distance between classifiers is measured on their classifica-
tion labels. Next, the high dimensional representation is mapped to a 2D space using MDS
[Cox and Cox, 1994]. The oracle, the classifier that predict true labels, is added as a com-
parison. The oracle is denoted by O in the figures. From these figures we can see that the
MST DD is most similar, in the sense of predicted labels, to NN, kNN, k-centres and auto-encoder
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Table 4.1: The value of AUC with standard deviations (in brackets) for selection of one-class
classifiers for small sample size problems.

classifier AUC

nist(0) vowel(5) spectf(0) glass(nonfloat) sonar(mines)

200/1800/256 48/480/10 95/254/44 76/9/138 111/60/97

Gauss 97.3(1.3) 93.3 (1.5) 93.3(3.3) 68.0(2.2) 68.0(3.1)
MoG 0(0) 97.6 (1.2) 97.6(3.1) 76.4(2.4) 76.4(3.5)

näıve Parzen 83.6(5.5) 90.2 (1.6) 90.2(3.7) 53.2(2.0) 53.2(3.9)
Parzen 0(0) 97.9 (1.3) 97.9(2.7) 80.5(2.3) 80.5(3.1)
k-means 97.6(0.7) 92.3 (2.2) 92.3(1.7) 69.8(2.5) 69.8(3.7)

NN 86.6(5.7) 92.6 (4.0) 92.6(2.9) 76.3(6.2) 76.3(4.3)
kNN 98.0(0.5) 92.3 (1.7) 92.3(1.5) 69.6(2.9) 69.6(4.8)

auto-encoder 93.2(2.8) 90.7 (1.7) 90.7(6.2) 59.6(3.2) 59.6(6.5)
PCA 98.2(0.8) 90.1 (1.7) 90.1(3.0) 69.6(3.6) 69.6(3.3)
SOM 96.9(0.8) 97.5 (1.1) 97.5(2.1) 80.1(3.0) 80.1(3.4)

MST DD 98.3(0.6) 98.1 (1.2) 98.1(2.6) 81.1(2.8) 81.1(3.1)

k-centres 96.9(0.7) 90.9 (1.3) 90.9(1.6) 66.8(5.1) 66.8(4.1)
SVDD 0.3(0.2) 97.8 (1.1) 97.8(3.3) 76.1(3.3) 76.1(3.2)
MPM 0.3(0.2) 97.0 (1.2) 98.0(7.4) 78.5(3.9) 78.5(3.0)
LPDD 0.3(0.2) 93.4 (1.5) 93.4(3.3) 63.6(3.6) 63.6(2.7)

and it has large distance to density-based classifiers as well as support vector based classifiers
SVDD, MPM. Although the values of AUC for MST DD, PCA and SOM are quite similar, the predicted
labels are different, since the distances, in figures 4.6, between the classifiers are large. Since
the distance to the standard one-class classifiers is large the MST DD might be considered as a
valuable member of a committee where one-class classifiers are combined.
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Figure 4.6: The characterisation of classifiers by their disagreement on two datasets vowel:
(a) and spectf (b).
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4.5 Conclusions

In this section we have proposed a one-class classifier based on the MST. In the simplest version,
the classifier does not have any parameters to be optimised. The complexity of the classifier
equals the complexity of the MST and the threshold is set as the average length of edges in the
MST. As the basic elements of the classifier are edges of the graph additional, virtual training
objects are available. Therefore, the presented classifier performs well in high dimensional
spaces and small sample size problems in comparison to other one-class classifiers. Since the
MST DD is based on quite different assumptions compared to other one-class classifiers, this
makes it an valuable member of a committee in combing classifiers. Possible extensions of
MST DD are the one-class classifiers based on different graph structures e.g. the minimum
Stainer tree.



Part II: Model selection in one-class

classification

Old Boniface he took his cheer,
Then he bored a hole through a solid sphere,
Clear through the centre, straight and strong,
And the hole was just six inches long.

Now tell me, when the end was gained,
What volume in the sphere remained?
Sounds like I haven’t told enough,
But I have, and the answer isn’t tough!





Summary of Part II: Model selection in one-class classification 49

Summary of Part II: Model selection in one-class classification

In this part we discuss data-driven methods for the optimisation of parameters of classi-
fiers in the one-class classification problem. Although the performance of classifiers strongly
depends on the value of their parameters, often the selection of parameters in a classification
or a recognition problem is left to the decision of a person. By comparing several models with
user selected parameters, the comparison of performances is made based on rather skills of
the person, who selects parameters, and not actually on methods themselves. Here, we focus
on automatic, data-driven optimisation of parameters for one-class classifiers. The complexity
of a classifier is determined by its parameters/ Moreover, in one-class classifiers, these pa-
rameters also determine the trade-off between the error on a target and the error an outlier
class. In this part a criterion for selecting complexity parameters for one-class classifiers is
proposed. The criterion relies on the minimisation of the ratio of two volumes: the volume
of the largest N-sphere 2 containing no training examples, found inside a one-class classifier,
divided by the volume of the classifier. By minimising the ratio of these two volumes we
minimise the possibility of accepting an outlier object which is remote from given target data
and a decision boundary. The ratio is used as a measure of how well a model describes the
data. Since a one-class classifier is a bounded subset of a space, its volume is the indicative
measure of its performance. In general, a large volume of a classifier indicates a large error
on the outlier class and a small error on the target class. On the other hand, a small volume
of a classifier indicates a small error on the outlier class and a large error on the target class.
A small ratio of these two volumes, indicates a classifier with a large volume, therefore the
small error on a target class, and a small volume of empty space, therefore a small error of
the outlier class. The proposed method is compared with standard model selection criteria
for one-class classifiers: a method based on the generation of uniformly distributed outliers
[Tax and Duin, 2001], and a method based on the consistency of a one-class classifier with a
given threshold [Tax and Müller, 2004].

To compute the ratio of two volumes several subproblems have to be solved. In section
6.1.1, we present a formula to compute a tight approximation of the volume of one-class clas-
sifiers consisting of several intersecting N-spheres e.g. k-means [Jiang et al., 2001], k-centres
[Hochbaum and Shmoys, 1985] and self-organising maps (SOM) [Parra et al., 1996]. The pro-
posed approach can tightly approximate the volume of a given one-class classifier in any
number of dimensions. In the same section, we derive a formula to compute the volume of a
spherical cap in an arbitrary number of dimensions and present a method to check whether
more than two N-spheres have a common region. Next, in section 6.1.2, we propose an algo-
rithm to find the largest empty N-sphere in one-class classifiers consisting of N-spheres. Here,
we propose a method to check whether an N-sphere is entirely inside a set of intersecting
N-spheres. Section 6.1.3 presents an explanation why the presented algorithm does not work
for spherical kernel based one-class classifiers such as SVDD [Tax and Duin, 1999] and oc-SVM
[Schölkopf et al., 2000a]. Finally, an approximately largest N-sphere searching algorithm is
presented in section 6.1.4 that is applicable to any one-class classifiers. The proposed algo-
rithms are tested on UCI repository datasets and the presented model selection method is
compared with existing methods.

2We adapt the notation from geometry where an N-sphere refers to a hypersphere in N dimensions. There-
fore the letter N denotes the dimensionality of a input space R

N .
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Chapter 5

Model selection methods for one-class
classifiers

5.1 Considerations

In the problem of one-class classification, one of the classes, called the target class, has to be
distinguished from all other possible objects, called outliers. The goal is to find a boundary
descriptor of the target class such that its members are accepted and non-target objects are
rejected. It is usually assumed that no outlier examples are available in the training stage, so
the classifier should be determined by objects from the target class only. This is an ill-posed
problem and it can easily lead to either under- or overfitting as the provided information
supports the decision boundary only from one side. How tight a one-class classifier fits the
target class is determined by the complexity parameter of the classifier.

The one-class classifier is trained as a boundary descriptor, hence it focuses on finding
the boundaries of the target class in the input space. Therefore, when we say that an object
is inside a one-class classifier, it means that it lies within its boundaries. Moreover, under
the assumption that the outlier class in uniformly distributed [Tax and Duin, 2001], as a one-
class classifier is a bounded subset of some space, its volume is an indicative measure of the
performance of the classifier. Using a too simple model, figure 5.1(a), yields a large volume of
a target class descriptor and results in the acceptance of many outlier examples, giving poor
specialisation on the target class. On the other hand a too complex model, 5.1(c), yields a
small volume of the target class descriptor and results in the rejection of many target examples,
giving poor generalisation on the target class.

Since in the one-class classification problem only one class of data is representative and
easily available, the decision boundary is supported only by the target examples. It is, there-
fore, hard to decide how tightly the boundary should fit around the data in the input space.
The lack of outlier examples makes it hard to make a reliable estimation of the error that the
classifier makes on novel examples. The error on the target class εt, the target rejection rate,
can be estimated on the training set. The error on the outlier class εo, however, can be only
estimated by making additional assumptions concerning the distribution of outlier objects.
The most common assumption is that the outlier class is uniformly distributed in the input
space [Tax and Duin, 2001, Markou and Singh, 2003b]. The uniform distribution of outliers
is also assumed here as the worst case scenario in case of the acceptance of outlier objects.
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Figure 5.1: 2- 8- and 40-kmeans classifier with εt = 0.01.

5.2 Existing model selection methods in one-class clas-

sification

Let Xt = {xi : xi ∈ R
N , i = 1, . . . , n} be a training set drawn from the target distribution p(x).

Assume a characterisation of this target class by a one-class classifier is sought. In general,
one-class classifiers can be presented in the following form:

f(x|Xt, γ) = I(h(x|Xt, γ) < θ) =

{
1, x is a target,

0, x is an outlier,
(5.1)

where the function h models the proximity of a vector x to the training, target data Xt, θ is
the specified threshold and I(·) is the indicator function. Furthermore, γ is a parameter of the
model h, indicating its complexity. The threshold θ is optimised to reject a certain, usually
user-specified, fraction of the target class εtr

t , e.g. εtr
t = 0.05. The εtr

t has to be determined
by the user from a given application, for example by specifying the maximum number of
allowed fault alarms in a machine condition monitoring. Apart from the threshold θ the other
parameter that determines the performance of a one-class classifier is γ, which denotes the
complexity of a chosen model h. Examples of γ are sigma in SVDD with a Gaussian kernel,
the smoothing parameter in the Parzen density estimation, the number of means or centres in
k-means, the mixture of Gaussians and k-centres or the number of hidden units in the auto-
encoder. The complexity parameter γ can be determined if it would be possible to determine
during training both errors on the target and outlier class e.g. using cross-validation. In
general, the error of a one-class classifier can be expressed as:

Λ(εt, εo) = λεt + (1− λ)εo, (5.2)

where λ is a trade-off parameter between the importance of outlier acceptance, εo, and target
rejection, εt. For λ = 0.5 both errors are equally treated. However, in one-class classification
problems during training only examples of the target class are available. Therefore, only
εt can be estimated. The expected error on the outlier class εo only can be estimated by
making additional assumptions. Having given estimates of εt and εo, the complexity of
a classifier γ can be optimised. Several techniques have been proposed to optimise γ for
one-class classifiers. We can distinguish methods that can be applied to all of one-class
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classifiers (e.g. the consistency model selection), methods based on the uniform outlier
generation, and classifier specific methods (e.g. the maximum likelihood criterion for density
estimators) to estimate the outlier acceptance rate. Next, we describe these methods in details.

Consistency based model selection
In [Tax and Müller, 2004], the authors propose to increase the complexity of a one-class clas-
sifier until it becomes inconsistent with the user specified error on the training set εtr

t . In this
approach, no implicit assumption on the outlier distribution is made. The authors assumed
that when the complexity parameter γ increases, εt also increases. The parameter γ is chosen
as the most complex model which is still consistent with a specified εtr

t . The one-class classifier
is considered inconsistent if the estimated error on the target class ε̂t is:

ε̂t ≥ εtr
t + 2

√
εtr

t (1− εtr
t )

B (5.3)

where B is the number of binomial experiments. This method does not require knowledge
about the distribution of outliers εtr

t should be specified by a user.

Model selection based on the uniform outliers generation
In [Tax and Duin, 2001] the authors assumed that the outliers are uniformly distributed in
the input space. This means that when the chance of accepting an outlier object is min-
imised, the volume covered by the one-class classifier should be minimised. The authors fit
the smallest enclosing N-sphere around a training set Xt, computed by the linear-SVDD algo-
rithm [Tax and Duin, 1999], and generate Q uniformly distributed outlier objects inside it.
The ratio of generated outlier objects that are classified as targets is the estimation of an out-
lier acceptance rate εo. The authors proposed the following algorithm to generate uniformly
distributed outliers in the smallest N-sphere S(A, R) that encloses all training objects. Where
A denotes the centre and R radius of an N-sphere.

1. Generate Q points z′i ∈ R
N , from a spherical Gaussian distribution; z′ ∼ N (0, I).

2. Use a N -dimensional cumulative distribution of χ2
N , X 2

N , to compute a scaling factor s

distributed as ∼RN on the [0, 1] interval; s = (X 2
N(‖z‖2)) 1

N .

3. For every z′i, compute zi = s
‖z′i‖

z′i. These are points uniformly distributed inside the

N-sphere S(0, I) in R
N .

Algorithm 5.1: Generate Q points uniformly distributed inside an N-sphere S(0, I).

The target rejection rate εt is estimated using cross-validation on a given target set. The
model is selected for which the estimation of the weighted sum of errors in equation (5.2)
has the minimum value. This method is accurate up to 15-20 dimensions, depending on the
target data distribution, since it requires a large number of artificially generated outliers in
high dimensional spaces. The method can be used to estimate the volume of a non-convex
body, e.g. the volume of a one-class classifier, that is inside the N-sphere S(A, R). The
volume of S(A, R) multiplied by the estimate of εo gives an approximation of the volume of
a one-class classifier.

Model selection methods for density based one-class classifiers
There are also model selection methods for specific classifiers, e.g. the maximum likelihood
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criterion for density estimators like the Parzen density estimator [Duin, 1976] or the mixture
of Gaussians.

Additionally, several heuristics exist that provides an approximate estimate of the complex-
ity parameters γ of the chosen model. For example, the average distance to the

√
|Xt| nearest

neighbour for estimating σ in support vector methods with a Gaussian kernel. Although
these methods provide sometimes very good initial guess, they are not very well scientifically
founded, therefore they are not considered here.



Chapter 6

Volume based model selection in one
class classification

Model selection methods rely usually on a statistic computed on a training set. The most com-
mon statistic is based on the minimisation of the probability that a test object is misclassified,
called the expected classification error or simply the classification error. The expected clas-
sification error is estimated using the region of overlap of class posterior probabilities P (ω|x)
estimated by a classifier. In situations, where we can not reliably estimate class posterior prob-
abilities the model selection can be based directly on an error estimate using cross-validation.
Other examples of model selection methods assume certain properties of a classification prob-
lem. For example, we can assume that a problem is linearly separable and select a model which
has the maximum margin between two classes [Vapnik, 1998]. Similarly, for the separable case,
one can select a model based on the maximum entropy criterion [Jaakkola et al., 1999]. Since
in one-class classification problems only examples of a target class are available, during train-
ing, none of the mentioned methods can be used to select an appropriate model without
making assumptions about a distribution of an outlier class [Tax and Duin, 2001].

In most outlier detection problems such as: medical screening, machine diagnosis, person
identification etc. we are not only interested in classifiers that have a small error but also
in what type of objects are misclassified. One can imagine an example where a classifier has
a small error but still accepts abnormal objects that are remote from normal target objects.
In detection problems where the acceptance of remote outliers is especially dangerous, e.g.
machine fault detection we are also interested in the minimisation of acceptance of outlier
objects which are far from target objects.
Since we can not estimate the error on the outlier class, in one-class classification problems,
without making additional assumptions about the outlier class distribution, we focus on a
different goal. Based on the compactness hypothesis [Duin, 1999], we state that empty regions,
i.e. regions without training-target objects, inside a one-class classifier are likely to accept
outlier objects without significantly improving the generalisation on a target class. Therefore,
such regions can cause increase in the outlier acceptance rate without significantly increasing
the target acceptance rate. It is assumed that the target class is well sampled. Therefore, we
can select models based on the above reasoning. Looking on figure 5.1 one sees that, without
outlier objects, or an assumption about the distribution of outlier objects, the decision which
regions are superfluous is not unique.

One of the possibilities is to approximate the empty region inside the target region described
by the one-class classifier by a convex hull, which does not contain training objects, and it is
entirely inside the classifier. However, the computation of an arbitrary convex hull inside a
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Figure 6.1: The largest empty N-sphere S(a, r) that can be found inside the one-class classifier
based on the smallest N-sphere S(A, R) that encloses the target data. The centres of the two
spheres are marked by ◦, ⋄ respectively. (a): an N-sphere S(a, r) is determined by objects from
Xt. (b): an N-sphere S(a, r) is defined by objects from Xt and the projection of a onto the
surface of a classifier.

classifier is quite cumbersome. Therefore, we chose the most simple, one an N-sphere.
The proposed model selection criterion is to select that model, from a set of possible

models, that has the minimum volume of the largest empty N-sphere that can be determined
inside the classifier. This criterion can be reformulated as the minimisation of the maximum
distance r from the centre of the empty N-sphere a to an object x̃i ∈ {Xt ∪ p(a)}. Where
p(a) is the projection of a onto the surface of a one-class classifier h.

min r, (6.1a)

s.t r = max
a

min
i
||x̃i − a||, (6.1b)

I(h(a|Xt, γ) < θ) = 1, (6.1c)

x̃i ∈ {Xt ∪ p(a)}, a ∈ R
N . (6.1d)

Criterion (6.1) selects the model that minimises the largest empty N-sphere inside a one-class
classifier. It can be also interpreted as the measure of how well the model fits the target data.
We denote the largest empty N-sphere with a centre a and a radius r as S(a, r). The centre
a of the largest empty N-sphere is equidistant to N + 1 objects in the set {Xt ∪ p(a)}. The
volume of S(a, r) is determined as the volume of an N-sphere with radius r in R

N :

VS(a,r) =
2πN/2rN

Γ(N/2 + 1)
, with Γ(x) =

∫ ∞

0

e−ttx−1dt

An example of S(a, r) inside a one-class classifier based on the smallest N-sphere enclosing
data, denoted as S(A, R), is shown in figure 6.1. In figure 6.1(a) S(a, r) is determined by
objects from Xt only and in figure 6.1(b) by objects in Xt and p(a).

If we would base the model selection only on criterion (6.1) we are biased towards classifiers
with a small volume. In that case, we would select classifier (c) in figure 5.1. On the other hand
the volume of a one-class classifier is also related to its performance on the target and outlier
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class. In general, the larger the volume of a classifier the better the performance on the target
class. Therefore, selection of models based on the minimisation of r in the criterion (6.1) does
not allow for good generalisation of the classifier on the target class. In general, a large volume
of a one-class classifier indicates good generalisation on the target class, however bad rejection
of outlier objects. A small volume of a classifier, however, indicates bad generalisation on the
target class and a good rejection of outlier objects.

Since we want to confer both the error on the target and outlier class we consider both
errors, and we propose to minimise the ratio of two volumes: the volume of the largest empty
N-sphere VS(a,r), inside a classifier divided by the volume of the classifier Vh itself:

V =
VS(a,r)

Vh

=
2πN/2

Γ(N/2 + 1)

rN

Vh

(6.2)

Based on the proposed criterion we select classifiers with a large volume, therefore with a
good generalisation on a target class, and a small volume of the largest empty N-sphere,
therefore penalising the region of the classifier which can be consider superfluous. We denote
the above ratio the V-statistic. The V-statistic has values in the range [0, 1]. Such criterion
can be used as a measure of how well a classifier fits the target class distribution. Note
that when the V-statistic increases, we expect an increase in the outlier acceptance rate εo

or an increase in target rejection rate εt. For a fixed value of the threshold θ as VS(a,r) and
Vh depends on γ also the V-statistic depend on γ. For the spherical one-class classifiers in
figure 6.1, the V-statistic reduces to the ratio of two radii ( r

R
)N . The problem of selecting a

complexity parameter in terms of the volume of a one-class classifier can be considered as the
specialisation/generalisation trade-off [Bishop, 1995] on the target class.

In relation to the method of uniform outlier generation, proposed in [Tax and Duin, 2001],
we do not aim at the minimisation of the volume of the entire one-class classifier, but only
this region of the classifier which is empty, therefore not supported by the training objects,
and can be considered superfluous. Such an empty region can be the result of adopting an
inappropriate, too simple classification model. On the other hand, too small volume of the
classifier can be the result of selecting a too complex classifier.

By deciding to minimise the V-statistic we assume that the data is well scaled and that
the empty region inside the classifier is well approximated by an N-sphere. In situations where
an empty region inside classifier has e.g. an ellipsoidal shape the criterion can be modified by
considering several empty and non-intersecting N-spheres with maximum volume; see figure
6.2.
A set of nonintersecting N-spheres can be computed by posing an additional constraint in
(6.1) on the next added N-sphere S(aq, rq):

I{‖aq − aq−1‖ ≥ rq + rq−1} ∧ . . . ∧ I{‖aq − a1‖ ≥ rq + r1}
Therefore, the criterion (6.2) can be defined as:

V(q) =

∑q
i=1 VS(ai,ri)

Vh

=
2πN/2

Γ(N/2 + 1)

∑q
i=1 rN

i

Vh

(6.3)

The number of N-spheres q can be selected by comparing volumes of currently and previously
computed empty and non-intersecting N-spheres or based on, e.g. the maximum nearest
neighbour distance of objects in a training set. Therefore, q is increased if the volume of
the (q + 1)th largest empty and nonintersecting, with previous q N-spheres, an N-sphere is
significantly larger or if the radius of the (q + 1)th N-sphere is larger than the maximum
nearest neighbour distance.
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a1

a2

a3

a1

a2

a3

a4

a5

Figure 6.2: Several empty and nonintersecting N-spheres that can be found inside the classifier
determined as the smallest N-sphere enclosing a training set.

6.1 The estimation of V-statistic
To estimate the V-statistic we have to know the volume of the classifier Vh. Therefore, we
make a distinction into two groups of classifiers. The first group is based on a union of k
open N-spheres h ≡ ⋃k

i=1 S(Ai, Ri), where the classification is formulated as a logic union:

I(h(x|Xt, θ)) =
∨k

i=1 I{||Ai − x|| < Ri}, where || · || is the Euclidean norm. This holds for
some types of one-class classifiers, in particular: the single Gaussian with equal elements on
a diagonal covariance matrix, k-means, k-centres, self-organising maps (SOM) and the support
vector based method: SVDD with a linear kernel. Consequently, these one-class classifiers can
be described either by a single N-sphere or by the union of several N-spheres. We show how
to compute the volume of such classifiers as well as the determination of the largest empty
N-sphere inside a classifier. The second group consists of non-spherical one-class classifiers,
e.g. SVDD, oc-SVM with a nonlinear kernel, Parzen, mixture of Gaussians or an auto-encoder.
For this group of classifiers we present approximate solutions.

Actually, there is also a third group of one-class classifiers, which instead of bounding
a finite volume of a space, describe an infinite subspace, e.g. the PCA one-class classifier
[Tax, 2001]. These methods are not considered here.

In the rest of this section we describe how to compute the volume of a classifier that
consists of several N-spheres and how to find the largest empty N-sphere inside such classifier.
In addition, in subsection 6.1.2 we provide explanation why the proposed algorithm to find the
largest, empty N-sphere does not work for SVDD and oc-SVM with a nonlinear kernel. We finalise
the section by presenting an algorithm to find the approximately largest empty N-sphere in
the one-class classifiers that belong to the second group.

6.1.1 Estimation of the volume of one-class classifiers

In general, algorithms that approximate the volume of convex or non-convex bodies are not
strongly polynomial in N . The best known algorithms for convex bodies are of the order
O(N5); see for example [Lovász et al., 1997] for a survey. In [Tax and Duin, 2001] an algo-
rithm that can be used to approximate the volume of non-convex or convex one-class classifiers
has been proposed. The volume is estimated from the fraction of uniformly distributed objects
that are classified as targets. Objects are generated in the smallest N-sphere, that enclose all
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Figure 6.3: 5-means classifier with εtr
t = 0.05. The two spherical caps are painted gray and

the region that belongs to more than two spheres is painted gray and crossed.

data; see Algorithm 5.1 for details. However, such an algorithm requires a large number of
objects to accurately approximate the volume of a classifier Vh. Therefore the method is only
applicable for low dimensional problems, up to N = 15 or 20, for 100, 000 generated outlier
objects, depending on the distribution of target data. However, if we assume that a one-class
classifier is based on a union of several open N-spheres h ≡ ⋃k

i=1 S(Ai, Ri), the computation
of its volume simplifies significantly.

If N-spheres that constitute the classifier do not intersect, the volume of the classifier is
simply equal to the sum of volumes of the individual N-spheres:

Vh =
k∑

i=1

VS(Ai,Ri) ⇔ ∀i6=j
i,j=1,...,k

VS(Ai,Ri) ∩ VS(Aj ,Rj) = ∅ (6.4)

When the N-spheres that constitute the classifier only intersect pairwise, which means there
is no region that belongs to more than two N-spheres, the volume of the classifier can be
computed as the sum of the volumes of individual N-spheres minus the sum of volumes of
their pairwise overlaps

∑
e VOe

:

Vh =
k∑

i=1

VS(Ai,Ri) −
∑

e

VOe
⇔

∀i6=j 6=q
i,j,q=1,...,k

{VS(Ai,Ri) ∩ VS(Aj ,Rj) 6= ∅} ∧ {VS(Ai,Ri) ∩ VS(Aj ,Rj) ∩ VS(Aq ,Rq) = ∅}
(6.5)

The volume of a single overlap VOe
between two N-spheres equals the sum of volumes of two

spherical caps. The spherical cap [Harris and Stocker, 1998] is a part of an N-sphere defined
by its height hc ∈ [0, 2R] and radius rc ∈ [0, 2R]; see figure 6.3 where the overlap, the gray
region, is created from two spherical caps between spheres S(A1, R1) and S(A2, R2).
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Note that these two spherical caps have the same radius rc but different heights hc. We
have derived (see Appendix B.1 for a derivation) the volume of a N dimensional spherical cap
as an integral of N−1 dimensional spheres over the height hc of the cap:

Vcap(R, hc) =
π(N−1)/2RN−1

Γ((N − 1)/2 + 1)

βmax∫

0

sinN−1(β)dβ

where

βmax = arcsin(
√

(2R− hc)(hc/R2))

(6.6)

Therefore the volume of a single overlap VO between two N-spheres can be computed as the
sum of two spherical caps:

VO = Vcap(R1, hc1) + Vcap(R2, hc2)

When a classifier consists of N-spheres intersecting in an arbitrary way the computation of
the volume of the classifier becomes more difficult than in the case when N-spheres intersect
only pairwise. However, if we compute the volume of such classifier using equation (6.5), the
volume of a region inside h that belongs to more than two N-spheres is subtracted several
times. Therefore, the volume of the classifier is underestimated. The example of such region
is shown in figure 6.3 as the gray-crossed region.

Note however that the volume Vh of a classifier consisting of arbitrarily intersecting
N-spheres can be bounded between the two volumes computed in equations (6.4) and (6.5),
namely:

k∑

i=1

VS(Ai,Ri) −
∑

e

VOe
≤ Vh ≤

k∑

i=1

VS(Ai,Ri) (6.7)

Based on these bounds, we approximate the volume of a classifier by:

Vh ≈
k∑

i=1

VS(Ai,Ri) −
1

2

∑

e

VOe
(6.8)

The maximum error of estimating Vh in this way is equal to half the volume of all pairwise
intersections, i.e. 1

2

∑
e VOe

. This approximation can be improved by checking, whether a
region of intersection belongs to more than two N-spheres. We proposed a simple check based
on quadratic programming (see Appendix B.2 for derivation). For k N-spheres with centres
Ai and radii Ri, i = 1, 2, . . . , k the check is expressed as:

min
y

yTy − 2yTA1 + AT
1 A1,

st. yTy − 2yTAi + AT
i Ai −R2

i < 0, i = 2, . . . , k.
(6.9)

if y exists and ‖y − A1‖ < R1 then there exist a region where these k N-spheres overlap.
The approximation of the volume of a classifier consisting of arbitrary overlapping

N-spheres can be written as:

∃i6=j 6=q
i,j,q=1,...,k

{VS(Ai,Ri) ∩ VS(Aj ,Rj) ∩ VS(Aq ,Rq) 6= ∅}

⇒ Vh ≈
k∑

i=1

VS(Ai,Ri) −
∑

e1

VOe1 −
1

2

∑

e2

VOe2

(6.10)
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where
∑

e1 VOe1 is the volume of overlap of N-spheres that overlap only pairwise and 1
2

∑
e2 VOe2

is the approximated volume of regions where more than two N-spheres overlap. When esti-
mating the volume of the classifier, in this way the largest error we can make is for regions that
belongs to all N-spheres. The largest positive error is less than half the volume of pairwise
overlaps when all N-spheres have the same radius and their centres are almost the same. In
such a case, the volume Vh is underestimated by 1

2

∑
e2 VOe2 , which can not be larger than

the half of the volume of entire classifier. The largest negative error in estimating Vh using
equation (6.10) is when all N-spheres have infinitely small common region. The volume of a
classifier is than overestimated by 1

2

∑
e2 VOe2 , which also can not be larger than the half of

the volume of a classifier. However, the volume
∑

e2 VOe2 is usually several orders smaller than
the volume of a classifier, especially in high dimensional spaces.
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Figure 6.4: The estimate of the volume Vh using uniformly distributed objects (Vu) compared
with the volume calculated using equation (6.10). The volume is shown in the logarithmic scale.
A 3-centres classifier is trained on uncorrelated (a) and correlated (b) normal distributed data
with the number of dimensions varied from N = 2 to 100. The smallest N-sphere that encloses
the training data is denoted by dashed line.

Now, we can compare the volume Vh as estimated by the proposed equation (6.10)
with the volume estimated by the Algorithm 5.1 using uniformly distributed objects
[Tax and Duin, 2001] denoted as Vu. In figure 6.4, we plotted the estimated volumes, using
the proposed method and Algorithm 5.1, for the 3-centres classifier trained on two different
datasets. In the left subplot the classifier is computed on normal, uncorrelated data N (0, 5I)
and in the right subplot on data with a strong correlation between the two first features, the all
other features are distributed as N (0, 1). Both datasets sizes equal 200. The dimensionality
N of the data was varied between 2 to 100. We use 100, 000 uniformly distributed objects
in Algorithm 5.1 for all values of N to estimate the volume of the classifier. This number
was also used by the authors in [Tax and Duin, 2001] as the maximum number of uniformly
generated objects.

From the figure 6.4(a) it can be seen that the estimated volumes differ when N increases.
For increasing dimensionality the probability that a uniformly distributed object, from a finite
cardinality set, is inside the classifier decreases. For a finite number of uniformly distributed
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objects generated in the N-sphere computed by a linear-SVDD (dashed line in figure 6.4) the
probability that a uniformly distributed object is inside the classifier is inversely proportional
to the volume of that sphere. Therefore, the difference between estimated volumes increases
systematically with N . For large N the volume mass of an N-sphere is distributed on its
surface therefore uniformly distributed objects are also on the surface of an N-sphere.

However, because the classifier is almost spherical, some
of the generated objects are always encountered inside
the 3-centres classifier as parts of the smallest N-sphere
that enclosed data is inside the classifier. The N-sphere
where we generate objects is always inside the classifier;
see three moon shaped regions in figure 6.5. For the sec-
ond dataset for N > 20 uniformly distributed objects,
from the finite set, are not encountered inside the clas-
sifier resulting in zero estimate for Vu. The volume of
the classifier compared to the volume of the N-sphere
determined by a smallest N-sphere enclosing data is sig-
nificantly larger.

Figure 6.5: 3-centre classi-
fier. The parts that are inside
the smallest enclosing sphere
are marked by thick lines.

From this experiment we conclude that the method based on the uniform objects generation
can be used up to 15-20 dimensions, with 100, 000 uniformly generated objects. The similar
conclusion was given in [Tax and Duin, 2001]. We provide relations between the number of
objects, data dimensionality and error on the estimation of the volume of a classifier in section
6.1.4.

From here, we use equation (6.10) to estimate the volume of classifiers consisting of an
arbitrary number of N-spheres. For non-spherical one-class classifiers, e.g. Parzen or SVDD

with the nonlinear kernel we use Algorithm 5.1 to estimate their volumes in low dimensional,
up to 20, recognition problems.

6.1.2 Estimation of the largest empty N-sphere inside spherical
one-class classifiers

In the previous subsection we have shown how to approximate in high dimensional spaces
the volume of a classifier consisting of the union of N-spheres. We have also discussed how to
estimate the volume of an arbitrary classifier using uniformly generated objects in a low number
of dimensions. These methods compute the denominator in the V-statistic; see equation (6.2).
Now we focus on the problem of how to find the largest empty N-sphere inside a classifier. We
start from the simplest case when a classifier is based on a single N-sphere.

Estimation of the largest empty N-sphere inside a classifier consisted of a single
N-sphere

Given a target set Xt in R
N , a one-class classifier is modelled now by an N-sphere S(A, R); see

figure 6.6(a). S(A, R) can be determined by e.g. a single Gaussian with equal elements on a
diagonal covariance matrix, 1-centre algorithm, SOM or linear-SVDD. Our task in this subsection
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is to find the largest N-sphere S(a, r) such that S(a, r) ⊂ S(A, R) and ∀xi∈Xt
‖a− xi‖ ≥ r;

see figure 6.6(f).
Since S(A, R) is known, then the problem of finding the largest, empty S(a, r) ⊂ S(A, R)

can be captured by formulating the following optimisation problem:

max r (6.11a)

s.t. ‖a−A‖+ r ≤ R (6.11b)

‖a− xi‖ ≥ r, ∀ xi ∈ Xt (6.11c)

The objective function (6.11a) is linear in the variable r and the constraint (6.11b) is a second
order cone constraint. Such a problem can be solved by second order cone programming
[Lobo et al., 1998]. The constraint (6.11c), however, is non-convex. To see it, let us write
ti = a − xi. Then, by squaring both sides and subtracting r2 we get ||ti||2 − r2 ≥ 0. We

replace ||ti||2 − r2 by t̃T
i J t̃i, where J =

[
I 0
0 −1

]
, I is an n×n identity matrix and t̃i =

[
ti

r

]
.

The condition (6.11c) becomes then

t̃T
i J t̃i ≥ 0, i = 1, 2, . . . , n

which is a non-convex quadratic constraint, as J is not positive semidefinite.
Since the problem is non-convex, it can not be solved using quadratic programming. For

the problem of determining the smallest N-sphere S(A, R) that contains all data no strongly
polynomial algorithm is known [Gritzmann and Klee, 1993]. However, the problem of deter-
mining the largest empty N-sphere S(a, r) inside a larger N-sphere S(A, R) as we can see is
even harder. Since the problem (6.11) is locally convex it has several local maxima. Each
local maximum is an N-sphere determined by N +1 objects in an N dimensional space. Our
proposition is to search for the global optimum by computing and comparing the set of the
most likely local maxima.

Note first that the centre of the largest empty N-sphere is located in the vicinity of either
a local or a global minimum of a density function f(z), where f(z) is the density of the
training set and objects on the surface of S(A, R); figure 6.6(b). Therefore, we minimise

f(z) starting from an object xi ∈ Xt and determine an approximate centre z
(1)
i for each

xi. Next, we compute the equidistant object z
(2)
i to N +1 nearest neighbours of z

(1)
i from

X̃ = {Xt ∪ p(z
(1)
i )}. Where p(z

(1)
i ) is the projection of z

(1)
i onto the surface of S(A, R).

Finally, we select that centre, which has the largest nearest neighbour distance to objects in
X̃. This determines the largest empty N-sphere S(a, r). The proposed algorithm is described
below and it is schematically presented in Algorithm 6.1 and figure 6.6 for a single optimisation,
starting from an initial object xi ∈ Xt.

Notice first that N+1 non-collinear points {x1, . . . ,xN+1} ⊂ Xt uniquely define an N-sphere
S(a, r) in R

N . In a 1-dimensional space, the centre a of such a sphere is equidistant from two
given points x1 and x2, i.e. ‖x1 − a‖2 = ‖x2 − a‖2. After easy computations, one finds that
a = 1

2
((x1−x2)

2)−1(x1−x2)(x
2
1−x2

2). In the N -dimensional space, the centre a is determined
as (see Appendix B.3 for a derivation):

a =
1

2
(X−XT

−)−1X−(1T XT
−X+)T . (6.12)
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Figure 6.6: Graphical illustrations of Algorithm 6.1. z
(·)
i is a current estimation of a and

p(z
(·)
i ) is its projection onto the surface of S(A, R). xi in figure 6.6(b) is an initial vector for

a minimisation of a function f(z).

where X− is a N ×
(

N+1
2

)
matrix of elements xi − xj, X+ is a N ×

(
N+1

2

)
matrix of elements

xi + xj and 1 is a
(

N+1
2

)
× 1 vector of ones.

Having found a, the radius r of S(a, r) is derived by computing the distance between a
and any of the given points x ∈ {x1, . . . ,xN+1}:

r = ||a− x|| (6.13)

In the considered problem of finding the largest, empty N-sphere S(a, r) inside an N-sphere
S(A, R), one of the points that define S(a, r) may happen to be an unknown intersection of

the two N-spheres S(A, R) and S(a, r); see object p(z
(1)
i ) in figure 6.6(e) for an illustration.

If a was known, then the intersection point p(a) can be easily computed as the projection of
a onto S(A, R):

p(a) = R
a−A

‖a−A‖ + A. (6.14)

Since p(a) is unknown we can not simply determine all combination of N +1 neighbouring
objects using equation (6.12) and find the centre with the largest r in equation (6.13). However,
it should be noticed that centres of empty N-spheres are in a region of low density of training
objects and the surface of S(A, R). Therefore, we can first find approximations of the centre
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of the empty N-sphere by minimising the the following density function:

f(zi) =
n∑

j=1

exp

(
−‖zi − xj‖2

2σ2

)
+ exp

(
−(R− ‖zi −A‖)2

2σ2

)
, xj ∈ Xt. (6.15)

The first part of the above equation is simply the Parzen density estimation [Parzen, 1962]
with a Gaussian kernel. The second part is proportional to the distance of zi to the surface of
the N-sphere S(A, R): R−‖zi−A‖. Vectors zi for which f(zi) has small values are far from
training objects Xt and from the surface of S(A, R). However, the result of minimisation of the
function (6.15) depends on initial vectors. In our algorithm we perform n optimisations using
as initialisations xi ∈ Xt individually. Moreover, the result of the minimisation depends on the
value of σ. For large σ, zi is determined by a large number of objects from Xt, for small σ only
by nearest neighbours. It is hard to decide on the correct value of σ, therefore, first we perform
the minimisation using large σ, e.g. equal to the largest nearest neighbour distance in Xt, and
then decrease σ until the value of function f(zi) ≈ 0, giving the searched zi. The first and
second derivative of the function (6.15) are easily computable, therefore it can be minimised
using most optimisation toolboxes. We minimise (6.15) using the MATLAB implementation
of large scale optimisation of the inferior-reflection Newton method [Coleman and Li, 1996]
with the constrain ‖zi −A‖ < R, which constrained the set of solutions to those in S(A, R):

min
z

f(z)xi
, (6.16a)

s.t. zTz− 2zTA + ATA−R2 < 0, ∀zi ∈ R
N . (6.16b)

Now the full algorithm can be described as follows.

Assume a set of objects Xt = {x1, . . . ,xn} in R
N , n ≥ N + 1. Let A and R be the known

parameters of an N-sphere S(A, R) encapsulating Xt completely.

1. Starting from xi ∈ Xt find an object {z(1)
i : ‖z(1)

i − A‖ < R} for which a density

function f(z), equation (6.15), has a minimum; z
(1)
i = arg minz f(z)xi

(using (6.16)).

2. Project z
(1)
i on the surface of the N-sphere S(A, R) as specified by (6.14). Add the

projected point p(z
(1)
i ) to the set Xt, obtaining X̃ = {Xt ∪ p(z

(1)
i )}.

3. Find the set X̃N+1(z
(1)
i ) consisting of N+1 nearest neighbours of z

(1)
i in X̃. Use formula

(6.12) to define the N-sphere S(z
(2)
i , ρ

(2)
i ) determined by the N+1 objects in X̃N+1(z

(1)
i ).

4. Repeat step 3 until the centre of the N-sphere does not change yielding N-sphere
S(zi, ρi)

5. Check whether the N-sphere S(zi, ρi) is inside the N-sphere S(A, R), i.e. if the condition
holds

ρi + ‖zi −A‖ ≤ R (6.17)

Algorithm 6.1: Find an empty N-sphere inside a given N-sphere S(A, R) starting from an
initial object xi.

To determine the largest empty N-sphere inside a one-class classifier, modelled by a single
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N-sphere S(A, R); figure 6.6(a), we follow the procedure described in Algorithm 6.1. First,

an object z
(1)
i is determined by the minimisation of f(z) in (6.16), as a current approximation

of the centre a of S(a, r); figure 6.6(b). Since one of the N +1 points defining the largest,
empty N-sphere S(a, r) may happen to be an intersection of two N-spheres, S(A, R) and

S(a, r), the object z
(1)
i is projected onto S(A, R) using equation (6.14); figure 6.6(c). We use

the projection p(z
(1)
i ) as the current estimation of the possible intersection point of the two

N-spheres. We add the projected point p(z
(1)
i ) to the training set Xt, X̃ = {Xt ∪ p(z

(1)
i )}.

In step 3 of Algorithm 6.1 we determine the set X̃N+1 of N +1 nearest neighbours of z
(1)
i in

X̃, figure 6.6(d), and compute a centre z
(2)
i and the radius ρ

(2)
i of the N-sphere defined by

the objects in X̃N+1 using equation (6.12), figure 6.6(e). We repeat the previous step until
the centre of the N-sphere does not change; figure 6.6(e). In step 5 we check if the N-sphere
determined by N +1 nearest neighbours is inside S(A, R) 1. Since zi can converge to a local
minimum Algorithm 6.1 is performed for all n initialisations xi ∈ Xt. From all N-spheres that
satisfy equation (6.17) the one with the largest ρi is the sought solution S(a, r); figure 6.6(f).
If S(a, r) can not be found using Algorithm 6.1, e.g. because there are less than N+1 objects
in S(A, R) or all N-spheres S(zi, ρi) are outside S(A, R) we determine an N-sphere S(zi, ρi)
based on the single nearest neighbour distance between zi and objects in X̃. S(a, r) is the
sphere with maximum radius among all S(zi, ρi).

Estimation of the largest empty N-sphere inside one-class classifier consisting of
k N-spheres

In this section, we extend Algorithm 6.1 to one-class classifiers constructed from a union of
several N-spheres h ≡ ⋃k

i=1 S(Ai, Ri) e.g. k-means, k-centres SOM and nearest neighbour.
Algorithm 6.1 can be applied to each of the k N-spheres of a classifier. However, there are
situations where the largest empty N-sphere S(a, r) is not entirely inside one of the k N-spheres,
that is a part of the classifier, but it is still inside the classifier; see figure 6.7. We can see
that in this situation more than one S(Ai, Ri) should be considered. Therefore, we propose to
replace the inequality (6.17) in Algorithm 6.1 by the solution to the quadratic programming
problem defined in (6.18).

1Most of the of N-spheres determined by Algorithm 6.1 are in S(A, R), although there are some degenerative
cases where S(zi, ρi) can be outside S(A, R).
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Figure 6.7: Largest empty N-sphere
(dashed line) inside a one-class clas-
sifier constructed from three spheres⋃3

i=1 S(Ai, Ri) (continues line), data
are omitted for clarity.

We would like to find the vector y that is inside
S(z, ρ) and that is outside the classifier defined by
the union of k N-spheres

⋃k
i=1 S(Ai, Ri).

‖y − z‖2 ≤ ρ2

‖y −Ai‖2 ≥ R2
i , ∀i=1,...,k

(6.18)

This set of inequalities can be replaced by the fol-
lowing quadratic minimisation problem (see Ap-
pendix B.4 for a derivation):

min
y

yTy − 2yTz

s.t. 2yT (Ai − z) ≤ ρ2 + AT
i Ai −R2

i − zTz, ∀i=1,...,k

(6.19)

If the solution y exists and it satisfies the first in-
equality in (6.18) then the N-sphere S(z, ρ) is out-
side the union of N-spheres

⋃k
i=1 S(Ai, Ri).

Now we are able to compute the V-statistic for one-class classifiers consisting of N-spheres.
Consider the 2D toy examples of novelty detection problems shown in figure 6.9. Three
spherical one-class classifiers are trained k-centres, k-means and SOM. On all problems, we set
the target rejection rate to εtr

t = 0.01, i.e. the threshold θ is set in such a way that εtr
t = 0.01.

The question rises: How complex these three classifiers should be to generalise on the target
class and reject large amount of outlier objects.
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Figure 6.8: Volume of a k-centres (a) and k-means (b) classifiers against volume of the largest
empty sphere for different value of γ. The complexity γ increases from left to right.

For the given datasets we estimate the V-statistic specified by equation (6.2) using Algo-
rithm 6.1 to find S(a, r) and equation (6.10) to compute Vh. Since the volume estimation of
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a classifier and the largest, empty N-sphere might depend on outliers, we average V over 10
random draws of 90% of the training data. The range of γ values are selected between 1 and
60. The value of V against the complexity of classifiers γ is shown in figure 6.9, together with
some 2 dimensional plots of the three classifiers and S(a, r). It can be seen that when we
increase the complexity of these three classifiers the V-statistic first decreases fast and after
a certain value of γ almost stabilises. The reason for this behaviour can be seen in figure 6.8
where, as an example, the volumes of the k-centre and k-means classifiers are plotted against
the volume of the largest empty N-sphere. The V-statistic in this plot is the tangent of the
curve.
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Figure 6.9: Left: Examples of 2 dimensional plots of classifiers with S(a, r), εtr
t = 0.01. Right:

V-statistic for different values of γ.

In figure 6.8 when we increase the complexity of a classifier (from left to right) for k-centres
for γ between 7 and 34 the complexity of a decision boundary almost does not change. Simply
the same decision boundary is described by more complex classifiers. The classifiers like k-
centres, k-means, SOM hardly overfit, therefore we do not observe a minimum in the value
of the V-statistic. For spherical one-class classifiers we propose to select the least complex
classifier for which two volumes, Vh and VS(a,r) stabilise. This value represents the least
complex classifier to describe the given dataset, following the Occam’s razor principle. We
select the most simple classifier that describes data accurately.
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6.1.3 Estimation of the largest empty N-sphere inside kernel-based
classifiers

The natural extension of the proposed Algorithm 6.1 would be to apply it to kernel-based
one-class classifiers such as SVDD [Tax and Duin, 1999] since this model is also based on a
single sphere. However, in this section we show that this is not possible. We show that
neither the volume nor the radius of the largest empty N-sphere as well as the volume of a
classifier computed in the kernel space has a quantitative meaning in the input space since
they are computed over a part of the Hilbert space H that has no preimage. Note that we
are arguing that the volume of a sphere computed in H has no quantitative meaning, but still
the minimisation of the volume does, similar as in SVDD and oc-SVM. The minimisation of the
volume in H implies also the minimisation of the volume in R

N .
The SVDD with a linear kernel is equivalent to the smallest N-sphere enclosing all target ob-

jects in the input space R
N . Here, we are interested in more flexible formulations incorporated

by the use of nonlinear positive definite kernels. We restrict our discussion to the Gaussian
kernel K(x,y) = e−||x−y||2/σ22. The SVDD is then defined as the smallest sphere enclosing
all target objects, as mapped to a high- or infinite-dimensional Hilbert space H induced by
the kernel K. Thanks to the reproducing property of K3, the mapping does not need to be
performed directly. This follows as all computations rely on inner products in H, which are
equivalent to kernel evaluations. K(x, ·) is the representation of x in H. The SVDD is found
as a solution to a particular quadratic optimisation problem [Tax and Duin, 1999]:

max
αi

L =
∑

i

αiK(xi,xi)−
∑

i,j

αiαjK(xi,xj)

s.t.
∑

i

αi = 1,

0 ≤ αi ≤ C, ∀ i.

(6.20)

where K(xi,xj) expresses the inner product between the representations K(xi, ·) and K(xj, ·)
in the space H.

The parameters of the sphere S(AH, RH), with the smallest radius in H, are expressed in
terms of training objects and optimised weights α:

2Since SVDD and oc-SVM are equivalent when a Gaussian kernel is used the discussion although based on
SVDD is also valid for oc-SVM.

3The reproducing property of the kernel K means that 〈K(xi, ·),K(xj , ·)〉H = K(xi,xj).
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AH =
∑

i

αiK(svi, ·)

RH = ‖AH −K(svi, ·)‖H

=

√
1− 2

∑

j

αjK(svi, svj) +
∑

i

∑

j

αiαjK(svi, svj)

(6.21)

AH RHK(sv1, ·)
K(sv2, ·)

Figure 6.10: SVDD in the Hilbert
space.

where svi are the support vectors, i.e. the training objects xi for which the optimised αi are
positive. As the support vectors lie on the surface of the sphere S(AH, RH), any of them can
be used to compute RH. Note that if the reproducing kernel map xi → K(xi, ·) is unknown,
the centre of the SVDD cannot be determined in R

N since the preimage of AH does not exist
in general. However, a distance of an object zk to the centre can always be computed as it
relies on inner products, hence kernel evaluations only.

d(zk,AH) =

√
1− 2

∑

i

αiK(zk, svi) +
∑

i

∑

j

αiαjK(svi, svj). (6.22)

data manifold

support vectors

data inside SVDD

SVDD
non-support vector

Figure 6.11: SVDD in Hilbert space.

Figure 6.10 and figure 6.11 show an ex-
ample of the SVDD defined by a Gaussian
kernel. {+}-s indicate two support ob-
jects and {◦} one additional nonsupport
object. The angle between the support
vectors axes is defined by the value of the
kernel between them. Note that this figure
represents the embedding to the Euclid-
ian space of three relations between three
objects in the Hilbert space. Therefore
we need one extra dimension for the ad-
ditional object to preserve the inner prod-
ucts. Since the dimensionality restriction
it is only possible to picture the SVDD in H
based on two support objects.

To find the largest empty sphere in S(AH, RH) we should modify Algorithm 6.1. In par-
ticular we can not minimise a density estimate f(z) in H, therefore we propose a method that
is based on uniformly generated candidate centres in R

N ; see Algorithm 5.1. The candidate
centres are then mapped to H. Therefore, computation of the largest empty sphere for the
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Figure 6.12: (a): SVDD, in R
N , denoted by the solid line. {+} denotes two support objects

and {◦} one additional nonsupport objects. The dashed line denotes the largest empty sphere
found in H with a centre on a data manifold. (b): SVDD in the Hilbert space H with the data
manifold. (c): SVDD in the Hilbert space H with the data manifold and the largest empty
sphere with a centre ⋄ on a data manifold.

non-spherical one-class classifier in R
N is still perform for a sphere in H, thereby it is simpler

than for an arbitrarily shaped classifier.
Assume the N-sphere S(A, R) with minimum radius R, enclosing the training target

examples Xt in the input space R
N . We generate objects zk, uniformly distributed in

S(A, R) according to Algorithm 5.1 and map them to the Hilbert space H using kernel
evaluations K(zk, ·). Next, we determine the subset of all zk that are accepted as targets
by the sphere S(AH, RH). This means that ||K(zk, ·)−AH||H ≤ RH, i.e. the representa-
tion of zk in H is inside the sphere S(AH, RH). Figure 6.12(b) shows objects from the
systematically distributed grid of the figure 6.12(a) mapped to a Hilbert space. Objects
inside the SVDD sphere are marked by bold dots, and outside the SVDD sphere by smaller
dots. Since training data has a finite sample size, they are placed on a manifold spanned
by the support vectors. In H we consider only the minimum distance d(zk,x) to a sin-
gle object in the training set or the distance d(zk,p(zk)) from zk to its projection p(zk)
onto the sphere S(AHK

, RH), rH = min[d(zk,x), (d(zk,p(zk)))]. Making use of the fact that
d(zk,x) = ||K(zk, ·)−K(x, ·)||H = K(x,x)− 2K(x, zk) + K(zk, zk) and K(x,x) = 1 for the
Gaussian kernel K, after straightforward computations, we get:

d(zk,x) =
√

2− 2K(zk,x),

d(zk,p(zk)) =
√

RH − d(zk,AH),
(6.23)

To determine whether such sphere is inside S(AH, RH) we check:

rH + d(zk,AH) ≤ RHK
(6.24)

The example of a solution to the presented algorithm is shown in figure 6.12(c). The centre
of the largest empty sphere is marked by ⋄. As the oc-SVM can be reformulated into SVDD

[Tax and Duin, 2001], for the Gaussian kernel, the presented discussion is also valid for this
classifier, the oc-SVM hyperplane cuts from a kernel manifold a multidimensional sphere.
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From figure 6.12(c) it can be observed that although the centre of the found sphere, as
mapped from R

N , is on the data manifold, a part of the sphere is not. This means that
such part has no preimage in the input space R

N , the lower half of the smaller sphere in
figure 6.12(c). Therefore, we conclude that neither the largest empty sphere nor the sphere
for which we demand that its centre is on the data manifold in H can be used to compute
V-statistic. Although the SVDD is always found as the smallest sphere in H, its boundaries
are also determined by the unknown data manifold. Therefore, it can happen that some part
inside the found largest empty sphere has no preimage; see the common region of the two
spheres without objects in figure 6.12(c).

In this section it has been shown that we can not apply the modified Algorithm 6.1 to find
the largest empty sphere inside the classifier that is based on a Gaussian kernel. Although the
SVDD is always found as the smallest sphere in H, its boundaries are also determined by the
unknown data manifold. Therefore, it can happen that some part of the found largest empty
sphere has no preimage.

In the next section we introduce an algorithm that copes with this problem. The algorithm
finds the approximately largest empty N-sphere in the input space R

N for non-spherical one-
class classifiers including SVDD.

6.1.4 Estimation of the approximately largest empty N-sphere in-
side nonspherical one-class classifiers

In this section, we propose an algorithm to determine the approximately largest empty
N-sphere, denoted S(ã, r̃), inside a one-class classifier that is not based on a union of N-spheres.
Because it is hard to determine the distance to a nonspherical decision boundary we can not
use the idea of a minimisation of function (6.15). Moreover, since the decision boundary can
be concave such distance does not guarantee that the entire empty N-sphere is inside a classi-
fier. Therefore, the proposed algorithm in this section, for finding the largest empty N-sphere
in a classifier h, is similar to Algorithm 5.1, based on the generation of uniformly distributed
objects zi in the smallest N-sphere that encloses training objects. Empty N-spheres S(zi, ρi)
are determined by the distance from uniformly distributed zi to their single nearest neigh-
bours in Xt; ρi =minx∈Xt

‖zi − x‖. To check whether an N-sphere S(zi, ρi) is inside or outside
the classifier h, we classify a set of uniformly distributed objects generated on the surface
of S(zi, ρi). To find a more accurate approximation of S(zi, ρi) we repeat the generation of
uniformly distributed objects zk inside each N-spheres S(zi, ρi). After the centres stabilise we
choose the one with the largest radius S(ã, r̃), r̃ = maxi ρi, which is our approximation of
S(a, r).

The following formula [Cramér, 1946, Muller, 1959] enables us to generate objects uni-
formly on the surface of the unit N-sphere S(0, 1), centred at the origin:

s = [s1, s2, . . . , sN ] =
[s′1, s

′
2, . . . , s

′
N ]√∑N

i=1(s
′
i)

2

(6.25)

where [s′1, s
′
2, . . . , s

′
N ] are N independent normal deviates from N (0, I). The points s are

uniformly distributed on the surface of the unit N-sphere S(0, 1). Multiplying by the radius,
followed by an arbitrary translation permits the centre of the N-sphere to be different than the
origin of the coordinate system. An alternative way to generate objects on the unit N-sphere is
to normalise the objects generated by Algorithm 5.1 by their length, but the method presented
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Figure 6.13: Graphical illustration of Algorithm 6.2. {·} denotes Xt, {⋄} uniformly dis-
tributed objects in a sphere and {▽} on the surface of a sphere. Solid line denotes a one-class
classifier and dashed line denotes current estimation of S(a, r).

here is less computationally expensive.

Assume a set of objects Xt in R
N and a nonspherical one-class classifier h trained on this

set. Q1, and Q2 are parameters set by a user. Initialise r̃ = 0.

1. Compute the smallest N-sphere that encloses the training data Xt; S(A, R).

2. Generate Q1 objects zi uniformly distributed in S(A, R) using Algorithm 5.1.

3. For each zi find ρi =minx∈Xt
‖zi − x‖. This determines Q1 N-spheres S(zi, ρi).

4. To check whether an N-sphere S(zi, ρi) is inside the classifier h generate Q2 uniformly
distributed objects s on its surface according to equation (6.25) and classify all objects
Q2 by the classifier h.

5. For all S(zi, ρi) ⊂ h repeat steps 2-4 replacing S(A, R) by S(zi, ρi), until zi does not
change.

6. Find r̃=max(ρi); yielding S(ã, r̃).

7. Reduce r̃ by a constant and repeat steps 2-5, e.g. until r̃ > 0

Algorithm 6.2: Find the largest empty N-sphere inside non-spherical classifier h.
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Figure 6.14: Left: SVDD description with decreasing γ from top to bottom in R
N with S(a, r)

(dashed line). Middle: SVDD in the Hilbert space H. Right: SVDD in the Hilbert space H with
the black, region represents S(a, r) mapped to H.

The proposed algorithm to find the approximately largest empty N-sphere S(ã, r̃) inside
an arbitrary one-class classifier h is summarised in Algorithm 6.2 and figure 6.13. First the
smallest N-sphere that encloses all Xt is computed in the input space R

N ; figure 6.13(b).
Because of the non-linearity of classifier h, part of it can be outside S(A, R), therefore we
increase R by a small constant, e.g. R = 1.05R. Next, a set of potential centres zi of the
largest empty N-sphere S(ã, r̃) are generated uniformly in S(A, R); figure 6.13(b). In step 3 a
single nearest neighbour for each zi is found in Xt which determines the set of empty N-spheres
S(zi, ρi) where ρi = minx∈Xt

‖zi − x‖; figure 6.13(c), here a single sphere is shown. To decide
whether the N-sphere is inside or outside a classifier h we generate a set of uniformly distributed
objects on the surface of an N-sphere S(zi, ρi); in figure 6.13(d). If all uniformly distributed
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objects for a single S(zi, ρi), are classified by h as targets then we assume that the N-sphere is
entirely inside h. For all N-spheres S(zi, ρi) ⊂ h steps 2-4 are repeated replacing S(A, R) by
current approximations S(zi, ρi), until zi do not change; figure 6.13(e,f). Next, we determine
an N-sphere with the maximum radius S(ã, r̃). which is an approximation of S(a, r). Since
we use a finite set of uniformly distributed candidate centres zi, the obtained solution is only
an approximation of the largest, empty N-sphere in h. We can improve this approximation
further by repeating the above steps for decreasing r̃. After step 6 in Algorithm 6.2 the radius
r̃ can be reduced by a constant, therefore for the same number of objects Q1 and assuming
a ∈ S(ã, r̃) limV →0 ‖a− ã‖ = 0.

Algorithm 6.2 is relatively fast, since it performs mainly classification of objects, however,
it allows to find only the approximately largest empty N-sphere. The approximation depends
on the numbers Q1, Q2 of uniformly generated objects. We discuss the influence of the number
of generated objects on the approximation factor in subsection 6.1.4.

Now, we can show how the largest empty sphere S(ã, r̃) found in the input space R
N in

SVDD which is based on a Gaussian kernel looks like in the Hilbert space H. Figure 6.14(Left)
shows the largest empty N-sphere found in SVDD in R

N using Algorithm 6.2 for various values
of γ. The middle column of 6.14 shows the SVDD in the Hilbert space with a data manifold.
The right column shows the projection of S(ã, r̃) in H, denoted by black patches.

The figure on the right shows
relations between objects, SVDD

and the largest empty sphere in
the Hilbert space. The figure
shows SVDD from a bit different
angle than figure 6.14 to empha-
sise a 3D structure.

data manifold

support vectors

data inside SVDD

SVDD

largest empty sphere

We have mapped the systematically distributed objects on the grid of the left figures to
H using kernel evaluations. The objects approximate the data manifold in H shown in figure
6.14(Middle) and 6.14(Right) as dots. Objects inside the SVDD sphere are marked by bold
dots and outside by smaller dots. Since, by Taylor expansion of K(xi,xj) = e−||xi−xj ||

2/γ2
=

1− ||xi−xj ||
2

γ2 + . . ., then for decreasing γ, the support vectors become nearly orthogonal in the

Hilbert space as the inner product K(svi, svj) approaches 1. This can be seen by observing
the increasing radii of SVDD spheres in the middle column of figure 6.14. From the right column
of figure 6.14 it can be seen that for two support objects the sphere in R

N has a moon like
shape in H.
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Figure 6.15: (a): SVDD description in R
N with S(a, r) (dashed line) (b): Reflection line (doted

line). (c): SVDD in the kernel space H with the black, moon shaped area represents S(a, r)
mapped to H.

Observation
If the number of support vectors in kernel based classifiers is lower than N +1, where N is
the dimensionality of an input space R

N , there is a reflection or rotation hyperplane that
determines regions of R

N that are mapped at the same position in H. This follows from
triangulation properties, in R

N in order to uniquely describe the position of an arbitrary
object we need N +1 reference objects. If the number of support vectors equals N there is
a reflection hyperplane, figure 6.15.(b). If the number of support vectors is smaller than N
there is a rotation hyperplane.

Note that the shorter edge of the moon shape ”sphere” in the Hilbert space is the part of
the segment connecting two support vectors in R

N inside S(a, r). The line that goes through
two support vectors is the reflection line. This means that two object which are projected onto
the same point of the line can not be distinguished in a Hilbert space. Their inner product
relations with support vectors are the same.

Using Algorithms 6.1 and 6.2 the V-statistic can be computed for an arbitrary one-class
classifier. As an example the V-statistic is computed for three non-spherical one-class classi-
fiers: a decision-based SVDD, a neural network-based auto-encoder and a density-based classi-
fier: Parzen, see figures 6.16 and 6.17. We trained these classifiers on one of our toy examples
the 2D banana-shaped target class. For these three classifiers γ denotes respectively sigma
in a Gaussian kernel, the number of hidden units and the smoothing parameter. Figure 6.17
and 6.16 show the V-statistic with some examples of plots of data and classifiers with differ-
ent values of γ. The complexity parameter γ changes from left, the most simple, to right,
the most complex classifier. For the SVDD, the auto-encoder and Parzen the V-statistic has a
minimum, here γ∗ = 3 for SVDD γ∗ = 10 for auto-encoder, and γ∗ = 1 for Parzen. For these
classifiers the V-statistic decreases, but at a certain moment some stable patches appear that
hardly change volume. Because inside these patches a small N-sphere can still be fitted, the
numerator in equation (6.2) is almost constant. On the other hand the total volume of the
classifier decreases, causing the denominator to decrease. This results in the V to increase.
This can be observed in the last row of figure 6.17, which shows on the right figure the relation
between Vh and VS(a,r) for the Parzen classifier. We can see that for Vh smaller than 100, VS(a,r)
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Figure 6.16: The largest empty N-sphere determined inside SVDD descriptions based on a
Gaussian kernel for decreasing γ, εtr

t = 0.01. The centres of S(a, r) are indicated by ⋄. The
corresponding V-statistic for different values of γ is shown on the right.

almost does not change, therefore V rises. Such classifiers over- and underfit therefore we can
observe the minimum in the value of V . This phenomenon does not happen when the volume
of a classifier decreases in the same rate as the volume of the largest empty N-sphere e.g. for
symmetrically distributed data where data can not be distinguished in terms of distances.

For γ = 1 the volume of the auto-encoder is infinite, since the classifier consists of two
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Figure 6.17: V-statistic computed for auto-encoder and Parzen classifier with examples of
classifiers trained with different value of γ. In the bottom row the figure on the left shows
relation between two volumes for the Parzen classifier and figure on the right relation between
two volumes for all classifier trained on banana-shaped data.

parallel hyperplanes, therefore the first value of V has been plotted for γ = 2.

The last subfigure in 6.17 shows relation between Vh and VS(a,r) for all classifier that we
have trained on 2D banana-shaped class. Such a figure, similar to a ROC curve, can be used
to select a classifier that fits the data best for all complexity parameters. The classifier with
the minimum area under the V curve may be the classifier that best fits data for an analysed
set of complexity parameters according to V-statistic.

Since there is not a single characteristic shape of the V-statistic curve, we propose two
different selection criteria for γ. For classifiers like k-means, k-centres, SOM and also for mixture
of Gaussians the optimal γ is selected based on a stability measure, see figure 6.9. For SVDD,
Parzen and auto-encoder we select γ∗ for which V-statistic has the minimum value, see figures
6.16-6.17. We can also unify this criterion by saying that we select the most complex classifier
that does not overfit, which is indicated by clear increase in the value of the V-statistic.
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Approximation factor

The solutions given by Algorithm 6.2 depend on various parameters like the data dimen-
sionality N , the number of generated candidate centres Q1 etc. In this section, we provide
explanation how the selection of these parameters influence the accuracy of a final solution.

The probability that an uniformly distributed object generated in an N-sphere S(a1, r1) is
also in an N-sphere S(a2, r2), where S(a2, r2) ⊂ S(a1, r1), is equal to the ratio of two volumes
VS(a2,r2)

VS(a1,r1)
= ( r2

r1
)N . Therefore, the probability that a single object, from such a generated uniform

distribution, is not in the N-sphere S(a2, r2) is 1− ( r2

r1
)N . Since we generate Q1 such objects t

times in S(a1, r1), the probability that none of these objects are in S(a2, r2) is (1− ( r2

r1
)N)tQ1 .

This probability can be bounded from above:

(1− (
r2

r1

)N)tQ1 ≤ e
−(

r2
r1

)N tQ1

where we used the property that (1 − x)y ≤ e−xy. This is the probability that none of tQ1

uniformly generated objects in S(a1, r1) are in S(a2, r2). We would like to use this result
to determine the number of objects required to reduce this probability of failure below some
desired level δ.

e
−(

r2
r1

)N tQ1 ≤ δ

Rearranging terms to solve for Q1, we find:

Q1 ≥
(

r1

r2

)N
1

t
ln(

1

δ
) (6.26)

As an example; if we would like to find an N-sphere S(a2, r2) with an accuracy equal to half
of the current radius r1, in N = 15, with probability of failure δ = 0.1 and for t = 20, Q1

should be Q1 ≥ 3800 and for N = 20, Q1 should be Q1 ≥ 120, 000. In our experiments we
used Q1 = 100, 000 which is quite close to this number.

In Algorithm 6.2, we check whether an N-sphere S(z, ρ) is inside or outside the classifier by
classifying Q2 uniformly distributed objects s on the surface of S(z, ρ). Under the assumption
that the classifier is convex between generated objects s, the maximum volume of an N-sphere
S(z, ρ) that can be outside a classifier for the N-sphere, that all generated objects s are inside
a classifier h can be computed from the formula of the volume of a spherical cap (6.6). Using
inequality (6.26) the radius rc and height hc of such a spherical cap can be determined as
(rc = r2; ρ = r1):

rc ≥ ρ
N−1

√
ln(1

δ
)

Q2t
, hc = ρ−

√
ρ2 − r2

c ≥ ρ

(
1−

√√√√
1− N−1

√(
ln(1

δ
)

Q2t

)2)

hc was determined using simply the Pythagoras equation to two triangles shown in figure
B.1. Therefore, with probability δ none of Q2t uniformly distributed objects on the surface of
S(z, ρ) is in an N − 1 dimensional sphere with radius larger than rc. Substituting the above
inequalities into equation (6.6) the ratio between the volume of the entire N-sphere S(z, ρ)
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and the maximum volume that can be outside the classifier is:

Vcap

VS(z,ρ)

≥ C

ρ
√

π

βmax∫

0

sinN−1(β)dβ where βmax = arcsin(
√

(2ρ− hc)(hc/ρ2))

C =
Γ(N/2 + 1)

Γ((N − 1)/2 + 1)
.

(6.27)

Under the assumption that a classifier is not convex between objects s the part of the volume
of the N-sphere that is considered inside a classifier and can be outside it is divided by the
volume of such N-sphere, is bounded by the above inequality with the probability δ. As an
example; for δ = 0.1, N = 15, Q2 = 10, 000, t = 20 and ρ = 1 above ratio equals 3 · 10−7 and
for N = 20, equals 4 · 10−7. Such an error can be neglected in our computations.

6.2 Experiments

In this section we apply the algorithms 6.1 and 6.2 to datasets from the UCI repository
[Hettich et al., 1998] and to a machine condition monitoring dataset [Ypma, 2001]. We com-
pare the performance of the models selected by the V-statistic with standard model selection
methods based on the uniformly generated outliers and the method based on the consistency
of a one-class classifier.
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Figure 6.18: The PCA projection of Concordia dataset. The target objects of the digit {4}
are marked by bold dots.

First, we focus on the prediction of γ, based on the V-statistic for a particular type of
classifier. The Concordia hand-written digits dataset has been chosen with digit {4} as the
target class. The objects from the other classes: {0 : 9}\{4}, have been labelled as outliers.
One can expect not only outlier objects that belong to the class of written digits but also e.g.
letters, special symbols like an exclamation mark or objects that do not represent recognis-
able classes. Since we do not have examples of these classes represented in data, similar to
[Tax and Duin, 2001] we assume that these classes are uniformly distributed and by generat-
ing artificial data we would like to model appearance of such classes. Therefore, in addition
to outliers constituted from digits we generated the same number of uniformly distributed
outliers, using Algorithm 5.1.

The dataset was mapped from 256 to 15 dimensions preserving about 85% of the variance
in the target class. The dataset mapped on the first three PCA dimensions of class {4} is shown
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Figure 6.19: Left: The volume, in the logarithmic scale, of one-class classifiers trained on
digit {4} from the Concordia dataset. The results were averaged over 20 random splits of the
data. Middle: The corresponding V-statistic. Right: The classification error.

in figure 6.18. Objects from the target class are marked by bold dots and the outlier objects,
from classes {0 : 9}\{4} by small dots. Since the target class surrounds the outlier class the
estimation of γ is especially important for the classification performance. To compute the
V-statistic we use Algorithm 6.1 and equation (6.10) for k-centres and k-means. For SVDD and



82 Volume based model selection in one class classification

Parzen we use Algorithm 5.1 and Algorithm 6.2 to compute the V-statistic. The results are
shown in figure 6.19. The first column shows the computed volume Vh of a classifier together
with the volume of the largest empty N-sphere S(a, r) for different value of γ. The complexity
of classifiers increases from left to right. The middle column shows the corresponding V-
statistic. The last column shows the classification error Λ on the test set with λ = 0.5; see
equation (5.2). The experiments were averaged over 20 random splits of the data into training
and test sets. The number of uniformly generated candidate centres in Algorithm 6.2 was
set to 100, 000. Based on the V-statistic complexity parameters can easily be determined by
selecting either the minimum for Parzen and SVDD or the stability point for k-centres and
k-means. In figure 6.19 the V-statistic for the SVDD classifier has a local minimum around
γ = 7, which means the volume of the classifier decreases faster than the volume of S(a, r),
e.g. S(a, r) is determined only by objects from the training set Xt.
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Figure 6.20: (a): The volume of k-centres classifier Vh trained on the Delft pump 5×3 dataset
and the volume of the largest empty N-sphere inside h. (b): The projection of the target class
on the first three PCA components.

A similar problem of determining the complexity of a chosen classifier is shown in figure
6.20. Here, we would like to present a negative result, where we can not select a model based
on the V-statistic. The problem is the 64 dimensional machine diagnostic problem selected
from the Delft pump dataset [Ypma, 2001]. The dataset contains measurements of normal
and abnormal working stages of a water pump. Due to the data dimensionality the V-statistic
can only be determined for one-class classifiers consisting of N-spheres. Because for a limited
number of generated objects (∼ 100, 000) all objects lie on the surface of the smallest N-sphere
that encloses Xt. For the same reason the outlier class has not been enriched with uniformly
generated objects. To solve this classification problem k-centres has been chosen, as it does
not suffer from the curse of dimensionality.

Figure 6.20(a) shows the volume of a k-centre classifier, Vh, and the largest empty N-sphere,
VS(a,r) for different values of the complexity parameter. The target class is constructed from
752 examples of a a normally working water pump. The computation of the volumes was
averaged over 20 trials of 50% randomly chosen objects from the target class.

We can see that the values of the two volumes are noise (see the scale of V ). Therefore,
dividing these to values gives also non-smooth characteristic of the V-statistic, from which we
can not automatically select a model. The reason of the non-smooth characteristic of V is
that in 64 dimensions all distances between objects are large. The space is empty because for
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the given problem there is not enough data to create any shape of a target class. Therefore,
almost all complexity parameters are equally good according to the V-statistic.

However, we can clearly see, from the left figure 6.20, that there is a sudden decrease in the
value of the two volumes, between γ = 6 and γ = 7. For γ ≥ 7 the two volumes do not change
much. In the figure 6.20 we show the target class projected on the first three PCA components.
We can see 7 clusters. Since the data has been projected from 64 to 3 dimensional space we
can not guarantee that this data structure is also in the original space. However, assuming
that such structure also exist in 64 dimensions we can select the complexity parameter as
γ = 7, based only on the volume of the classifier. Namely, for γ ≥ 7 the shape of a classifier
does not change.

From the above example we can see that in small sample size problems the selection of
complexity parameters can be arbitrary and can require prior knowledge about a recognition
problem.

6.2.1 Comparison with other model selection methods

In this subsection we compare the performance of models selected according to the V-statistic
with the performance of models selected by uniformly generated outliers [Tax and Duin, 2001]
and the consistency model selection [Tax and Müller, 2004]. The comparison is made on two
classifiers, k-centres and Parzen for 13 UCI datasets. The results are summarised in table
6.1 and 6.2. For all 13 dataset the first class has been chosen as the target class and all
other classes constituted the outlier class. To determine γ using Algorithm 6.2 for the Parzen
classifier for datasets with dimensionality larger than 20 were mapped on the first 15 PCA

directions of the training set. In datasets up to 20 dimensions the outlier class was enriched
with the same number, as the size of the genuine outlier class, of uniformly generated outliers.
For k-centres the parameter γ has been selected from γ = [1, . . . , 30] and for Parzen γ has been
selected from a range of 30 numbers equally spaced between the minimum and the maximum
distance between objects in the training set. The threshold θ was set to εtr

t = 0.05. The
averaged classification error was obtained using 10× 3 fold cross-validation.

From the tables 6.1 and 6.2 one can see that the performance of the proposed model
selection criterion is either similar to the compared criteria or it outperforms them. One
of the reasons that the proposed method based on the V-statistic performs better than the
method based on the uniform outlier generation or the consistency method in the presented
experiments, is the evaluation criterion used by us. In all experiments, we combine uniformly
generated outliers with the existing, outlier classes present in the dataset. We do so to represent
the occurrence of classes in real applications. One can expect that, for example, in the hand-
written digit {4} recognition problem, the probability that an outlier object is from an other
digit class is much higher than from the non-digit outlier class. Although we still would like
to predict the error on the non-digit outlier class by combining given and uniform distributed
outliers in the test set. The other reason is that the UCI repository datasets are two- or
multi-class problems. When they are transformed to a one-class classification problem, they
overlap only in certain regions of the feature space and do not cover the entire region where
the target class is. Therefore, minimising the largest empty N-sphere in a classifier better
represents such problems than the minimisation of the volume of an entire classifier as in the
consistency or the uniform outlier generation methods. Moreover, for the method based on
uniformly distributed outliers in high dimensional spaces, non or a few uniformly generated
outlier objects are classified as targets. Consequently, the model selection is based on the error
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Table 6.1: The complexity parameter γ for k-centres classifier optimised by the uniform outlier
generation method γu, the consistency approach γc and the V-statistic γV with corresponding
classification error Λ. #t/o denotes size of target and outlier class.

dataset N #t/o γu γc γV Λu Λc ΛV

biomed 5 172/134 4.4(2.2) 3.3(0.8) 17.4(8.0) 13.9(2.4) 15.1(1.5) 9.2(0.7)
liver 6 145/400 4.7(2.6) 4.2(1.9) 18.1(9.2) 26.9(1.3) 26.9(2.0) 22.6(2.7)
mfeat-mor 6 200/3600 3.1(1.5) 7.6(4.6) 7.1(1.3) 6.1(1.6) 6.1(2.4) 6.1(1.1)
ecoli 7 143/258 9.1(2.1) 3.5(1.0) 9.8(1.1) 11.7(3.2) 13.1(3.0) 11.1(3.7)
diabetes 8 500/536 3.0(1.1) 8.2(4.4) 10.0(3.4) 23.3(0.9) 23.7(0.8) 11.8(0.9)
breast 9 444/478 8.4(4.7) 6.8(2.8) 10.5(3.2) 4.5(1.3) 5.2(0.8) 4.1(2.0)
heart 13 160/274 2.8(1.4) 4.5(1.5) 16.7(4.9) 25.1(1.3) 25.5(1.3) 11.2(4.2)
waveform 21 1657/6686 7.9(4.7) 10.3(3.4) 15.1(3.0) 14.8(1.3) 14.7(1.3) 15.9(2.1)
ionosphere 34 225/252 4.2(2.4) 4.6(1.6) 7.4(1.5) 7.8(3.2) 6.9(1.5) 5.7(1.9)
satellite 36 1533/9804 5.1(5.1) 12.8(4.7) 9.2(2.1) 7.4(2.7) 5.3(1.5) 7.1(1.2)
mfeat-zer 47 200/3600 2.8(1.5) 4.2(1.4) 12.4(2.1) 6.2(1.8) 4.9(1.0) 3.9(2.1)

on the target class only. Therefore the selection is biased to classifiers with larger volumes.
Compared to the consistency method Algorithm 6.2 can only be applied in low dimensional

problems, up to 20D, for non-spherical one-class classifiers, however the consistency method
does not depend on the dimensionality of data.

Table 6.2: The complexity parameter γ for Parzen classifier optimised by the uniform outlier
generation method γu, the consistency approach γc and the V-statistic γV with corresponding
classification error Λ. #t/o denotes size of target and outlier class.

dataset N #t/o γu γc γV Λu Λc ΛV

biomed 5 172/134 23.7(1.2) 14.4(8.6) 25.3(0.4) 10.9(1.2) 26.8(16.5) 11.3(1.0)
liver 6 145/400 22.5(7.6) 16.7(4.7) 19.9(0.5) 22.6(1.9) 29.5(6.8) 20.2(6.7)
mfeat-mor 6 200/3600 3447.4(3572.2) 0.5(0.1) 841(54) 4.9(1.5) 50.0(0) 4.5(2.3)
ecoli 7 143/258 0.1(0.02) 0.09(0.02) 0.1(0.05) 9.6(2.3) 13.1(9.6) 9.6(1.1)
diabetes 8 500/536 15.1(4.3) 4.4(0.7) 57.0(19.8) 36.5(10.3) 49.1(0.9) 24.0(0.3)
breast 9 444/478 2.0(0.08) 1.0(0) 1.0(0) 3.8(1.0) 6.3(0.9) 6.3(1.0)
heart 13 160/274 9.9(4.4) 6.9(4.1) 48.9(15.1) 44.2(7.1) 47.2(7.8) 25.9(1.0)
waveform 21/15 1657/6686 4.6(0.6) 1.8(0.2) 2.5(0.1) 21.1(2.1) 17.5(6.5) 14.5(0.5)
ionosphere 34/15 225/252 1.5(0.2) 1.2(0.4) 1.5(0.4) 17.3(2.7) 14.8(2.6) 17.1(2.1)
satellite 36/15 1533/9804 11.2(1.3) 7.1(0.5) 46.8(11.0) 10.3(2.1) 36.9(2.9) 6.0(2.6)
mfeat-zer 47/15 200/3600 124(13) 75.9(16.3) 183.4(32.6) 13.1(9.5) 20.8(13.7) 4.1(0.9)
sonar 60/15 97/222 0.8(0.09) 0.9(0.3) 1.1(0.3) 30.8(3.5) 31.8(4.2) 29.6(3.7)
concordia 256/15 400/7200 2.1(0.2) 1.8(0.3) 1.4(0.3) 21.8(4.9) 14.7(5.3) 7.4(0.8)

6.3 Conclusions

One of possible definitions of an outlier class is that the class contains objects which are remote
from the bulk of the target class. Two fundamental questions should be asked: how remote
the object should be to be considered an outlier and how do we describe the bulk of data. In
this chapter, we have used one-class classification methods to describe the bulk of the data
and we focus on the optimisation of complexity parameters of such methods or alternatively
on the selection between several classification methods. Since during training, outlier objects
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are not available we can not estimate the error on the outlier class without making additional
assumptions about its distribution.

In this chapter we have proposed a model selection criterion for one-class classifiers called
the V-statistic. The criterion is based on two volumes: the volume of a one-class classifier
and the volume of the largest empty N-sphere that can be found inside the classifier. For a
larger volume of the one-class classifier, we expect a smaller target rejection rate and larger
outlier acceptance rate. On the other hand, for a smaller volume of the classifier we expect a
larger target rejection rate and smaller outlier acceptance rate. To define the correct volume of
the classifier, we have computed the volume of the largest empty N-sphere that can be found
inside the one-class classifier. This volume indicates if we can decrease the volume of the one-
class classifier, by increasing the complexity parameter of the classifier, without significantly
increasing the error on the target class at the same time. The V-statistic has been defined as
the ratio of two volumes.

The proposed criterion is feasible for one-class classifiers based on N-spheres and provides
an approximation in low dimensional spaces for non-spherical one-class classifiers. It has been
shown that the proposed criterion is useful in the prediction of complexity parameters of
one-class classifiers as well as discrimination between different classifiers. However, for high
dimensional data large amount of objects is needed.

For classifiers like k-centres, k-means we select complexity parameter based on stability
criteria in the V-statistic, since such classifiers hardly overfit. For classifiers like SVDD and
Parzen that both overfit and underfit we select models based on the minimum in the V-
statistic.

Finally, we have assumed that the threshold θ of the one-class classifier is given or it is
estimated from an application. However, we can also use the presented approach to estimate
both the complexity parameter and the threshold. In such case we propose to split the training
set in two sets, one to optimise the complexity and the other to optimise the threshold to avoid
any bias.





Part III: Accommodation of unlabelled data

to enhance classification performance

Find an error, and fix it,
and the classifier will work today.
Show the classifier how to find errors,
and the classifier will work forever.

4

4modified statement of Oliver G. Selfridge from AI’s Greatest Trends and Controversies
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Summary of Part III: Accommodation of unlabelled data to enhance
classification performance

In the previous chapters we have discussed the problem of one-class classification. This
problem arises, for example, when one of the classes, in a classification problem, is well repre-
sented and the other classes are too weakly or too broadly defined creating an almost uniformly
distributed class of outliers. The inadequate sampling of objects can be one of the reasons to
one-class classification problem. This ill-defined problem can rise by the incorrect sampling of
objects, i.e. when one samples a classification problem according to the distribution of objects
some classes can be undersampled and other oversampled. An other reason for ill-sampling
can be the cost of obtaining labelled examples. Examples of some of the classes can be more
expensive to measure or label than examples of other classes.

In this part, we investigate problems for which there is a large amount of unlabelled data
available but information about class labels is sparse. The problem we are trying to solve is
how to improve the performance of classifiers by incorporating additional information from
unlabelled data efficiently.

In chapters 7 and 8 active leaning is investigated. In this learning process a learner points
out to interesting unlabelled objects and requests their class labels from an expert. Since
the expert knowledge is considered to be expensive the learner should minimise the number
of requests for labels of unlabelled objects by selecting the most informative objects. The
challenge is to select these objects without knowing their class memberships.

In chapter 9 semi-supervised learning is investigated. In this type of learning one incor-
porates the distribution of unlabelled objects into the training of a classifier. The idea is to
improve classification performance by combining information about the distribution of a large
set of unlabelled data with class information available from a small training set.
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Chapter 7

Active learning

In the traditional approach to statistical learning, one tries to determine a functional depen-
dency between some data inputs and their corresponding outputs, such as their labels. This
is usually estimated based on a given, fixed set of labelled examples. Active sampling is an
alternative approach to automatic learning: given a pool of unlabelled data Xu, one tries to
select a set of training examples in an active way to reach a specified classification error with a
minimum cardinality. Therefore, ideally the same classification error is achieved with a smaller
number of labelled objects. The criterion of how informative a new object is depends on what
we are interested in. We may select a new object according to the following strategies:

1. selected object needs to be maximally informative about values of parameters of an
estimated classification model,

2. select objects only from a limited region, e.g. around a region that we are not able to
sample directly, to improve classification accuracy only locally

3. select objects such that models that have the largest error are rejected

Before continuing introduce four definitions:

Definition 7.1 An active learning function F assigns a real value to each unlabelled object
F(xi) → R, xi ∈ Xu. Based on this criterion we can rank unlabelled objects and select the
most informative object, x∗, according to F :

x∗ ≡ arg max
xi∈Xu

F(xi) (7.1)

The most informative object x∗ ∈ Xu is the one, that after revealing its label and adding to
the training set improves the knowledge about a classification problem the most.

Definition 7.2 A classifier h with an active learning function F is called a learner.

Definition 7.3 An expert which gives a correct labels for preselected objects is called an ora-
cle.

Definition 7.4 A version space is a set of classifiers with a zero error on a training set.
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Figure 7.1: Expected learning
curves for active and random sam-
pling.

Assume that an initial labelled training set Xt, a clas-
sifier h, a active function F and unlabelled data Xu

are given.

1. Train classifier h on the current training set Xt;
h(Xt).

2. Select an object x∗ from the unlabelled data
Xu according to the active query function
x∗ ≡ arg maxxi∈Xu

F(xi).

3. Ask an oracle for the label of x∗. Enlarge the
training set Xt and reduce Xu: Xt = Xt ∪ {x∗},
Xu = Xu\{x∗}.

4. Repeat steps (2)–(4) until a stopping criterion is
satisfied, e.g. the maximum size of Xt is reached.

Algorithm 7.1: A general framework of pool-based
active learning.

Several schemes have been proposed within an active learning framework. In stream-based
active learning [Seung et al., 1992, Freund et al., 1997], a classifier is provided with a stream
of unlabelled objects. In each trial, a new object is drawn from this stream and presented
to the learner, whose task is to decide whether to request its label or not. In the scheme of
active learning with membership queries [Angluin, 1988], in each trial, the learner generates
an object in an input space and requests its label. There is no pre-defined set of unlabelled
objects.

In this section, we focus on pool-based active learning [Lewis and Gale, 1994,
Cohn et al., 1995, Tong and Koller, 2000, Roy and McCallum, 2001, Baram et al., 2004,
Juszczak and Duin, 2004]. In this learning scheme the learner has access to a small set of
labelled objects Xt, a training set, and a large pool of unlabelled objects Xu. Objects are
usually selected one by one according to a specified active learning function F . The optimal
active learning function selects those objects that, when added to the training set result, for
example, in the highest reduction of the classification error. Therefore, in an active learning
framework it is assumed that the performance of the current classifier can be improved by
enlarging the current training set by additionally selected examples.

Active learning is usually compared to passive learning, in which a learner randomly draws
unlabelled objects. The passive learner samples a class distribution with the probability
density function P (X). The performance is measured as a generalisation error obtained on an
independent test set.

The general framework of pool-based active learning is presented in Algorithm 7.1. Assume
that the following are given: an initial training set Xt, a classifier h, an active learning function
F , called also a query function, and a pool of unlabelled data Xu. Unlabelled objects are
actively selected (usually one by one) from Xu according to the criterion F . After their labels
are obtained from an oracle, the training set is enlarged and the classifier h is re-trained.
The performance of h is measured on an independent test set. The generalisation error is a
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function of an actively selected training set. The resulting learning curve, is usually compared
with the learning curve based on random sampling from Xu. A good query function should
at least outperform random sampling during at least a part of or the entire learning process,
as illustrated in figure 7.1.

To describe specific active learning functions let us introduce first the notation. We are
given a C class problem, with labels ω = [ω(1), ω(2), . . . , ω(c)]. h is a classifier, hence a function
returning a class assignment for any object xi. h(Xt) is a classifier h trained on the current
set Xt. The decision of h is based on ω ≡ arg maxj=[1,...,C] h(ω(j)|xi), where h(ωj|xi) is the
output of h estimating the resemblance of x to the class ω(j) (the higher value the higher the
resemblance). From the applicability point of view, the class-wise outputs of the classifier
are converted to the probability estimates P (ω(j)|xi) by applying a sigmoidal transformation
[Tax and Duin, 2002]. Therefore the raw output of a classifier h(ω(j)|xi) is normalised to
P (ω(j)|xi) such that 0 ≤ P (ω(j)|xi) ≤ 1, ∀j=[1,...,C] and

∑C
j=1 P (ω(j)|xi) = 1.

Several active learning functions are proposed in the literature. Most of them are computed
on the normalised output of a classifier, P (ω|x), and/or directly on the current training set Xt.
We denote the active learning function as F(xi|P (ω(j)|xi), Xt). The active learning function
F is computed for all unlabelled objects Xu. An object x∗ ∈ Xu is selected for which the
active learning function takes the maximum value:

x∗ ≡ arg max
xi∈Xu

F(xi|P (ω(j)|xi), Xt) (7.2)

The set of active learning functions can be divided into four groups according to their
utility criterion. The active learning methods select objects according to:

1. an uncertainty measure for label assignments of a single classifier h(Xt) trained on the
current training set Xt,

2. the disagreement in a committee of classifiers,

3. the difference in distributions between labelled and unlabelled data sets,

4. the minimisation of the version space.

Note that all the methods, within this chapter, have been proposed in the literature, for
two class problems. Here we rewrite the original ideas for more general multi-class problems.
(1) An example of the first group of sampling methods is the uncertainty sampling (us)
[Lewis and Gale, 1994]. This method queries unlabelled objects for which the output of the
current classifier P (ω|x), for all classes ω(j), are the most uncertain:

x∗ ≡ arg max
xi∈Xu

{ C∑

j=1

1−
∣∣ 1

C
− P (ω(j)|xi)

∣∣
}

(7.3)

An example of the outputs of uncertainty sampling, for 1-NN is shown in figure 7.2(a) for
a simple 2D problem. The unlabelled data set Xu is constituted from the systematically
distributed grid of the figure.

The other sampling criteria in this group are based, for example, on the entropy or the
Gini coefficient of the output of a classifier [Roy and McCallum, 2001]. Since sampling is
performed in the vicinity of the current classifier such active sampling functions are suitable
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Figure 7.2: The values of active sampling functions: (a) uncertainty sampling (us), (b) query-
by-bagging (qbb), (c) positive density correction (pdc) and (d) MinMax method, as applied to the
figure grids, consisting of systematically distributed unlabelled data Xu. Xt : {+, •} indicate
the current training set. The current classifier h(Xt) (here the 1-NN rule in the (a)–(c) plots
and the ν-SVM for (d)) is represented by a white, solid line. Points with the highest utility
scores are coloured in black, while with the lowest utility scores are coloured in white.

for adjusting a classifier in the regions of class overlap. They are not, however, suitable for
the search of new classes or new modes of the known classes.

(2) In committee-based approaches [Argamon-Engelson and Dagan, 1999]
[Abe and Mamitsuka, 1998, Fine et al., 2002], a committee of classifiers is trained. Each
member of the committee labels objects xi ∈ Xu. The object for which the committee mem-
bers disagree the most is chosen as a query to an oracle. [Abe and Mamitsuka, 1998] proposed
the query-by-bagging (qbb) method, where the committee of classifiers is constructed on J
bootstrapped versions Xtk , k = 1, . . . , J , of the training set Xt.

Let h(Xtk) denote the k-th classifier trained on Xtk , Xtk ⊂ Xt and let ω(k) be a class
membership of xi estimated by h(Xtk), i.e. ω(k) = arg maxj=[1,...,C] P (ω(j)|xi, Xtk). We assume
here that the class labels ω(k) are numbers ω(k) ∈ [1, . . . , C]. The object x∗ ∈ Xu is selected
for which the disagreement about its class membership is the largest over a committee of J
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classifiers h(Xtk):

x∗ ≡ arg max
xi∈Xu

J∑

k=1

|ω − ω(k)| (7.4)

ω denotes the mean over the classification labels assigned by committee members
ω = 1

J

∑
arg maxj=[1,...,C] P (ω(j)|xi, Xtk). The illustration of the output of the query-by-

bagging function is presented in figure 7.2(b). A single classifier, the 1-NN rule, trained on
the entire Xt is plotted for a comparison. Such a method attempts to minimise the error of a
classifier by minimising its variance component caused e.g. by different training sets.
(3) The active sampling methods based on distributions of labelled and unlabelled data sets
[Juszczak et al., 2005, Nguyen and Smeulders, 2004] are especially useful for multi-modal or
multi-class problems, where more exploratory sampling is needed. [Juszczak et al., 2005], see
also figure 7.1(c), proposed an active sampling method, called positive density correction (pdc).
pdc samples unlabelled objects based on the difference in the probability density estimates P
as based on the unlabelled objects P (xi|Xu) and training objects P (xi|Xt):

x∗ ≡ arg max
xi∈Xu

{P (xi|Xu)− P (xi|Xt)} (7.5)

The method is classifier independent and does not require an initial training set.
(4) The last group of active sampling methods is based on the minimisation of a version
space [Mitchell, 1997]. These methods rely either on theoretical works of [Seung et al., 1992,
Freund et al., 1997], which also consider committee based sampling, or on recent methods
based on the idea of support vector machine (SVM). In recent papers [Tong and Koller, 2000,
Brinker, 2003, Dasgupta et al., 2005] a version space is approximated by support objects.
These methods can only be applied to the SVM classifier. An unlabelled object x∗ is selected for
which two possible labels split the version space in two equal parts. This means that always
half of the classifiers consistent with the current training set are rejected. A tacit assumption
is that the distribution of classifiers is uniform i.e. all classifiers are equally probable.

The outputs of the MinMax method [Tong and Koller, 2000] is illustrated in figure 7.2(d).
Although this sampling is theoretically attractive, it is, in practice, infeasible since it requires
a large number, i.e. C|Xu|, of different classifiers to be trained to estimate the value of F for
each query [Freund et al., 1997, Tong and Koller, 2000].
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In addition, the active learning functions can
be divided in three groups according to a state
of learning. In the first group, related to explo-
rative learning, a learner ’swaps’ a representa-
tion space by sampling from regions where it
has no labeled examples. pdc and vila belong
to this group, we describe these methods in the
next sections. In the second group, related to
exploitation learning, a learner samples only
within a region between different classes. Con-
sequently, the focus is on a class overlap re-
gions. The last group, relates to random sam-
pling, which allows to learn a probability den-
sity function exactly. The difference between
exploration and exploitation methods is shown
in figure 7.3. The pdc and vila sample from a
remote cluster where there are no labelled ob-
jects. Other methods focus on a class overlap
region.
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Figure 7.3: Queries selected by several ac-
tive learning functions. Xu : {·}, Xt : {+, •}
and the current classifier is denoted by a
dashed line. err - estimation of error re-
duction, w-us - weighted us, dw-EM-qbc -
density weighted, EM, query-by-committee,
EM-qbc EM query-by-committee.

7.1 Active learning based on positive density correction

In most active learning methods presented in the introduction, the classifier plays an important
part in the selection of the objects. Decisions are based on some change in classifier parameters,
the elimination of a bulk of not-consistent classifiers or on some distance measures to the
classifier. These are examples of conservative criteria, where it is assumed that all regions in
a feature space where the classification boundary can possibly exist, are known. Therefore
they belong to the exploitation group of learners. A second assumption is that a small initial
labelled set Xt is given.

However, one can imagine a problem in which there is no access to an initial training set,
but there is only a pool of unlabelled objects Xu and even no information about the number
of classes is known beforehand. For example, a company would like to learn a response of a
group of people, about its new product. The task is to learn how a particular person responds
to the new product. Since the product is new no initial training set exists. In addition, the
number of examined people should be minimised due to cost.

This section introduces an active learning method which does not require an initial training
set. Similar problems are studied in prototype selection [Sánchez et al., 1997] or in selective
sampling [Angluin, 1988]. However, in our case objects are selectively drawn from the pool of
unlabelled objects and they are not generated from distributions to be learned. The proposed
selection criterion is based on the difference in the density estimates for the training set Xt

P (xi|Xt), and the unlabelled set Xu P (xi|Xu):

x∗ ≡ arg max
xi∈Xu

{P (xi|Xu)− P (xi|Xt)} . (7.6)

where P is estimated preferably by a nonparametric, asymptotically conditional density esti-
mation like the Parzen estimator. Note that there is no absolute value of the density difference
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Figure 7.4: (a) A single query {⊙} selected according to the positive density correction
method pdc. {•, +} training set Xt and {·} unlabelled set Xu. (b) The density difference
between P (x|Xu) and P (x|Xt) are indicated by isolines.

taken. Consequently, we add objects from the region where P (xi|Xt) is low. Therefore, it is
called the positive density correction (pdc). A single query selection is illustrated in figure
7.4 and in figure 7.5 the score of the sampling criterion based on the difference in density
estimates for a toy problem is shown. The pdc algorithm is summarised in Algorithm 7.2.

1. Assume only an unlabelled set Xu is given.

2. Select, from Xu, the object, x∗, with the highest estimated density P (xi|Xu) to be
labelled by an expert and add it to Xt, Xt := {x∗, ω}, Xu := Xu\{x∗}.

3. Compute the difference in density estimates between the labelled set Xt and the unla-
belled set Xu: P (xi|Xu)− P (xi|Xt), ∀xi∈Xu

.

4. Select an object x∗ ∈ Xu to be labelled by an expert with the maximum value for the
density difference and add it to Xt, Xt := Xt ∪ {x∗, ω}, Xu := Xu\{x∗}.

5. Repeat 3−4 until the required stopping criterion is reached e.g. the size of the training
set is maximum.

Algorithm 7.2: Active learning based on the positive density correction.

Since the pdc method can be used without an initial training set Xt, in contrast to other
active sampling methods, we compare it in this section only with random sampling. In the
next section pdc is compared with other active learning functions using an initial training set.

In figure 7.6 some results of experiments on the UCI repository datasets are presented.
Datasets were split into two parts: the unlabelled set Xu and the test set. The size of the
unlabelled set is indicated by the length of the abscissa. To compute densities on Xt and Xu

in equation (7.6) the Parzen density estimator [Parzen, 1962] was used, with the smoothing
parameter optimised by the maximum likelihood criterion [Duin, 1976]. In experiments pre-
sented in figure 7.6 the density of Xt was estimated per class to use all available information.
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Figure 7.5: The output for Xu constituting of the grid of a figure, computed by the sampling
method based on the positive density correction for the labelled set Xt and the unlabelled set
Xu. In (a) the density of Xt is estimated per class (b) the density of Xt is estimated without
information about classes. The white, continuous line denotes the current classifier.

Moreover, by estimating density per class the class unbalance is avoided during sampling.

In step 3 of Algorithm 7.2, when |Xt| = 1 or when there is only a single object for one
of the classes in Xt, the smoothing parameter for the Parzen density estimation can not be
determined by the maximum likelihood criterion. For this special situation the smoothing
parameter was determined by the distance of the single object x ∈ Xt to its nearest neighbour
in Xu.

The performance of active learning method was estimated using the one-nearest-neighbour
rule because none of the other classifiers can be computed and optimised over the entire
learning process. In most learning problems that were examined, learning curves look like
these of chromo, cbands and diabetes datasets, presented in figure 7.6. The selective sampling
pdc outperformed random sampling especially when datasets have a high number of modes
(diabetes) or classes (chromo, cbands). In figures 7.6(d) and 7.6(f), datasets projected to first
three PCA components are presented. One can see that diabetes dataset has several modes
distributed along a cigar shaped structure. Clearly, if queries are chosen according to the
proposed method pdc, modes of the dataset can be explored faster than when queries are
selected randomly, which can be seen in the learning curve on the corresponding left figure.

For the heart dataset it is possible to select, using the pdc method, a subset of objects for
which the one-nearest neighbour error is lower than when the entire set Xu is included in the
training set. This result is due to the classifier that has been chosen. The complexity of the
nearest neighbour classifier is related to the number of prototypes, the size of Xt. From the
learning curve it can be seen that after adding about 25 objects the one-nearest neighbour
classifier becomes overtrained. To avoid overtraining when the size of Xt increases k, the
number of nearest neighbours, should also increase. In the presented experiments k = 1 over
the entire learning curve to have a consistent error measure. This result indicates that pdc

can be used also as a prototype selection method.

In the experiments on the wbc dataset (Wisconsin breast cancer dataset) random sampling
has similar performance to the pdc method, figure 7.7(b). Although, the differences are not
significant, the phenomenon is interesting to mention here. From the 3D PCA projection it
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Figure 7.6: Learning curves for random sampling ra and pdc sampling for some of the
UCI repository datasets, figures (a,b,c,e), averaged over 20 trials. In figures (d,f) the 3D PCA

projections of diabetes and heart datasets are shown.

can be seen that, although the classification problem is simple, one of the classes is highly
compact compared to the other one. This means that in the beginning of the learning process
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Figure 7.7: (a) 3D PCA projection and learning curves for the Wisconsin breast cancer dataset.
(b) The learning curve for the 1-NN rule trained on objects selected by random and positive
density correction methods. averaged over 20 trials.

more examples are sampled from the more dense class. Then examples from the second class
are sampled, and so on. Therefore the learning curve for pdc oscillates around the learning
curve for random sampling.

7.2 Active learning based on the variation in label as-

signments

The active learning methods presented in the literature perform well when the current classifier
is in the vicinity of the optimal classifier. Methods like the uncertainty sampling, query-by-
bagging and the estimation-of-error-reduction often fail on multi-modal datasets by selecting
objects that refine the current model instead of investigating the feature space; see figure
7.3. MinMax sampling works well but only if the parameters of SVM are correctly estimated. In
general, the presented methods use variation in the classifier parameters or a distance measure
to a decision function as a measure of utility of an unlabelled object. This is not necessarily
related to a gain in a classification performance.

In this section, a new active learning method is presented.

The method is based on the assumption that the learning problem is difficult, e.g. multi-
modal, and the current classifier is far from the optimal solution. In such problems, the current
learner has to explore the feature space. The proposed technique relies on the variation in
label assignments for the unlabelled dataset Xu. The proposed active learning function for a
single object xi ∈ Xu is computed on the variation in label assignments for Xu−i

:= Xu\{xi}
between a classifier h(Xt) trained on a current training set Xt and the set of C classifiers
trained on the enlarged training set Xt with all possible labels for xi, Xt ∪ {xi, ω

(j)}. If we
define ω

u−i

j as a set of labels of Xu−i
assigned by the classifier h(Xt ∪ {xi, ω

(j)}) and ωu−i
as a



7.2 Active learning based on the variation in label assignments 101

45 50 55 60 65 70 75

20

25

30

35

40

45

50

55

45 50 55 60 65 70 75

20

25

30

35

40

45

50

55

45 50 55 60 65 70 75

20

25

30

35

40

45

50

55

Figure 7.8: A single query selection based on the variation in labels assignments (vila). The
potential query is marked by {⊙} and the solid line denotes the current classifier, here Parzen.
In the left figure the query is assigned to the {+} class and in the right figure to the {•} class.
The corresponding classifiers are drawn as the dashed line. Objects that change labels are
marked by {⊳}.

set of labels assigned by the classifier h(Xt), then the proposed criterion can be written as:

x∗ = max
xi∈Xu

min
j∈[1,...,C]

∑

Xu−i

[
I{ωu−i

[xk] 6= ω
u−i(j)
[xk] }

]
(7.7)

The error of the classifier is expected to be reduced by selecting those objects which cause
the largest change in the label assignments of an unlabelled set Xu for all labels ω(j). To
avoid selection of outlier objects, the label which gives minimum number of changes in label
assignments is computed in equation (7.7). This means that at least this number of labels
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Figure 7.9: (a) The output for the grid of a figure constituting Xu, computed by the sampling
method based on the variation in label assignments. The white, solid line denotes the current
classifier, here Parzen. (b) Two classifiers, dashed and solid lines, obtained after adding the
object from the centre of the region of the highest score for the two possible labels.

change after revealing the true label of x∗.

1. Let an initial training set Xt and an unlabelled set Xu be given.

2. Train the classifier h(Xt) on the labelled set Xt.

3. Let Xu−i
:= Xu\{xi}. Classify Xu−i

by h(Xt), ωu−i = arg maxj P (ω(j)|Xu−i
, h(Xt))

4. Add xi to the temporary training set with the assumed label ω(j), Xt ∪ {xi, ω
(j)}.

5. Train the classifier h(Xt ∪ {xi, ω
(j)}) and classify Xu−i

,
ωu−i(j) = arg maxj P (ω(j)|Xu−i

, h(Xt ∪ {xi, ω
(j)})).

6. Repeat the steps 4− 5 for all labels ω = [ω(1), . . . , ω(C)].

7. Repeat 3− 6 for all xi ∈ Xu.

8. Select x∗ that maximise equation (7.7) to be labelled by an expert and add it to Xt,
Xt := Xt ∪ {x∗, ω}, Xu := Xu\{x∗}.

9. Stop if a stopping criterion is fulfilled, e.g. when the training set has the maximum
size.

Algorithm 7.3: The variation in label assignments (vila).

An example of a single query selection is shown on figure 7.8 and the general algorithm
is presented in Algorithm 7.3. In figure 7.9(a) the calculated output for our toy problem by
the proposed method based on the change in label assignments is presented. In figure 7.9(b)
two classifiers represented by dashed and solid lines after including the object from the figure
grid, with the highest score (the centre of the black region in figure 7.9), for the two possible
labels are shown.

We have compared the performance of both proposed sampling methods pdc and vila in



7.2 Active learning based on the variation in label assignments 103

−20
−10

0
10

20

−50

0

50

−100

−50

0

50

100

25 50 100 150 200
0

0.05

0.1

0.15

0.2

number of queries

m
ea

n 
er

ro
r 

[5
0]

ra

us

qbb

vila

pdc

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

number of queries

m
ea

n 
er

ro
r 

[5
0]

ra

us

qbb

vila

pdc

Figure 7.10: Learning curves for the 3D, non-overlapping, multi-modal two class problems.
ra random sampling, us uncertainty sampling, qbb query-by-bagging, vila variation in label
assignments, pdc positive density correction.

situations where an initial training set is given. The performance of the proposed query func-
tions are also compared to the random, uncertainty and query-by-bagging sampling methods
on some toy problems and real-world datasets. These sampling methods were selected because
they are de facto standards in the field of the active learning. Moreover, uncertainty sampling
is an example of conservative sampling and both these active sampling methods heavily rely
on the classifier.

All experiments were performed using the Parzen classifier. Datasets were split in three
parts: the initial training set Xt consisting of two objects per class, the initial unlabeled
training set Xu and an independent test set.

In figure 7.10, learning curves for 3D, non-overlapping, multi-modal, two class problems are
presented. The size of Xu equals 500 objects. It can be seen that pdc and vila outperform the
other sampling criteria. For the separated 3D chess board dataset, the proposed active learning
methods required 60− 80 queries to reach zero error on the test set, compared to random and
qbb requiring about 200 queries. Uncertainty sampling requires about 300 objects to reach
the same error. It can be clearly seen that sampling close to the current decision boundary
according to uncertainty sampling and query-by-committee the performance improvement is
worse than by using random sampling. The same can be observed in the figure on the right
for a bit more difficult problem of enclosed 3D ellipsoids. The maximum error difference, in
this case between: us, qbb, ra and the proposed methods: pdc and vila is about 20%, on the
independent test set, for the first 100 queries.
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Figure 7.11: Learning curves for UCI datasets (average over 50 trials).

Figure 7.11 shows examples of learning curves for several UCI datasets
[Hettich et al., 1998]. The setting of experiments is the same as in the toy example.
It can be observed that vila and pdc perform better, compared to other sampling techniques,
when a dataset has more classes. This can be related to more complicated structure in the
dataset itself, e.g. many modes.

Presented methods belong to the exploration group of learners, where it is assumed that
a problem is complicated, e.g. multi-modal, is such problems they provide faster convergence
of the classifier to a small error.
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7.3 On the choice of a classifier in the active learning

framework

In the previous sections we have discussed active learning techniques that can be applied with
any type of classifier, like vila, or that do not use a classifier at all, like the pdc. However, some
active learning methods proposed in the literature use specific features of the chosen classifier
in the definition of the utility function. These active learning methods have been designed
for particular classifiers: support vector machine [Tong and Koller, 2000], self-organising maps
[Hasenjäger et al., 1999], k-nearest neighbour classifier [Lindenbaum et al., 2004], näıve Bayes
classifier [Roy and McCallum, 2001] or Parzen classifier [Chapelle, 2004]. All of these learning
techniques can be used only with the particular type of classifier, they were designed for.
However, the question remains which classifier, or type of classifiers (e.g. distance based,
density based), should be chosen for an active learning procedure? In this section some
general features of a particular classifier in relation to active learning are described.

The performance of a learner depends on the classifier, the sampling method and the
problem. In general, no classifier can be preferred over any other one if there is no
prior knowledge available about the classification problem; the no-free lunch theorem,
[Wolpert and Macready, 1997]. However, because in general some of the difficulties exist in
the active learning framework, e.g. the small sample size problem in the beginning of learn-
ing, unbalanced training data, a set of desired properties of a classifier could be described. In
general a classifier that is used in the active learning framework should:

1. have the possibility of adapting its complexity to that of the problem, from linear in
the beginning of the learning process to possibly highly nonlinear decision boundaries,
to avoid overtraining at the start and to make use of information obtained from new
labelled objects.

2. have few parameters to estimate

3. work well in small sample size problems

4. make use of every new labelled object as labeling is expensive

In the last few years, the tendency is to use SVM in the active learning framework
[Tong and Koller, 2000, Schohn and Cohn, 2000, Baram et al., 2004]. This is quite under-
standable, because it is flexible, simple and works well in small sample size problems and
unbalanced data. However, it has also some drawbacks: selection of the kernel and the trade-
off parameter C is still an active area of research. For a survey, see [Seeger, 2004]. Moreover,
not all information from every labelled example is incorporated as a change in the classifier
itself, and as a result the utility function based on the classifier, is not changed. One can
imagine that for limited resources for labeling new objects it is required that every new object
should improve a sampling criterion. Therefore, for the SVM only unlabelled examples that
have a chance to become support objects should be queried. Because of the high labeling
cost the exploration possibility of the utility function, in this case, is limited. Consequently,
methods that predict change in the classifier should be used e.g. the MaxMin Margin, Ratio
Margin proposed in [Tong and Koller, 2000] or vila as proposed in the last section. However,
when sampling methods like uncertainty sampling, estimation-of-error-reduction or pdc are
used for the SVM this results in step-like learning curve. This may result in that, despite the
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increase in the training set, size the classifier and the utility function stay the same, thus an
identical (or similar) query is selected next.

Following the above discussion and because we would like to have a simple and at the same
time flexible classifier, with parameters that should be learned from labelled objects and as the
classifier should utilise information from every labelled object, in the experiments presented
Parzen classifier [Parzen, 1962] was chosen, as a more suitable classifier.

7.4 Conclusions

In this chapter, we have proposed two active learning functions. In comparison to some existing
active learning functions the proposed ones have more exploratory properties. Therefore, they
outperform most of existing active learning functions in difficult problems, e.g. in multi-modal
problems. On the other hand, in problems where classes heavily overlap the exploratory active
learning functions might outperform the proposed ones.

In addition, we have discussed the link between classifiers and active learning functions
pointing to advantages and disadvantages. It is important, for a performance of a learner
(classifier + active learning function), to select a type of a classifier and an active learning
function together, taking into account they characteristics. If the classifier is based on global
statistic, e.g. a mean or covariance, the active learning function should select objects which
give the best estimates of these statistics. On the other hand, if the classifier is only based
on few prototypes, from the training set, the active learning function should choose the best
prototypes.



Chapter 8

Query diversification in active leaning

In the previous section, examples of active learning methods that select a single query x∗

from a pool of unlabelled objects Xu have been presented. The goal has been to minimise the
size of a training set necessary to attain a certain classification accuracy. This is achieved by
retraining a classifier each time a label was retrieved for a single query. The more complex
task of selecting multiple unlabelled objects as a batch is addressed in this section. In practical
problems, there is a need to select a batch of unlabelled objects instead of a single one.

Imagine a fully automatic recognition system that we would evaluate once per month and
adjust it if needed. However, during a single month, such a system performs many recognition
tasks and stores much more new data than a human expert can verify in the next couple of
months. Therefore, it is necessary to pre-select a subset of unlabelled objects that, e.g. have
a large probability of misclassification. As they are boundary cases, they should be included
to re-train the classifier.

Similarly to the active learning approach, where one draws a single unlabelled object, here
the goal is to learn an input-output mapping X → ω from a set of n training examples
Xt = {xi, ωi}ni=1, where xi ∈ X, ω

(j)
i ∈ [ω(1), . . . , ω(C)] and the size n of the training set

should be minimised. However now, at each iteration, the active learner is allowed to select a
multiple, new training input {x1, . . . ,xk}∗ ∈ Xu of k elements from the unlabelled data Xu.
Note that k can be much larger than 1. The selection of {x1, . . . ,xk}∗ may be viewed as a
query based on the following active sampling function:

{x1, . . . ,xk}∗ ≡ arg max
{x1,...,xk}∗∈Xu

k∑

i=1

F(xi|h(Xt), Xt). (8.1)

Having selected {x1, . . . ,xk}∗, the learner is provided with the corresponding labels [ω1, . . . , ωk]
by an expert, as a result of an experiment or by some other action. The new training input
{x∗

j , ωj}kj=1 is added to the current training set Xt = Xt ∪ {x∗
j , ωj}kj=1 and removed from

the unlabelled set Xu = Xu\{x1, . . . ,xk}∗. The classifier is retrained and the learner selects
another set {x1, . . . ,xk}∗. The process is repeated until the resources are exhausted, the
training set reached a maximum number of examples, or the error stabilises.

In figure 7.2, the value of different selective sampling functions F is computed for the
systematically distributed unlabelled data Xu, i.e. the points in the figure grid. As it can be
observed, the values of different active sampling criteria differ, however they are smooth, they
give the same or similar values for neighbouring objects in each sampling method. Therefore,
for a large Xu, objects that are in a close neighbourhood, hence likely to contain similar
information about the classification problem, are selected in a single draw by a single active
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learning function. We argue that, in general, adding a batch of new objects to the training
set, selected based on such a criterion, does not necessarily yield a larger improvement of the
classification accuracy, than by simply adding one of them. Objects close to each other give
similar information.

For an illustration, we first examine a linearly separable problem, as shown in figure 8.1.
We know from PAC learning [Valiant, 1984, Haussler, 1990] that for a passive learner, which
draws objects randomly, the number of training objects n needed to learn a classification
problem with a classification error ǫ and the probability δ is O(ln |H|, 1

ǫ
, ln 1

δ
). |H| denotes

the V C-dimension or a countable set of classifiers consistent with the labels of the training
set and δ is the probability of failure. On the other hand, if we would like to have a classifier
with a zero classification error, ǫ = 0, as e.g. for the problem in figure 8.1, then, in the worst
case, we have to examine all m = |Xu| unlabelled objects.

+
Figure 8.1: Linearly separable, one dimensional problem. Xt : {+, •}, Xu : {◦}

However, a binary search requires here only log |Xu| samples, which gives an exponential
improvement over the passive learning [Freund et al., 1997]. Finally, if we explore the distri-
bution of the unlabelled data {◦}, positioned in k = 5 clusters, it is required to label just k
unlabelled objects to reach the zero error classifier, assuming that objects in a cluster belong
to the same class. This simple example demonstrates the importance of inspecting the dis-
tribution of unlabelled objects, when minimising the number of objects, necessary to achieve
a certain classification error.

Since in the standard active sampling algorithms, the classifier is recomputed after each
query, the values of an active sampling function F , based on such a classifier, change as well;
see Algorithm 7.1. Therefore, unlabelled objects, that are queried, differ in consecutive draws.
However, if we consider the simultaneous selection of multiple objects, k > 1, similar objects
are selected in a single draw. In figure 8.2(a) five objects with the highest values of two active
learning functions, pdc and MinMax, are marked. It can be observed that for each sampling
method the selected objects are chosen from the same region in the feature space. These active
learning methods do not consider the influence of revealing a label of a single query on the
remaining queries. Therefore, adding such a batch is not significantly more beneficial than
adding just its single representative. For clarity of a figure we only show these two methods,
however the same problem holds for all active learning methods that select a single query.

When we would like to select multiple queries in active sampling we should consider not
only the criterion they are based on, e.g. the uncertainty of labels of unlabelled objects,
but also the effect of obtaining a class label of a single candidate object on the remaining
candidate objects. A straightforward approach to deal with this problem is to select a batch
of unlabelled objects that have high values of an active learning function and are maximally
informative, i.e. they have a minimum influence on the potential classification labels of other
selected objects and high information about not yet selected unlabelled objects. One of the
possible approaches might be to select centres of k clusters of Xu. However, such a strategy
has a severe drawback as selecting the cluster centres for a large unlabelled set result in
the selection of similar objects in consecutive draws. Such consecutive batches of unlabelled
objects are similar as removing a few objects from Xu, does not change the estimated cluster
centres. The next section discusses an alternative.
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Figure 8.2: (a) Five objects selected by MinMax and pdc active learning functions. The
current classifier, 1-NN, is drawn as solid line. (b) Five objects selected by MinMax and pdc

active learning functions considering also the distribution of Xu.

8.1 Query diversification based on quadratic program-

ming

We formulate three active query selection algorithms suitable for the selection of informative
batches of unlabelled data. The diversification criterion in these algorithms is related to
the type of the classifier, e.g. distance or density based, that is going to be trained on the
selected objects. The main argument to do so, apart from experimental results, is that such
’personalisation’ of queries is helpful in human learning. Different people may require different
examples to learn efficiently certain concepts, especially difficult ones. The same also holds
for classifiers. For different classifiers selecting unlabelled objects x∗ e.g. with a maximum
uncertainty changes the decision boundary locally, e.g. for the 1-NN rule. Selecting the same
object for a parametric classifier, e.g. the mixture of Gaussians classifier changes the decision
boundary globally. This also holds for the SVM. Therefore, a good sampling function should
also include, in its estimation of the utility of a potential query, properties of the classifier
itself.

In particular, we propose three active sampling methods with diversification criteria based
on distances, densities and inner products between labelled and unlabelled objects. The
presented three active sampling methods are generic and can be used with any type of a
classifier, however, because they compute the utility criteria in a certain way they are especially
useful for classifiers that are based on the same principles e.g. the 1-NN rule, the Parzen
classifier and the SVM.

8.1.1 Distance-based diversification

As was mentioned in the last section the most informative batch of unlabelled objects should
contain objects that have the minimum influence on the classification labels of each other.
Intuitively, this can be related to distances between objects in a batch i.e. by maximising
the sum of distances

∑k
i

∑k
j D(xi,xj) between objects to be selected. For small distances

we expect redundant class information. If we give a weight 0 ≤ αi ≤ 1 to each object



110 Query diversification in active leaning

xi ∈ Xu, the above sum can be written as maxα α
T Dα, α

T1 = k for a sparse solution.
Additionally, we are interested in the objects that have information about labels of other
not yet selected unlabelled objects, e.g centres of clusters in Xu can be expected to describe
remaining unlabelled data in these clusters. To impose this, we can simply demand that the
distance Dnn(xi) = ‖µnn(xi) − xi‖ between object xi and the mean µnn(xi) of its nearest
neighbours should be minimum; see figure 8.3. Note that µnn(xi) is computed on the set of
nearest neighbours of xi but without xi. Since Dnn(xi) describes only a single object this linear
term can be subtracted from the previous quadratic term as maxα α

T Dα−αDnn, α
T1 = k.

Moreover, an active learning function F(x) should have a high value for the selected objects.
This is also a linear term, therefore the selection of objects with the highest values for these
three criteria can be written as maxα α

T Dα + α
T (F −Dnn), α

T1 = k. We compute the
utility of the batch of k unlabelled objects by maximising the above formula using a quadratic
programming technique. This allows us to optimise the entire batch at once compared to
iterative procedures which examine a single object in the batch at a time, as described in the
next section.

The diversification of queries, for a particular active learning function F , based on distances
is written as:

max
α

α
TDα + α

T
ρ,

s.t. α
T1 = k; 0 ≤ αi ≤ 1,

ρ = F −Dnn.

(8.2)

Dnn(xi)

xi

µnn(xi)

Figure 8.3: The distance Dnn(xi)
between an object xi and the mean
of its nearest neighbours.

The Euclidean distance matrix D, is not, in general, positive definite
(zT Dz ≥ 0, ∀z ∈ R

N). The positive definiteness, or the negative definiteness, of the
matrix D is required by Kuhn-Tucker conditions [Rustagi, 1994] for the quadratic optimisa-
tion to converge to the global minimum or maximum. However, several techniques can be
used to transform a symmetric matrix to the positive (negative) definite. For example one

can apply clipping D = QpΛ
1/2
p , where Λp are only the positive eigenvalues, or simply taking

the square Hadamard power D∗2 (D∗2 = d2
ij) of the matrix D and adding a small constant to

the diagonal D = diag(D∗2) + c [Gower, 1986].
In the optimisation of (8.2), we are looking for k unlabelled objects x for which the

optimised function α
TDα + α

T ρ is maximum. Such a criterion can be used in general with
any type of classifier but is especially suited for the Nearest-Neighbour classifier, since it is
based on distance relations between objects. To have comparable measurements D, F and
Dnn are scaled to the domain [0, 1] by dividing all values by their maximum value on the
unlabelled data.
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8.1.2 Density-based diversification

For density-based classifiers the diversification criterion can include instead of distances
Dnn densities P (x). We can consider simply densities of unlabelled objects, or similar
like in pdc, the relative difference between densities of labelled and unlabelled objects
∆P (xi) = P (xi|Xu)− P (xi|Xt), where x ∈ Xu; see figure 8.4. The quadratic programming
optimisation looks similar to the above optimisation for the Nearest-Neighbour classifier, ex-
cept now the linear term depends on the difference in density estimates.

max
α

α
TDα + α

T
ρ

s.t. α
T1 = k, 0 ≤ αi ≤ 1,

ρ = F + ∆P.

(8.3)
P (x|Xt)− P (x|Xu)

Figure 8.4: The positive difference
∆P in density estimates for labelled
Xt : {+, •} and unlabelled Xu : {◦}
objects plotted as isolines, the current
classifier, Parzen is drown as a solid,
thick line.

Such a method selects a batch of unlabelled objects with large distances D between selected
objects and with the large density value in places where we have no samples yet. Finally the
value of the active learning function F should be also significantly large. In figure 8.4 we can
easily point to five unlabelled objects with high value of ∆P indicated by the centres of the
concentric isolines. Such objects are remote from each other and are centres of clusters. These
make them a potentially informative batch to ask an expert for labels.

Since this diversification method is based on a density estimation it is particularly suitable
for density based classifiers e.g. the Parzen, QDA, LDA.

8.1.3 Boundary-based diversification

The last type of a classifier we are considering is the Support Vector Machine (SVM). For SVM
it is convenient to express the mutual label relations of possible labels of unlabelled objects in
terms of inner products or similarly the angle between vectors. The angle between two vectors
xi and xj can be expressed as follows:

∠(xi,xj) = arccos
xT

i xj

‖xi‖‖xj‖
= arccos

K(xi,xj)√
K(xi,xi)K(xj,xj)

(8.4)

where xT
i xj denotes the inner product and K is the between Gram matrix. Similarly to the

optimisation (8.2) for 1-NN we would like to select objects for which the sum of their angles
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is maximum and additionally they are centres of clusters in the Hilbert space H. For the
Gaussian kernel the denominator in equation (8.4) becomes 1. Since the Gramm matrix K is
already positive definite it is easier to minimise the sum of inner products between objects in
the batch. Instead of maximising the sum of square angles between selected objects:

min
α

α
T Kα−α

T
ρ

s.t. α
T1 = k, 0 ≤ αi ≤ 1,

ρ = F + Knn.

(8.5)

w0

x1

x2
x3

sv1

sv2

sv3

sv4

sv5

Figure 8.5: Equal division of the
approximated version space by three
unlabelled objects {x1,x2,x3}. sv in-
dicates five support vectors and gray
circle margin of SVM.

where Knn(xi) = ‖µnn(K(xi, :)) −K(xi, :)‖ is the difference between vector K(xi, :) and the
mean of its neighbours in H.

Figure 8.5 presents a general idea of such a sampling. Let us assume that the problem is
linearly separable in the feature space. This means that a version space [Mitchell, 1997] of a
particular problem is non-empty. In the case of SVM, we can approximate the version space
by the support objects and select objects that for two possible labels divide equally such an
approximated version space [Tong and Koller, 2000]. Regardless of the true class labels we
always reject that half of the classifiers that is inconsistent with the labels of the training
data. The tacit assumption is that classifiers are uniformly distributed, i.e. each classifier
from the version space is equally probable.

When we consider the selection of a batch of unlabelled objects an informative batch should
contain objects that divide the version space equally. The selection of such objects implies
that for all their possible labels the size of the version space will be maximally minimised;
see figure 8.5. Unlabelled objects {x1,x2,x3} divide equally the version space restricted by
support vectors {sv1, . . . , sv5}.

8.2 Related work

In this section we shortly explain the difference between our query diversification al-
gorithms and existing methods. In particular, we relate our work to [Brinker, 2003,
Park, 2004, Lindenbaum et al., 2004]. These papers present query diversification methods
based on various criteria, e.g. similar to the proposed methods, distance between queries
[Lindenbaum et al., 2004] or angles between queries in a batch [Brinker, 2003, Park, 2004].
In particular [Lindenbaum et al., 2004] proposed for the k-NN rule to construct a batch of
unlabelled data using an iterative procedure. At each step a single object is added to a
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batch that has a large value of an active learning function and a large distance to already se-
lected objects in a batch. Next, such a constructed batch is presented as a query to an expert.
[Brinker, 2003, Park, 2004] discusses similar iterative algorithms for the SVM. However, instead
of selecting objects with the maximum sum of distances, they proposed to select objects based
on the inner product relations. The algorithms select unlabelled objects that after including
them to the training set yield the most orthogonal hyperplanes. A simplified scheme of the
existing algorithms is shown below.

B = [ ]
x∗ = arg maxx∈Xu

F(x)
repeat

1. B = B ∪ {x∗}; Xu = Xu\{x∗}

2. x∗ = arg maxx∈Xu
[F(x) + D(x,B)]

until |B| = k

Algorithm 8.1: Standard diversification algorithm.

First, an algorithm selects a single unlabelled object with the maximum value of a par-
ticular active learning function F . Then the next objects are added to a batch B for which
either the sum of F and distances to the objects already present in the batch D(x,B) is large
[Lindenbaum et al., 2004] or the inner products are small [Brinker, 2003, Park, 2004]. The
process is repeated until the required cardinality of B is reached.

Because the existing algorithms consider a single candidate to be added to a batch and not
an entire batch, they do not necessary select the most informative set of unlabelled objects.
The sum of distances and an active learning function do not necessarily reach their maxima
for the selected batch. Moreover, the methods presented in these papers maximise distances,
or minimise inner products, only between the selected objects; they do not take into account
the distribution of unlabelled data. Such methods are sensitive to the presence of outliers, by
selecting objects that are far from each other, and not, like in the proposed method, centres
of local neighbourhood.

8.3 Experiments

As an illustration, we first test the proposed query diversification algorithms on the artificial
checker board data set; see figure 8.7. It is a 3D, two-class data set with an equal number of
objects per class. The first class has 13 and the second 14 modes. For clarity, only modes
from the visible faces are shown in figure 8.7. This data set, although not realistic to occur in
practice, shows clearly the point of the query diversification for active learning methods when
multiple queries are to be selected. Moreover, the 2D version of this set is widely used as an
example in many papers on active learning.

In our experiments, data sets are split according to the information provided in Table 8.1.
The initial labelled training set Xt contains two randomly drawn objects per class. The
learning proceeds with the queries of k = {1, 8, 16, 32, 64} elements. First, in each iteration,
a single object is added to the current training set, a query of size k = 1, then the learning
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(a) 1-NN k = {1, 8, 32}
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(b) 1-NN k = {1, 16, 64}
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(c) Parzen k = {1, 8, 32}
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(d) Parzen k = {1, 16, 64}
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(e) SVM k = {1, 8, 32}
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(f) SVM k = {1, 16, 64}

Figure 8.6: Learning curves for the 1-NN, Parzen and ν-SVM for the checker board data set.
Batches of the sizes k = {1, 8, 32} (left) and k = {1, 16, 64} (right) are selected according to
the uncertainty criterion. The black and gray curves present the error on an independent test
set as functions of the training size with and without the query diversification, respectively.
The results were averaged over 50 trials.



8.3 Experiments 115

Figure 8.7: 3D checker board data set. Only modes from the visible faces are shown.

process is repeated for the query of size k = 8, 16 and so on. The learning curve determined
for the query based on a single object, k = 1, is used as the baseline. The goal is to achieve
the performance which is at least as good as obtained for the single object selection algorithm.

Objects are selected according to the uncertainty sampling [Lewis and Gale, 1994] 1. The
learning curves for the 1-NN rule, the Parzen and the ν-SVM with a radial-basis kernel are
shown in Figure 8.6. The error is measured on an independent test set. The results are
averaged over 50 random splits of all data into an initial training set, unlabelled data and
a test set. The smoothing parameter of the Parzen classifier is optimised according to the
maximum likelihood criterion [Duin, 1976] and the ν for ν-SVM is set to the 1-NN leave-one-out
error on the training set. In the cases when this error is zero, the ν is set to ν = 0.01. σ in
the radial-basis kernel is chosen as the averaged distance to the ⌊

√
|Xt|⌋-nearest neighbour in

Xt.

Gray learning curves represent sampling without query diversification and black learning
curves present sampling with query diversifications. By observing gray curves it can be seen
that by increasing the query size, the number of objects necessary to reach the minimum error
classifier increases. This phenomenon is understandable since data are highly clustered and
selecting queries based on the active sampling criterion, e.g. the uncertainty sampling, leads
to the selection of similar objects from a single mode 2.

The black learning curves in figure 8.6 show the results of the same experiments with the
proposed query diversification algorithms, for three types of classifiers for the same batch size.
It can be seen that by diversifying queries using the proposed algorithms, the error drops,
in this particular learning problem on average about 5% and the difference in the number of
queries that is necessary to reach the certain classification error is in average 50 − 100 in all
figures.

Next, we tested the proposed query diversification algorithm on datasets from the UCI
Repository [Hettich et al., 1998]. Some information about datasets, such as the size of unla-
belled sets and test sets, is presented in table 8.1. Initial training sets consist of two objects

1The uncertainty sampling was chosen as an example, however the experimental results are similar for other
selective sampling methods, such as pdc, vila, qbb and MinMax.

2The second observation is that for a two-class problem with an equal number of objects per class, the
average error in the beginning of the learning process is larger than 0.5. This is caused by the symmetric
mode structure of the dataset itself. Since every mode is surrounded by modes belonging to the other class
additional labelled set causes, in the beginning, misclassification of objects from adjacent modes. By increasing
the number of clusters, this phenomenon lasts longer.
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Table 8.1: The description of data sets used in experiments.

data set no. of classes no. of features size of Xu size of a test set
checker board 2 3 1000 1500

waveform 3 21 1000 3994
ionosphere 2 34 174 173

sonar 2 60 103 101
diabetes 2 8 382 382

liver 2 6 171 170
ecoli 3 7 134 132

chromo 24 8 500 595
malaysia 20 8 134 117

per class. Because the experiments with all three classifiers and all diversification methods
give similar outcomes, we present the results with the ν-SVM and query diversification based
on the inner products. The settings of ν and σ are the same as in the experiments with the
checker board data set. The resulting learning curves for the uncertainty sampling with the
query sizes of k = {1, 8, 16, 32, 64} are presented in figures 8.8, 8.9 and 8.10. The results are
averaged over 50 random splits of data into initial training sets, unlabelled sets and test sets.

From our experiments, it can be seen that the proposed query diversification algorithm
decreases the classification error for the waveform, sonar, ecoli, liver, ionosphere and diabetes
data sets. The improvement depend on the batch size. When the size of the batch increases,
e.g. when k = {16, 32, 64}, the performance of the classifier decreases for all data sets. How-
ever, when query diversification is applied the performance increases significantly sometimes
even outperforming the single query selection algorithm (sonar and diabetes). When we de-
crease the batch size to k = 8, the classification error is almost comparable with single query
selection algorithm.

Since the average classification error is chosen as the performance measure, the observed
improvement is related to the number of classes. For data sets with large number of classes
such as the chromo (24) or malaysia (20) sets, it is much more difficult to achieve a better
performance, as the error is averaged over more classes. However, even in such challenging
cases we can observe an improvement for the chromo data set. In case the current classifier
is nearly optimal, the presented query diversification algorithm forces a change. This gives a
worse or the same classifier. This behaviour can be observed on the malaysia dataset.

For the ecoli and liver data sets it is possible to select a smaller subset of the training set on
which a classifier performs better as compared to a classifier trained on the entire training set.
Such a behaviour of the classification error of the SVM is characteristic for an active selection
of training objects for small data sets with a high class overlap; see [Juszczak et al., 2005].

8.4 Conclusions

In this section, we have studied the problem of selecting multiple queries in a single draw based
on a specified active learning function. In such a selection, a classifier might yield a systematic
error by selecting neighbouring objects that contain similar class information. Because of that,
the learner should consider not only a particular active learning function but also investigate
the influence of retrieving a label of an unlabelled object on other classification labels of
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(a) waveform k = {1, 8, 32}
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(b) waveform k = {1, 16, 64}
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(c) ionosphere k = {1, 8, 32}
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(d) ionosphere k = {1, 16, 64}

0 25 50 75 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of queries

m
ea

n 
er

ro
r

1
8
8 qd
32
32 qd

(e) sonar k = {1, 8, 32}

0 25 50 75 100
0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of queries

m
ea

n 
er

ro
r

1
16
16 qd
64
64 qd

(f) sonar k = {1, 16, 64}

Figure 8.8: Learning curves for the UCI Repository datasets with the query sizes of k =
{1, 8, 16, 32, 64} for the uncertainty sampling approach with (black) and without (gray) query
diversification algorithm. The results are averaged over 50 trails.
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(a) diabetes k = {1, 8, 32}
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(b) diabetes k = {1, 16, 64}
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(c) liver k = {1, 8, 32}
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(d) liver k = {1, 16, 64}
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(e) ecoli k = {1, 8, 32}
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Figure 8.9: Learning curves for the UCI Repository data sets with the query sizes of k =
{1, 8, 16, 32, 64} for the uncertainty sampling approach with (black) and without (gray) query
diversification algorithm. The results are averaged over 50 trails.
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(a) chromo k = {1, 8, 32}
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(b) chromo k = {1, 16, 64}
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(c) malaysia k = {1, 8, 32}
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Figure 8.10: Learning curves for the UCI Repository data sets with the query sizes of k =
{1, 8, 16, 32, 64} for the uncertainty sampling approach with (black) and without (gray) query
diversification algorithm. The results are averaged over 50 trails.

potential candidates to a batch. We have formulated the problem of query diversification by
using a convex quadratic programming optimisation technique. Different types of classifiers
need different queries to reach the same classification error for a given size of a training set.
Because of that, the presented algorithm uses properties of the individual classifier type to
derive the objective criterion to select batches of queries. Moreover, comparing to the existing
iterative procedures we take into account the distribution of labelled and unlabelled data
which prevent from selecting outliers.
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Chapter 9

Semi-supervised learning

Imagine a classification problem where it is known that a distribution of classes changes.
However, there is no possibility to ask an expert for additional labels to update a classifier,
as it is the case in active learning. For example, in geological problems a classifier is trained
on examples of minerals collected from various places. Next, the classifier is applied in a new
location to classify some new geological samples. It is expected that the distribution of classes
changes. A simple example of such shifted distributions is shown in figure 9.1.

From the figures it can be observed that the distribution and domains of classes estimated
on a training set Xt, figure 9.1(b), are different from the ones estimated for a test set Xu, figure
9.1(c). One of the fundamental assumptions of machine learning is not fulfilled, namely that a
training set comes from the same distribution as a test set. Moreover, even an infinite training
set, sampled i.i.d., does not necessary give a smaller error on a test set, in this situation.
However, by considering both: class information from a training set and a distribution of
unlabelled objects could significant improve the classification performance. The problem that
we are facing is called classification with partially labelled data or semi-supervised learning
[Juszczak and Duin, 2005].

The problem of classification with partially labelled data requires linking the unlabelled
input distribution P (x) with the conditional distribution P (ω|x) obtained from the labelled
data. The latter should, for example, vary little in high density regions. The key problem is
to articulate a general principle behind this and other such reasonable assumptions. In this
section, we provide a new approach to semi-supervised learning, based on the EM-algorithm, to
estimate labels for the unlabelled dataset. The presented method does not require clustering
assumptions and the approach remains tractable even for continuous marginal class densities.

We start with similar assumptions to the ones in active learning i.e. the access to unla-
belled objects is easy and there is a significant cost, in time or money, to label additional
objects. Therefore, usually we label a small number of objects and hope, that they are suffi-
ciently representative for the classification problem. However, to benefit from the remaining
unlabelled objects, one must exploit implicitly or explicitly the link between density P (x) over
objects x and the conditional P (ω|x) representing the posterior probability of the labels ω.
There is no access to an expert who can provide additional labels.

In statistical pattern recognition [Bishop, 1995, Duda et al., 2001] classification methods
mostly do not attempt to explicitly model or incorporate information from the density P (x).
However, some classification algorithms such as density based algorithms as the Parzen clas-
sifier [Parzen, 1962, Duda et al., 2001] or transductive SVM [Vapnik, 1998] have a possibility
to relate P (x) to P (ω|x); the decision boundary is biased to fall preferentially in low density
regions of P (x).
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Figure 9.1: (a) Labelled Xt : {∇, �} and unlabelled data Xu : {·}. (b) The density estimate
of Xt. (c) The density estimate of Xu.

In such algorithms, the unlabelled objects, e.g a large test set to be classified, provide
additional information about the structure of the domain while the few labelled objects identify
the classification task expressed in this structure. A tacit assumption in this context is to
associate high-density clusters in data with pure classes. When this assumption is appropriate,
it is only required to label a single object per cluster to classify the whole dataset.
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Figure 9.2: The mincut algorithm.

The presented problem is in broad terms related
to a number of other problems like maximum
entropy discrimination [Jaakkola et al., 1999],
data clustering by information bottleneck
[Tishby and Slonim, 2000], and minimum-entropy
data partitioning [Roberts et al., 2001].
In this section, we investigate label propagation
from a small labelled set over a large unlabelled set
for density based classifiers in the semi-supervised
learning framework, using as an example density-
based classifiers e.g. the Parzen classifier, the linear
discriminant analysis (LDA) and quadratic discrimi-
nant analysis (QDA).

The main difference between the various semi-supervised learning algorithms pro-
posed in literature, such as spectral methods [Chapelle et al., 2002], random walks
[Szummer and Jaakkola, 2001], graph mincuts [Blum et al., 2004] and transductive SVM

[Vapnik, 1998], lies in the way of realising the assumption of the labels consistency. How-
ever, the following three assumptions are often made about the representation space where
the classification problem is present:

1. nearby objects are likely to have the same label,

2. objects on the same data structure, e.g. a cluster or a manifold, are likely to have the
same label,

3. the decision boundary should lie in regions of low density1. For example in handwritten
digit recognition where one tries to classify e.g. digits 2 and 5, one expects that the

1This assumption is related to the previous one.
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probability of having a digit which is between class 2 and class 5 is lower than the
probability of a distinct 2 and 5.

An example of an existing semi-supervised method is the mincut algorithm
[Blum et al., 2004]. The method computes an undirected graph between labelled and un-
labelled objects; see figure 9.2. The weights in the graph are related to distances and label
relations between objects. Next the graph is cut using a minimum energy criterion.

The semi-supervised learning method proposed in this section is based on the stability
of estimated labels for unlabelled objects. In contradiction to the mentioned methods, in
particular [Chapelle et al., 2002, Blum et al., 2004, Szummer and Jaakkola, 2001], there is not
an implicit clustering step involved in the label propagation process. Therefore, there is no
necessity to specify or optimise the number of clusters beforehand.

9.1 Semi-supervised density based algorithms

Given a partially labelled data set X = {(x1, ω1), . . . , (xn, ωn),xn+1, . . . ,xn+m} ⊂ R
N , the

first n objects are labelled Xt and the remaining m objects xi ∈ Xu (n + 1 ≤ i ≤ n + m)
are unlabelled. The goal is to predict labels of the unlabelled objects. An example of such
a problem has been presented in figure 9.1. Our classification model assumes that each data
example has a crisp label for xi ∈ Xt, or a distribution P (ω(j)|xi) for xi ∈ Xu, over the class
labels2. These distributions are unknown and represent the parameters to be estimated. Given
an object xi, which may be labelled or unlabelled, we interpret the probability that xi has a
label ω(j) as a weighted combination of crisp and soft labels of all objects in X ∈ [Xt, Xu].
First, we show how to incorporate soft labels into various density based classifiers. Next we
present an algorithm to estimate soft labels for xi ∈ Xu. Finally, we discuss the optimisation
of the parameters of the classifier on both labelled and unlabelled data.

Assume that sets of labels P (ω(j)|xi) = {0, 1}, ∀ω(j)∈ω
, ∀xi∈Xt

, i = 1, . . . , n and
0 ≤ P (ω(j)|xi) ≤ 1, ∀ω(j)∈ω

, ∀xi∈Xu
, i = 1, . . . ,m is given. Our task is to predict label of

a new object xk using labelled and unlabelled data.

9.1.1 Semi-supervised linear discriminant analysis (soft-LDA)

The discriminant function hj(x) [Duda et al., 2001] is computed by the linear discriminant
analysis as follows:

hj(xk) = (Σ−1µj)
TxT

k −
1

2
µT

j Σ−1µj + ln P (ω(j)) (9.1)

We can replace the mean µj and the probability P (ω(j)) of a class by their weighed versions
µ̃j and P̃ (ω(j)) obtaining the semi-supervised version of LDA soft-LDA.

µ̃j =
1

n + m

n+m∑

i=1

P (ω(j)|xi)xi, P̃ (ω(j)) =
1

n + m

n+m∑

i=1

P (ω(j)|xi), xi ∈ {Xt, Xu} (9.2a)

Σjkq
=

1

n + m

n+m∑

i=1

P (ω(j)|xi)(xil − µ̃jl
)(xiq − µ̃jq

), Σ =
1

C

C∑

j=1

Σj, xi ∈ {Xt, Xu} (9.2b)

2P (ω(j)|xi) are also called soft labels
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Figure 9.3: Various standard density based classifiers trained on labelled set and their ’soft’
versions that considers also a distribution of unlabelled data.

where 1 ≤ [l, q] ≤ N run over feature indices of R
N . We assume n labelled and m unlabelled

objects. p(xk|ω(j)) is obtained by scaling hj(x) by a sigmoidal transformation and p(ω(j)|xk)

from the Bayes rule. By scaling p(ω(j)|xk), such that
∑C

j=1 p(ω(j)|xk) = 1, we obtain P (ω(j)|xk)
which can be included in the above formulae and the soft-LDA can be retrained including the
test object xk. Note that the covariance matrix Σ is averaged over classes and thereby depend
on class labels. An example of LDA and soft-LDA is shown in figure 9.3(a).

9.1.2 Semi-supervised quadratic discriminant analysis (soft-QDA)

The discriminant function hj(x) [Duda et al., 2001] is computed by the quadratic discriminant
analysis as follows:

hj(xk) = −1

2
xT

k Σ−1
j xk + (Σ−1

j µj)
TxT

k −
1

2
µT

j Σ−1
j µj −

1

2
ln det(Σj) + ln P (ω(j)) (9.3)

The mean µj and the probability P (ω(j)) are computed similarly to equation (9.2a). How-
ever, the covariance matrix is now computed per class. To incorporate soft labels into the
computation of the covariance matrix we weight it by the posterior probability:

Σjkq
=

1

n + m

n+m∑

i=1

P (ω(j)|xi)(xil − µ̃jl
)(xiq − µ̃jq

), xi ∈ {Xt, Xu} (9.4)

where 1 ≤ [l, q] ≤ N run over feature indices of R
N . The example of QDA and soft-QDA is shown

in figure 9.3(b).
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9.1.3 Semi-supervised mixture of Gaussians (soft-MoG)

In the mixture of Gaussians, with γ mixtures, The discriminant function hj(x)
[Duda et al., 2001] is computed by:

hj(xk) = ln

γ∑

c=1

αc
1√

det(Σcj)
exp

[
−(µcj − xk)T Σcj(µcj − xk)

]
+ ln P (ω(j)) (9.5)

where αc is the mixing component of the c-th mixture. The mean µcj and covariance matrix
Σcj are computed similarly to equations (9.2a) and (9.4), however now only objects that belong
to the c-th mixture are considered. The example of a decision function computed by MoG and
soft-MoG is shown in figure 9.3(c).

9.1.4 Semi-supervised Parzen Window classifier (soft-Parzen)

The last classifier we discuss here is the Parzen Window classifier. The probability that object
xk belongs to a class ω(j) is computed as a weighted sum of all objects in the labelled and
unlabelled sets:

hj(xk) =
n+m∑

i=1

P (ω(j)|xi) ϕ

(
xi − xk

σ

)
(9.6)

where ϕ(xi−xk

σ
) is the kernel function computed between all objects. In the standard Parzen

Window classifier P (ω(j)|xi) = [0, 1] and in the semi-supervised version of it P (ω(j)|xi) = [0, 1]
for xi ∈ Xt and 0 ≤ P (ω(j)|xi) ≤ 1 for xi ∈ Xu. The example of a decision function computed
by Parzen and soft-Parzen is shown in figure 9.3(d).

In the remaining part of this section we consider the soft-Parzen as an example. The
proposed method can be applied in a straightforward way to the other considered classifiers.

Estimation of soft labels P (ω(j)|xi)

So far we have assumed that soft labels P (ω(j)|xi) are given. However, in general, the
P (ω(j)|xi) are only available for labelled objects Xt and have to be estimated for unlabelled
objects Xu. We propose to estimate P (ω(j)|xi) using the conditional maximum log-likelihood
as the criterion. P (ω(j)|xi) is estimated for unlabelled objects for fixed values of the parameters
of the classifier e.g. a number of mixtures in MoG. For Parzen the objective function can be
written as:

max
P (ω(j)|xi)

C∑

j=1

ln
n+m∑

i=1

P (ω(j)|xi)ϕ

(
xi − xk

σ

)
(9.7)

where P (ω(j)|xi) = [0, 1] for labelled objects and P (ω(j)|xi) = 0 for unlabelled objects at the
beginning of a optimisation. Since ϕ(xi−xk

σ
) are fixed this objective function is jointly convex

in the free parameters and has a unique maximum value. This convexity also guarantees that
this optimisation is easily performed via the EM-algorithm. We can write similar functions for
soft-LDA, soft-QDA and soft-MoG.

Estimation of the hyperparameters for semi-supervised algorithms

In the previous subsection we have assumed that the parameters of the classifier were known
and fixed. In this section, we compute and optimise parameters for the set of labelled and
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unlabelled objects in the maximum likelihood sense for the known and fixed sets of soft labels
P (ω(j)|xi). The examples of parameters that we optimise are: a regularisation parameter in
LDA and QDA, the number of mixtures in MoG and in the Parzen classifier it is a type and
smoothing parameter of a kernel should be chosen. Several functions can be used as a kernel
ϕ(xi−xk

σ
) e.g.:

uniform
1

2
ϕ(‖u‖ ≤ 1),

triangle (1− ‖u‖)ϕ(‖u‖ ≤ 1),

Epanechnikov
3

4
(1− u2)ϕ(‖u‖ ≤ 1),

cosinus
π

4
cos(

π

2
u)ϕ(‖u‖ ≤ 1).

where u = xi−x

σ
. Although the choice of a kernel function is open, it should be a proper

density estimator [Fukunaga, 1972]. We optimised σ based on a leave-one-out maximum
likelihood estimation [Duin, 1976].

Proposed algorithm

The proposed algorithm for semi-supervised learning is based on the optimisation of soft
labels, according to equation (9.7), for a given σ. The initial estimate σt of σ is optimised for
just the labelled objects xi ∈ Xt. The final σtu is optimised for both labelled and unlabelled
objects xi ∈ [Xt, Xu]. In a series of k EM-algorithms σ takes the values:

σt > σ2 > . . . > σk−1 > σtu

The change in σ from large, σt, to small, σtu, values, during optimisation of soft labels, changes
the stress between global label consistency and the local label consistency.

The proposed algorithm of classification with a partially labelled dataset is summarised
in Algorithm 9.1. In the initial step of the algorithm the soft labels are computed using only
labelled objects, P (ω(j)|xi) = 0 ∀xi ∈ Xu. In the second step based on the current estimation
of σt soft labels are optimised P (ω(j)|xi), ∀xi ∈ Xu using the maximum likelihood criterion.
Next, equation (9.6) is recomputed using both crisp and soft labels. Step 3 is repeated until
the difference between the current estimated labels Pt(ω

(j)|xi) and the previous estimated
labels Pt−1(ω

(j)|xi) is smaller than ǫ. The procedure is repeated for k different σ-s.

1. Set the number of EM-algorithms to k; compute σ1 = σl and σk = σlu; set t = 1 and a
stopping criterion ǫ;

2. Compute: σ1 > σ2 > . . . > σk−1 > σk for each EM-algorithm;
set P0(ω

(j)|xi) = 0, ∀xi ∈ Xu, ∀ω(j) ∈ ω

while t 6 tmax

3. Optimise soft labels Pt(ω
(j)|xi) based on equation (9.7) with a fixed σt; using the soft

labels Pt−1(ω
(j)|xi) from step t− 1 as the initialisation of the labels;

4. Repeat 3 until the stopping criterion is reached
e.g.
∑C

j

∑m
i |Pt(ω

(j)|xi)− Pt−1(ω
(j)|xi)| < ǫ; t = t + 1;

end
Algorithm 9.1: soft-Parzen.
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Figure 9.4: Label estimates for the soft-Parzen algorithm for the banana shape dataset.
Labelled (soft and crisp labels) objects are denoted by {∇, �} and unlabelled objects are
denoted by {·}.

9.2 Experiments

Consider an example, figure 9.4, of classification with the proposed algorithm. We are given
2 labelled objects per class and 196 unlabelled objects in an intertwining two banana shape
patterns. This pattern has a manifold structure where distances are locally but not globally
Euclidean, due to the curved arms. Therefore, the pattern is difficult to classify for traditional
algorithms using locally defined relations, such as 1-nearest neighbour. We used the proposed
algorithm, described in Algorithm 9.1, to incorporate unlabelled data into the Parzen density
estimator and scale the Euclidean distance between objects using their soft labels. Figure
9.4 shows three different timescales. At t = 1, σ is overestimated, therefore there are large
Gaussian clusters, and the P (ω(j)|xi)’s are only estimated roughly. At t = 3, σ becomes
smaller and local label relations in marginal regions start to change the soft labels. At t = 5
almost all objects, apart of one, have correct labels.

Next, we evaluate the performance of the presented algorithm on some of the UCI repos-
itory datasets [Hettich et al., 1998]: waveform, satellite, letter, ecoli. Datasets were divided
into two parts: labelled set Xt and the unlabelled set Xu constituted from remaining objects,
the ratio Xt

Xu
is indicated by numbers on the abscissa. The label propagation was performed on

Xu and the obtained classifier was tested on the same set of unlabelled data Xu. The random
division was repeated 50 times for each ratio Xt

Xu
. The performance of the proposed algorithm

(soft-Parzen) is compared with the 1-nearest neighbour classifier (1-NN) and the Parzen clas-
sifier trained just on the labelled objects (Parzen). The mean error and the standard deviation
are shown in figure 9.5. It can be seen, that the proposed soft-Parzen algorithm outperforms
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(b) waveform (2500, 21, 3)
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Figure 9.5: Mean square error and standard deviation for soft-Parzen compared with a
classifier trained just on a labelled dataset Parzen and 1-NN for UCI Repository datasets:
ecoli, waveform, satellite, letter. Numbers in brackets indicate the size of datasets, the number
of features and classes in a dataset.

both: 1-NN and the Parzen classifier trained on just labelled objects, on the considered clas-
sification problems. In case of waveform and ecoli the performance of soft-Parzen is close to
1-NN and for satellite and letter there is significant improvement.

The soft-Parzen and 1-NN perform similar if distances between objects in pure clusters
and between clusters differ significantly. However, if there is no clear cluster structure in the
data the soft-Parzen might outperform the 1-NN significantly.

The performance of the proposed method depends on the quality of the labelled data and
their relation to the structure of the unlabelled dataset. If the clusters of unlabelled data are
not related to the class information, it is hard to expect that the proposed method performs
well. For a broader discussion about merits and disadvantages of the semi-supervised learning
we point the reader to the paper [Cohen et al., 2004].

9.3 Conclusions

The proposed algorithm based on expectation maximisation of soft labels soft-Parzen provides
a robust variable resolution approach to classifying data sets with significant cluster structure
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and very few labels. When the cluster structure is absent or unrelated to the classification
task, the proposed method can be expected to give small or non improvement over a classifier
trained just on the labelled dataset. In such cases the performance is strongly related to the
quality of the already labelled set.





Chapter 10

Conclusions

In this thesis, we have investigated the problem of one-class classification and the problem
of enhancing the classification performance by the use of unlabelled data. We have tried to
answer the following questions:

1. Can a classifier be constructed, trained and evaluated based on samples from just a
single class?

2. What should be the measure to minimise the chance of accepting non-target or outlier
objects in one-class classification problems?

3. How can we efficiently ask experts for new labelled examples?

4. How can we combine the knowledge about p(x|ω) from a small labelled set with p(x)
from a large unlabelled set during training of classifiers?

One-class classification problems appear in practice when one of the classes is well sampled
compared to other classes. The unbalance in sampling can be due to the measuring cost or the
low frequency of occurrence. All multi-class classifiers have low performance in unbalanced
problems. To overcome this we can focus on a description of the well sampled classes. The
well sampled classes can be described by one-class classifiers since one-class classifiers do not
suffer from unbalanced problems. They can be trained on examples from a single class only
and if additional examples from other classes are available their performance improves further.
This problem has been studied by us in part 1 and 2 of the thesis.

An alternative solution is to use standard multi-class classifiers and try to overcome the
problem of unbalanced classes by knowledge from a given large unlabelled set. This frame-
work was investigated in part 3. In general, multi-class classifiers perform badly for unbalanced
problems. Therefore, one can modify the sampling of the objects to overcome the class unbal-
ance. We can ask for additional labelled objects from the undersampled class or ask for the
most informative objects from the undersampled class. If we minimise the number of label
requests, this technique is called active learning. If we give a cost to retrieving a label of each
unlabelled object, the active learning can be viewed a the sampling technique that achieves
some classification error with the minimum label cost.

Alternatively, we can use a large unlabelled set to accurately estimate p(x) and intro-
duce this additional knowledge into the training of classifiers. This can be done in the semi-
supervised framework.
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10.1 Contribution

In part 1, we have discussed one-class classification models. The models were divided into two
groups: statistically-based one-class classifiers, which are driven by the probability density
of a target class and domain-based one-class classifiers, which are driven by the geometrical
shape of the target class. The simplest difference between the two groups is that if we have
several objects at the same position in the input space the statistically based one-class clas-
sifiers are influenced by these additional objects and the domain driven one-class classifiers
treat these objects as one. Therefore, one-class classifiers which are domain-based are less
sampling dependent. The statistically-based one-class classifiers require that data have to be
sampled independently and identically to the true distribution while domain-based classifiers
can achieve good performance when data is not sampled according to its probability density.
Therefore, domain-based classifiers outperform statistically based classifiers in small sample
size problems where it is hard to reliably estimate probability densities. On the other hand,
when the target class is well sampled, then the probability density of the target class can be
reliably estimated and consequently statistically based one-class classifiers might outperform
domain-based classifiers in terms of the classification error.

We have proposed two domain-based one-class classifiers. The first classifier is based on
the minimum volume enclosing ellipsoid (MVEE) algorithm. The problem of MVEE has
been formulated as a conic optimisation problem. Comparing to other parametric methods,
minimum volume enclosing box, minimum volume enclosing sphere and the single Gaussian
one-class classifier, the MVEE has the smallest volume for most real-world problems for a
given training set. This indicates a tight description of a target class. If we assume that
an outlier class is uniformly distributed, the minimum volume descriptor indicates also the
smallest error on the outlier class.

In addition, since the MVEE can be influenced by the presence of outlier objects in the
training set we introduce an algorithm which computes the MVEE on the user specified fraction
of data. The algorithm rejects a fraction of objects to estimate the MVEE. The MVEE is
computed on the core set with the influence of rejected objects proportional to their slacks.

Finally when labelled outlier objects are available during training a third MVEE algorithm
is proposed, which also uses outlier objects to estimate the ellipsoid with the minimum volume.
However, such problems can be non-convex. The convexity of the problem depends on the
number and the location of labelled outlier objects.

In high dimensional spaces the single Gaussian and the MVEE have similar performance
since for normally distributed data all objects are on the surface of the estimated ellipsoids.

The second proposed one-class classifier is based on the minimum spanning tree algorithm,
the minimum spanning tree data description (MST DD). The basic elements of the proposed
classifier are the edges of the graph. The distance from a test object to the target class is
measured as the distance to the closest edge of the MST. The edges of the graph can be con-
sidered as additional training objects. Therefore MST DD performs well in small sample size
problems especially when data is distributed on a lower dimensional manifold. The MST DD
has no parameter to be set by the user, therefore is completely determined by the given data.

On the other hand, when the target class is normally distributed there are many redundant
edges in the MST DD. Therefore, we introduce an additional parameter which can be set to
modify the complexity of the model.

In part 2, we focus on the model selection in the one-class classification problem. Since
in general, examples of outlier objects are not available during training of one-class classifiers
it is hard to select a model for a given dataset. To minimise the error on the target and
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outlier classes, an assumption should be made about the distribution of outliers. One of the
possibilities is to assume that the outlier data is uniformly distributed. In such a case, in
addition to the minimisation of the error on the target class the volume of the classifier should
be minimised. However, in high dimensional spaces a large amount of uniformly distributed
outliers should be generated. This makes the algorithm impractical for such problems. We
have proposed a similar model selection criterion to uniform outliers generation, although
instead of minimising the total volume of the classifier we have proposed to minimise only
the part of the classifier which is empty, i.e. without training objects. The empty region is
approximated by the largest empty N-sphere that can be entirely found inside the classifier.

The proposed criterion, called V-statistic, is based on the ratio of two volumes: the volume
of the largest empty N-sphere inside the classifier, divided by the volume of the classifier. The
V-statistic measures how well the model fits the data. For a small value of the V-statistic, the
volume of classifier is large compared to the volume of the empty regions inside the classifier.
A large classifier volume indicates a good generalisation performance on the target class and a
small empty space indicates a good fit on the target class. There are not large empty regions
in the classifier this means that the chance of accepting outlier objects is minimised.

The V-statistic has been compared with other model selection methods based on uniform
outlier generation and consistency model selection. In comparison with uniform outlier genera-
tion, the V-statistic can be used in higher dimensional problems. However in high dimensions,
volumes of the two N-spheres become similarly so that the V-statistic approaches 1.

In part 3, we have investigated how to enhance the classification performance using a
given set of unlabelled data. Since one-class classification problems arise when sampling of
the classes is unbalanced, we try here to train multi-class classifiers using a set of unlabelled
data to improve the performance of these classifiers. Two frameworks were investigated: active
and semi-supervised learning.

In active learning, we proposed two sampling strategies called vila and pdc. The vila and
pdc outperform standard active learning methods in problems where classes are multi-modal
and exploration of input space is required. For problems where classes overlap it is possible
to select a smaller fraction of labelled objects for which classifier has higher performance than
the classifier trained on all labelled objects.

We have proposed a semi-supervised method which is based on the stability of soft-labels.
The proposed method performs well when cluster structures can be related to classes. For
continues distributions of p(x) the improvement heavily depends on the given labelled samples.

In the thesis we have studied the problem of recognition and learning in the pattern
recognition framework. Currently, in the field of pattern recognition mostly static problems
are studied, i.e. the classifiers are trained once for a given dataset. There are little studies
concerning problems changing in time.

As the main stream of pattern recognition focusses on two class classification, which is
basically looking for a function that separates the classes, it is hard to justify the word ”recog-
nition” in the name of the field. Perhaps pattern discrimination is a more justifiable name.
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10.2 Open questions

Although we have solved many problems there are plenty unsolved ones left in the topics we
have studied. Also the algorithms we have presented rise many additional questions. Here is
a list of some of them:

1. In the thesis we have solved problems which were represented in given vector spaces. The
open question rises if this is optimal or at least reasonable representation for one-class
classification problems and classification problems in general?

2. We have not studied the problem of feature selection. How to, based on a single class,
select features or find easier to describe, more spherical, representation for a target class?

3. In general we use the Euclidian distance to compute relations between objects in R
N . Is

this a good measure? Are there better alternatives? Can we find good distance measures
for a given problem?

4. The error is defined as the probability that a randomly selected object from the dis-
tribution is misclassified. However, in one-class classification we describe a single class
against all other classes. Therefore, the proper estimation of the error should be close to
one. Are there any alternatives for measuring the performance for one-class classifiers?

5. The domain-based one class classifiers are based on shapes or distances between objects.
Is the error, as based on probabilities, a good measure to evaluate such classifiers?

6. Because the error is based on random sampling of objects, can we develop a similar
measure for objects sampled in no random way, like in active learning?

7. We have discussed many active learning functions, however in practice one faces a prob-
lem of selecting a single one. How, based on few labelled objects, and perhaps some
knowledge about a problem one should select a particular active learning function?
What is a good criterion to do it?

8. Can we select automatically from a group of active learning functions, during the active
learning process, which function should be chosen to select next query?



Appendices A

One-class classifiers

A.1 Volume of a single Gaussian data description with

a given threshold

The equation of a single Gaussian data description with a given threshold is expressed as:

1√
(2π)N det(Σ)

exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
= θ (A.1)

The above equation can be rewritten to the standard equation of an ellipsoid:

(x− µ)T − Σ−1

2 ln(
√

(2π)Nθ det(Σ))
(x− µ) = 1 (A.2)

Therefore we can use equation (3.2) with the matrix:

E = − Σ−1

2 ln(
√

(2π)Nθ det(Σ))
(A.3)

to compute volume of a Gaussian with a threshold θ and a covariance matrix Σ.

A.2 Minimum volume enclosing ellipsoid

We start from the minimisation problem (3.11). The data has been mapped from R
N to R

N+1

E → M̃ , xi → x̃i and we optimise a new ellipsoid centred at the origin.

min
M̃

− ln det(M̃), (A.4a)

s.t. x̃T
i M̃ x̃i ≤ 1, ∀i = 1, . . . , n, (A.4b)

M̃ ≻ 0. (A.4c)

To define an ellipsoid, the matrix M̃ has to be symmetric positive definite. We can force
the positiveness of M̃ by decomposing it on M̃ = UUT . Therefore, M̃ ≻ 0 iff there exists a
N +1×N +1 matrix U . The minimisation (A.4) is expressed as:
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min
U

− ln det(UUT ), (A.5a)

s.t. x̃T
i UUT x̃i ≤ 1, ∀i = 1, . . . , n. (A.5b)

The Lagrangian of the minimisation (A.5) equals:

L(U) = − ln det(UUT )−
n∑

i=1

αi(1− x̃T
i UUT x̃i) (A.6)

by introducing the Lagrangian multipliers αi ≥ 0 and setting the partial derivative over the
elements u of the matrix U to zero gives the constrain:

∂L

∂u
= − 1

det(UUT )
2 det(UUT )U(UUT )−1 + 2U

n∑

i=1

αix̃ix̃
T
i = 0

(UUT )−1 =
n∑

i=1

αix̃ix̃
T
i

(A.7)

where we used the following properties of a determinant derivatives [Lütkepohl, 1996]:

∂ det(UT U)

∂u
= 2 det(UT U)U(UT U)−1 (A.8a)

∂x̃ det(UT U)x̃

∂u
= 2U x̃x̃T (A.8b)

To satisfy the Kuhn-Tucker conditions [Rustagi, 1994] of the optimality for nonlinear pro-
gramming the solution has to satisfy:

n∑

i=1

α∗
i (1− x̃T

i U∗U∗T x̃i) = 0 (A.9)

The second term in the above sum can be rearranged under the trace as follows:

x̃iU
∗U∗T x̃i = trace(x̃T

i U∗U∗T x̃i) = trace(U∗U∗T x̃ix̃
T
i ) (A.10)

Therefore, the second term in equation (A.9) can be simplified as:

n∑

i=1

α∗
i x̃

T
i U∗U∗T x̃i =

n∑

i=1

trace(U∗U∗T α∗
i x̃ix̃

T
i ) = trace(U∗U∗T

n∑

i=1

α∗
i x̃ix̃

T
i )

= trace




(

n∑

i=1

α∗
i x̃ix̃

T
i

)−1 n∑

i=1

α∗
i x̃ix̃

T
i



 = trace(I) = N + 1

(A.11)

Consequently, equation (A.9) equals zero only when
∑n

i=1 α∗
i = N + 1. Therefore, the dual

formulation of minimisation (A.5), considering (A.7) can be written now as:
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max
αi

ln det
n∑

i=1

αix̃ix̃
T
i , (A.12a)

s.t.
n∑

i=1

αi = N + 1, (A.12b)

0 ≤ αi ≤ 1, ∀i = 1, . . . , n. (A.12c)

A.3 Robust estimation of minimum volume enclosing

ellipsoid

We start from the minimisation problem (3.15). The data has been mapped from R
N to

R
N+1. We replace M̃ by UUT to demand the positiveness of the matrix M̃ . Then the robust

estimation of the MVEE is formulated as:

min
U,ρ,ξi

− ln det(UUT ) +
1

n

n∑

i=1

ξi + νρ, (A.13a)

s.t. x̃T
i UUT x̃i ≤ ρ + ξi, ∀i = 1, . . . , n, (A.13b)

ξi ≥ 0, ρ ≥ 0, ∀i = 1, . . . , n. (A.13c)

where ν ≥ 0 is a user specified parameter indicating the fraction of objects outside an ellipsoid.
The Lagrangian of the minimisation (A.13) is:

L(U, ρ, ξi) =− ln det(UUT ) +
1

n

n∑

i

ξi + νρ−
n∑

i=1

αi(ρ + ξi − x̃T
i UUT x̃i)

−
n∑

i=1

βiξi − γρ

(A.14)

with introducing the Lagrangian multipliers αi, βi, γ ≥ 0. Setting partial derivatives over
u, ξi, ρ to zero gives the constrain:

∂L

∂u
= 0, (UUT )−1 =

n∑

i=1

αix̃ix̃
T
i ,

∂L

∂ξi

= 0, βi =
1

n
− αi, αi ≤

1

n

∂L

∂ρ
= 0,

n∑

i=1

αi = ν − γ, ν ≥ γ.

(A.15)
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substituting (A.15) into (A.14) gives:

L(U, ρ, ξi) = ln det
n∑

i=1

αix̃ix̃
T
i +

1

n

n∑

i=1

ξi + νρ− νρ + νγ −
n∑

i=1

αiξi + N + 1

− 1

n

n∑

i=1

ξi +
n∑

i=1

αiξi − γρ = ln det
n∑

i=1

αix̃ix̃
T
i + N + 1

(A.16)

To satisfy the Kuhn-Tucker conditions [Rustagi, 1994] of the optimality for nonlinear pro-
gramming the solution has to satisfy:

α∗
i (ρ∗ + ξ∗i − x̃iU

∗U∗T x̃T
i ) = 0,

β∗
i ξ

∗
i = 0, (

1

n
− α∗

i )ξ∗i = 0,

γ∗ρ∗ = 0

(A.17)

For a non-zero volume ellipsoid ρ∗ 6= 0 therefor γ∗ = 0 and consequently from (A.15) we have∑n
i=1 αi = ν. Therefore, the dual of (A.13) is:

max
αi

ln det
n∑

i=1

αix̃ix̃
T
i , (A.18a)

s.t.
n∑

i=1

αi = ν, (A.18b)

0 ≤ αi ≤
1

n
, ∀i = 1, . . . , n. (A.18c)

ρ∗ and slack variables ξ∗i can be computed as:

α∗
i (ρ∗ + ξ∗i − x̃T

i M̃∗x̃i) = 0, ∀(α∗
i =

1

n
),

where ρ∗ = x̃T
i M̃∗x̃i − ξ∗i , ∀(0 ≤ α∗

i <
1

n
),

(A.19a)

(
1

n
− α∗

i )ξ∗i = 0, ∀(0 ≤ α∗
i <

1

n
). (A.19b)
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A.4 Estimation of the minimum volume enclosing ellip-

soid in the presence of an outlier class

We start from the minimisation problem (3.20). The data has been mapped from R
N to R

N+1.
We replace M̃ by UUT to demand the positiveness of the matrix M̃ . Then the optimisation
(3.20) can be written as:

min
U,ρ,ξi,ξj

− ln det(UUT ) +
1

k

k∑

i=1

ξi + νρ, (A.20a)

s.t. ωix̃
T
i UUT x̃i ≤ ωiρ + ξi, ∀i = 1, . . . , k, (A.20b)

ξi, ρ ≥ 0, ωi ∈ {1,−1}, ∀i = 1, . . . , k. (A.20c)

The Lagrangian of the minimisation (A.20) is:

L(U, ρ, ξi) =− ln det(UUT ) +
1

k

k∑

i=1

ξi + νρ−
k∑

i=1

αi(ωiρ + ξi − ωix̃
T
i UUT x̃i)

−
k∑

i=1

βiξi − γρ

(A.21)

with introducing the Lagrangian multipliers αi, βi, γ ≥ 0. Setting partial derivatives over
u, ξi, ρ to zero gives the constrain:

∂L

∂u
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T
i ,
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k
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(A.22)

substituting (A.22) into (A.21) gives:

L(U, ρ, ξi) =
k∑

i=1

ωiαix̃ix̃
T
i +

1
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i=1

ξi + νρ + γρ− νρ−
k∑

i=1
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k∑
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T
i + N

k∑

i=1

ωi

(A.23)

To satisfy the Kuhn-Tucker conditions of the optimality for nonlinear programming the solu-
tion has to satisfy:

γ∗ρ∗ = 0, ρ∗ 6= 0 , γ∗ = 0, ⇒
k∑

i=1

ωiα
∗
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α∗
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∗U∗T x̃T

i ) = 0, ∀(α∗
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k
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β∗
i ξ

∗
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1

k
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k
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(A.24)
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Therefore, the dual of the optimisation (A.20) is:

max
αi

ln det
k∑

i=1

ωiαix̃ix̃
T
i , (A.25a)

s.t.
k∑

i=1

ωiαi = ν, (A.25b)

0 ≤ αi ≤
1

k
. (A.25c)

ξ∗i and ρ∗ can be computed as:

α∗
i (ωiρ

∗ + ξ∗i − ωix̃iU
∗U∗T x̃T

i ) = 0, ∀(α∗
i =

1

k
), (A.26a)

(
1

k
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i )ξ∗i = 0, ∀(0 ≤ α∗
i ≤

1

k
). (A.26b)
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Volume based model selection in
one-class classification

B.1 The volume of a spherical cap

The spherical cap is a part of an N-sphere as shown in figure B.1. When two N-spheres
S(A1, R1) and S(A2, R2) intersect, a height hc and a radius rc of the two cups can be derived
simply from Pythagoras equations as:

hc1 = R1 −
‖A1 −A2‖2 −R2

2 + R2
1

2‖A1 −A2‖
hc2 = R2 −

‖A1 −A2‖2 + R2
2 −R2

1

2‖A1 −A2‖

rc1 =
√

R2
1 − (R1 − hc1)

2 = rc2 =
√

R2
2 − (R2 − hc2)

2

The volume of a single cap can be computed by integrating the volumes of N−1 dimensional
spheres from the radius rc till 0 over different value of a height hc.

R

hc

R− hc

βmax

rc

Figure B.1: Spherical cap.

Vcap =
2π(N−1)/2

Γ((N − 1)/2 + 1)

hc∫

0

rN−1
c (hc)dhc

From figure B.1 it can be seen that:

r2
c + (R− hc)

2 = R2,

rc = R sin(βmax).

Substituting those equations gives:

Vcap =
2π(N−1)/2RN−1

Γ((N − 1)/2 + 1)

βmax∫

0

sinN−1(β)dβ (B.1a)

βmax = arcsin(
√

(2R− hc)(hc/R2)) (B.1b)

The integral
∫

sinN−1(β)dβ can be handled by recursion [Bronshtein et al., 1997, § 8].

∫
sinN−1(β)dβ = −sinN−2 β cos β

N − 1
+

N − 2

N

∫
sinN−3 βdβ (B.2)
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B.2 Overlapping N-spheres problem

To check if two N-spheres S(Ai, Ri), i = 1, 2 overlap it is sufficient to check that

‖A1 − A2‖ ≤ R1 + R2 (B.3)

To check if k > 2 N-spheres overlap in such way that they all have a common region Y
Y = {S(A1, R1) ∩ S(A2, R2) ∩ . . . ∩ S(Ak, Rk) : |Y | > 1} it is sufficient to find a single vector
y ∈ Y which is inside all N-spheres:

A3

A2

A1

y

‖y −A1‖

Figure B.2: Three overlapping
sphere problem

yTy − 2yTAi + AT
i Ai < R2

i ,

i = 1, 2 . . . , k.
(B.4)

To find a single vector y we can reformulate the set
of k inequalities (B.4) into quadratic programming
problem:

min
y

yTy − 2yTA1 + AT
1 A1,

st. yTy − 2yTAi + AT
i Ai −R2

i < 0,

i = 2, . . . , k.

(B.5)

Figure B.2 provides graphical illustration. If ∃y and
‖y − A1‖ < R1 then k N-spheres have a common
region.

B.3 Derivation of a centre of a N-sphere from N + 1

objects

Consider N +1 affinely independent points xi, i = 1, 2, . . . , N +1 in a N -dimensional space,
located on the surface of the N-sphere S(a, r). As the points xi are equidistant from the centre
a, one can write:

||xi − a||2 = ||xj − a||2, ∀i,j=1,...,N+1. (B.6)

The centre of the N-sphere can be determined by solving the above system of equations. By
straightforward calculations, this simplifies to:

(xi − xj)
Ta =

1

2
(xT

i xi − xT
j xj), ∀i,j=1,...,N+1. (B.7)

Multiplying both sides by the vector (xi − xj), we get:

(xi − xj)(xi − xj)
Ta =

1

2
(xi − xj)(x

T
i xi − xT

j xj), ∀i,j=1,...,N+1. (B.8)
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Neglecting situations where i = j, which give zeros, we have
(

N+1
2

)
equations. We can

rewrite this set of equations in the more specific way. First, we replace xT
i xi − xT

j xj by

(xi − xj)
T (xi + xj). Secondly we define X− as a N×

(
N+1

2

)
matrix with elements xi − xj

∀i, j = 1, . . . , N + 1, i 6= j and X+ a N ×
(

N+1
2

)
matrix with elements xi + xj ∀i, j =

1, . . . , N + 1, i 6= j. Therefore equations (B.8) can be written now as a single equation:

X−XT
−a =

1

2
X−(1T XT

−X+)T . (B.9)

where 1 is the
(

N+1
2

)
× 1 vector of ones. Note that non-singularity of a N ×N matrix X−XT

−

is guaranteed by the non-collinearity of the points xi. Therefore, the sought centre a can be
computed by:

a =
1

2
(X−XT

−)−1X−(1T XT
−X+)T . (B.10)

B.4 Check whether a N-sphere is inside a union of

N-spheres

We would like to find the vector y that is inside S(z, ρ) and it is outside the classifier defined
by a union of k N-spheres

⋃k
i=1 S(Ai, Ri).

‖y − z‖2 ≤ ρ2

‖y −Ai‖2 ≥ R2
i , ∀i=1,...,k

(B.11)

by rearranging above inequalities:

yTy ≤ 2yTz + ρ2 − zTz

yTy ≥ 2yTAi + R2
i −AT

i Ai, ∀i=1,...,k

(B.12)

therefore yTy can be bounded by:

2yTAi + R2
i −AT

i Ai ≤ yTy ≤ 2yTz + ρ2 − zTz, ∀i=1,...,k (B.13)

We drop yTy and rearrange above k inequalities. Together with the first inequality from
(B.12) our problem can be now written as:

yTy − 2yTz ≤ ρ2 − zTz

2yT (Ai − z) ≤ ρ2 + AT
i Ai −R2

i − zTz, ∀i=1,...,k

(B.14)

This set of inequalities can be replaced by the following quadratic minimisation problem:

min
y

yTy − 2yTz

s.t. 2yT (Ai − z) ≤ ρ2 + AT
i Ai −R2

i − zTz, ∀i=1,...,k

(B.15)

If y satisfy first inequality in (B.14) a part or entire a N-sphere S(z, ρ) is outside⋃k
i=1 S(Ai, Ri).





Summary Learning to recognise

The thesis treats classification problems which are undersampled or where there exist an
unbalance between classes in the sampling. The thesis is divided into three parts. The first two
parts treat the problem of one-class classification. In the one-class classification problem, it is
assumed that only examples of one of the classes, the target class, are available. The fact that
no (or almost no) examples of other classes are available makes the one-class classification an
example of an extremely unbalance problem. Therefore, such problem can not be described
accurately by existing multi-class classifiers. However, a need to solve such classification
rises from many theoretical and practical problems, e.g. the concept learning, machine fault
detection and face recognition.

In the third part of the thesis, we treat classification problems which are undersampled
but not necessary unbalanced. In such problems, additional examples or additional knowledge
about data available during training significantly improves classification performance. We
investigate two types of enhancement of a small training set with additional knowledge from
a large unlabelled data set: active learning and semi-supervised sampling.

Chapter 1 introduces a reader to the problem of one-class classification. The chapter compares
the one-class classification approach to the multi-class classification approach explaining
advantages and disadvantages of both approaches. Next, a short introduction to one-class
classifiers is given, followed by a description of performance measures of classifiers in the
one-class classification problem.

Chapter 2 gives the general introduction to one class classification models. The one-class
classifiers are divided into two groups: statistical-based one-class classifiers and domain-based
one-class classifiers. The statistical-based classifiers are classifiers based on the probability
density function of a target class. The domain-based one-class classifiers are determined by
the shape of the target class and not by frequency of objects.

Chapter 3 introduces a new domain-based one-class classifier. The classifier is based on the
minimum volume enclosing ellipsoid (MVEE) algorithm. The algorithm is formulated as a
conic programming problem. We give a prime and dual for three conic problems based on
the MVEE. The first ellipsoid is computed as an ellipsoid with minimum volume, enclosing
all target objects. The second ellipsoid is more robust version of the previous classifier and it
is computed as the minimum volume ellipsoid with a user specified fraction of target objects
outside the ellipsoid. The third ellipsoid is computed in situations where both target and
outlier objects are available during training. Parameters of the ellipsoid are determined by
minimising distances of misclassified objects to the surface of the ellipsoid.

Chapter 4 introduces a new domain-based one-class classifier. The classifier is based on a graph
description of the target class. In particular, the minimum spanning three is used to describe



the target class. The distance from a test object to the target class is measured as a distance
from the test object to the closed edge of the graph. An additional complexity parameter
is introduced to adapt the complexity of the graph model to the complexity of the target class.

Chapter 5 gives an introduction to the problem of model selection in one-class classification
problems. As it is assumed that only target objects are available during training of one-class
classifiers it is especially difficult to select a model with small error on the target and
outlier class. Model selections based on the uniform distributed outlier objects and on the
consistency of a one-class classifier are described.

Chapter 6. In this chapter a new model selection criterion for one-class classifiers is
introduced. The criterion is based on the ratio of two volumes: the volume of the largest
empty N-sphere that can be found inside a one-class classifier divided by the volume of the
one-class classifier. To compute the ratio of two volumes several subproblems have been
solved. In section 6.1.1 we present a formula to compute a tight approximation of the volume
of one-class classifiers consisting of several intersecting N-spheres such as k-means, k-centres
and self-organising maps. The proposed approach can tightly approximate the volume of
a given classifier in any number of dimensions. In the same section, we derive a formula
to compute the volume of a spherical cap in arbitrary number of dimensions and present a
method to check whether more than two N-spheres have a common region. Next, in section
6.1.2 we propose an algorithm to find the largest empty N-sphere in one-class classifiers
consisting of N-spheres. Here we propose a method to check whether a N-sphere is entirely
inside a set of intersecting N-spheres. Section 6.1.3 presents an explanation why the presented
algorithm does not work for kernel based one-class classifiers such as SVDD and oc-SVM.
Finally, an approximate largest N-sphere search algorithm is presented in section 6.1.4 that
is applicable to any one-class classifiers.

Chapter 7 first gives a general introduction to the problem of active learning. Next, we
introduce two new active learning methods. The first method (vila) is based on variation
in label assignments of unlabelled data by a set of classifiers. Each classifier, from the set,
is trained on a given training set enlarged with a single unlabelled object assigned to one of
the classes from the training set. The unlabelled object is selected which gives the largest
variation of classification labels of unlabelled objects.

The second active learning function is based on positive density correction (pdc). The
unlabelled object is selected to be added to the training set for which the difference between
the density of unlabelled set and the training set has the largest positive value.

Chapter 8. In active learning usually a single query is selected in a trial. This chapter points
out to problems where multiple queries need to be selected in a single trial. As the queries
selected by most active learning algorithms are similar additional diversification algorithm
should be introduced.

Chapter 9 describes a problem of semi-supervised learning, where one tries to link conditional
class probability densities, estimated on a small training set, with a density of large unlabelled
data. The goal is to improve the performance of classifiers by this additional information. We
proposed a semi-supervised learning algorithm based on stability of soft labels. The algorithm
is applicable to any density based classifiers.



Samenvatting Leren om te herkennen

Het proefschrift behandelt klassificatie problemen die onvoldoende bemonsterd zijn of waar-
van de bemonstering van de klassen erg onevenwichtig is. Het proefschrift is verdeeld in drie
delen. De eerste twee delen behandelen het probleem van één klasse klassificatie. In het
één-klasse klassificatie probleem wordt aangenomen dat er alleen voorbeelden van één van
de klassen, de ‘doel’ klasse, beschikbaar zijn. Het feit dat er (vrijwel) geen voorbeelden van
de andere klassen aanwezig zijn, maakt het één-klasse klassificatie probleem een voorbeeld
van een extreem onevenwichtig bemonsterd probleem. Hierdoor kan zo’n probleem niet goed
beschreven worden door bestaande veel-klasse klassificatoren. Echter, er bestaat de behoefte
op zulke klassificatie problemen op te lossen in vele theoretische en praktische problemen,
zoals het leren van concepten, machine diagnostiek en gezichtsherkenning.

In het derde gedeelde van het proefschrift behandelen we problemen die onvoldoende
bemonsterd zijn door het toevoegen van extra objecten gedurende de training van multi-klasse
klassificatoren. De prestaties van de klassifiers verbeteren significant. We onderzoeken twee
methoden om met extra kennis een kleine train set te verbeteren door gebruik te maken van
een grote ongelabelde data set: ’actief leren’ en ’semi-supervised leren’.

Hoofdstuk 1 introduceert de lezer in het probleem van de één-klasse klassificatie. Het
hoofdstuk vergelijkt de één-klasse klassificatie benadering met de veel-klasse klassificatie
benadering en laat de voor- en nadelen van beide benaderingen zien. Vervolgens wordt een
korte introductie over één-klasse klassificatoren geven, gevolgd door een beschrijving van
prestatie-maten voor klassificatoren in het één-klasse klassificatie probleem.

Hoofdstuk 2 geeft een algemene introductie in één-klasse klassificatie modellen. De één klasse
klassificatoren worden verdeeld in twee groepen: de statistisch gebaseerde klassificatoren en de
domein-gebaseerde klassificatoren. De statistisch gebaseerde klassifiers zijn gebaseerd op de
waarschijnlijkheids verdelingsfunctie van de doel klasse. De domein-gebaseerde klassificatoren
worden vastgesteld door de vorm van de doel klasse.

Hoofdstuk 3 introduceert een nieuwe domein-gebaseerde één-klasse klassificator. De klassifi-
cator is gebaseerd op het minimum-volume ellipsoide (Minimum Volume Enclosing Ellipsoid,
MVEE) algorithme. Dit algorithme is geformuleerd as een conisch programmeer-probleem.
We presenteren de primaal en duaal voor drie conisch programmeer probleem voor de MVEE.
De eerste ellipsoide is de ellipsoide met een minimum volume die alle doel objecten insluit.
De tweede ellipsoide is een robustere versie van de eerste classifier en wordt bepaald door
een minimum volume waarbij een bepaalde, door de gebruiker gespecificeerde, fractie van
objecten buiten de ellipsoide valt. De derde ellipsoide wordt bepaald ???

Hoofdstuk 4 introduceert een nieuwe domein-gebaseerde één-klasse klassificator. De klas-
sificator is gebaseerd op een graaf-beschrijving van de doel klasse. De afstand tussen een



test object en de doel klasse wordt gedefinieerd als de afstand van dit test object naar de
dichtsbijzijnde edge ’lijnstuk’ (??) in de graaf. Een additionele complexiteits parameter is
geintroduceerd om de graaf aan de complexiteit van de doel klasse aan te passen.

Hoofdstuk 5 geeft een introductie in het probleem van de model selectie in één klasse
klassificatie problemen. Omdat wordt aangenomen dat alleen objecten uit de doel klasse
beschikbaar zijn gedurende de training van de klassificatoren, is het moeilijk een model te
selecteren dat een kleine fout op zowel de doel als de uitbijter klasse. De model selectie
gebaseerd op een uniforme verdeling van uitbijter objecten en de consequentheid van een
één-klasse klassificator wordt beschreven.

Hoofdstuk 6. In dit hoofdstuk wordt een nieuw model selectie criterium voor één-klasse
klassificatoren voorgesteld. Het criterium is gebaseerd op de verhouding tussen twee volumes:
het volume van de grootste lege bal dat binnen een één-klasse klassificator past en het volume
van de één-klasse klassificator. Om de verhouding tussen de twee volumes te berekenen
moeten verschillende subproblemen opgelost worden. In sectie 7.1.1 presenteren we een
formule om een dichte benadering van het volume te schatten van één-klasse klassificatoren
die uit een verzameling van elkaar snijdende bollen bestaan, zoals k-means, k-centres en
Self-organising maps. De voorgestelde aanpak kan het volume van een gegeven klassificator
dicht benaderen in elke dimensionaliteit. In dezelfde sectie leiden we een formule af om het
volume van een spherische kap in een willekeurig aantal dimensies te berekenen en presenteren
we een methode om te testen of meer dan twee bollen een gemeenschappelijk gebied innemen.
Vervolgens in sectie 7.1.2 stellen we een algorithme voor om de grootste lege bal te vinden
in één-klasse klassificatoren die bestaan uit elkaar snijdende bollen. Hier presenteren we een
methode om te testen of een bol geheel binnen een set van snijdende bollen valt. Sectie
7.1.3 geeft een uitleg waarom deze methode niet werkt voor kernel-gebaseerde één-klasse
klassificatoren zoals de SVDD en de oc-SVM. Tenslotte wordt in sectie 7.1.4 een benaderend
zoek algorithme voor de grootste bal gepresenteerd dat op all één-klasse klassificatoren kan
worden toegepast.

Hoofdstuk 7 geeft eerste een introductie over het probleem van ’actief leren’. Vervolgens intro-
duceren we twee nieuwe methodes. De eerste methode (vila) is gebaseerd op de variatie in de
label toewijzingen aan ongelabelde objected door een set van klassificatoren. Elke klassificator
uit de set wordt getraind op een gegeven train set die is uitgebreid met één enkel ongelabeld
object dat aan één van de klassen wordt toegewezen. Het object dat de grootste variatie van
klassificatie labels voor de ongelabelde objecten geeft, wordt geselecteerd.

De tweede ’actief leer’ methode is gebaseerd op positieve dichtheids correctie. Hier het
object met het grootste positieve verschil tussen dichtheid van de ongelabelde set en de
training set wordt gekozen.

Hoofdstuk 8. In actief leren wordt gewoonlijk één enkel object per experiment geselecteerd.
Dit hoofdstuk laat problemen zien waarbij meerdere objecten moeten worden geselecteerd
per experiment. Omdat de meeste active learning algoritmes dezelfde objecten selecteren
moet er een extra diversificatie algorithme worden geintroduceerd.

Hoofdstuk 9 beschrijft het probleem van actief leren, waarin men de conditionele klasse dichthe-
den, geschat op een kleine training set, probeert te verbinden met de dichtheid van een grote



set ongelabelde data. Het doel is om de prestatie van klassificatoren met deze extra informatie
te verbeteren. We stellen een semi-supervised algorithme voor dat is gebaseerd op de stabiliteit
van soft labels. Dit algorithme is toepasbaar op alle dichtheidsgebaseerde klassifiers.
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[Hasenjäger et al., 1999] Hasenjäger, M., Ritter, A., and Obermayer, K. (1999). Active learn-
ing in self-organizing maps. In Kohonen Maps, pages 57–70. Referred to on pages: 105

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of
Statistical Learning: data mining, inference and prediction. Springer series in statistics.
Springer, New York, N.Y. Referred to on pages: 18, 22

[Haussler, 1990] Haussler, D. (1990). Probably approximately correct learning. In AAAI,
pages 1101–1108. Referred to on pages: 108

[Haykin, 1999] Haykin, S. S. (1999). Neural Networks, a comprehensive foundation. Prentice-
Hall. Referred to on pages: 19

[Hettich et al., 1998] Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI repository of ma-
chine learning databases. http://www.ics.uci.edu/˜mlearn/MLRepository.html. Referred
to on pages: 35, 44, 80, 104, 115, 127

[Hochbaum and Shmoys, 1985] Hochbaum, D. and Shmoys, D. (1985). A best possible heuris-
tic for the k-centner problem. Mathematics of Operations Research, 10(2):180–184. Referred
to on pages: 15, 22, 49

[Jaakkola et al., 1999] Jaakkola, T., Meila, M., and Jebara, T. (1999). Maximum entropy
discrimination. In Advances Neural Information Processing Systems, volume 12, pages 470–
477. Referred to on pages: 55, 122

[Japkowicz, 1999] Japkowicz, N. (1999). Concept-learning in the absence of counter-examples:
an autoassociation-based approach to classification. PhD thesis, New Brunswick Rutgers,
The State University of New Jersey. Referred to on pages: 15

[Jiang et al., 2001] Jiang, M. F., Tseng, S. S., and Su, C. M. (2001). Two-phase clustering
process for outliers detection. Pattern Recognition Letters, 22(6-7):691–700. Referred to on
pages: 15, 19, 49



[John, 1948] John, F. (1948). Extreme problems with inequalities as subsidiary conditions.
Wiley Interscience, New York, pages 187–204. Referred to on pages: 25

[Jolliffe, 1986] Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag, New
York. Referred to on pages: 20

[Juszczak et al., 2005] Juszczak, P., de Ridder, D., Tax, D. M. J., and Duin, R. P. W. (2005).
Active learning by investigating unlabeled object sets. submitterd to Machine Learning.
Referred to on pages: 95, 116

[Juszczak and Duin, 2003] Juszczak, P. and Duin, R. P. W. (2003). Uncertainty sampling
for one-class classifiers. In Chawla, N., Japkowicz, N., and Kolcz, A., editors, ICML-2003
Workshop: Learning with Imbalanced Data Sets II, pages 81–88. Referred to on pages: 3, 4

[Juszczak and Duin, 2004] Juszczak, P. and Duin, R. P. W. (2004). Selective sampling based
on the variation in label assignments. In Kittler, J., Petrou, M., and Nixon, M., editors,
Proceedings of 17th International Conference on Pattern Recognition, volume 2, pages 375–
378. IEEE Computer Society, Los Alamitos. Referred to on pages: 92

[Juszczak and Duin, 2005] Juszczak, P. and Duin, R. P. W. (2005). Learning from a test set.
In Proceedings of 4th International Conference on Computer Recognition Systems, pages
203–210. LNCS, Springer Verlag. Referred to on pages: 121

[Khachiyan, 1996] Khachiyan, L. (1996). Rounding of polytopes in the real number model of
computation. Mathematical Operetion Research, 21(2):307–320. Referred to on pages: 26

[Khachiyan and Todd, 1993] Khachiyan, L. and Todd, M. (1993). On the complexity of ap-
proximating the maximal inscribed ellipsoid for a polytope. Mathematical Programming,
61:137–159. Referred to on pages: 25

[Knorr et al., 2000] Knorr, E., Ng, R., and Tucakov, V. (2000). Distance-based outliers: algo-
rithms and applications. VLDB Journal: Very Large Data Bases, 8(3–4):237–253. Referred
to on pages: 15, 19

[Kohonen, 1995] Kohonen, T. (1995). Self-organizing maps. Springer-Verlag, Heidelberg, Ger-
many. Referred to on pages: 19

[Kolmogorov and Tikhomirov, 1961] Kolmogorov, A. and Tikhomirov, V. (1961). ǫ-entropy
and ǫ-capacity of sets in function spaces. Trans. of the American Mathematical Society,
17:277–364. Referred to on pages: 22, 41

[Koppel and Schler, 2004] Koppel, M. and Schler, J. (2004). Authorship verification as a
one-class classification problem. In International Conference on Machine Learning, pages
489–495. Referred to on pages: 4, 15

[Kosinski, 1999] Kosinski, A. (1999). A procedure for the detection of multivariate outliers.
Computational statistics & data analysis, 2:145–161. Referred to on pages: 17

[Kruskal, 1956] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the
travelling salesman problem. Am. Math. Soc., 7(1):48–50. Referred to on pages: 41



[Lanckriet et al., 2003] Lanckriet, G. R. G., El Ghaoui, L., and Jordan, M. I. (2003). Ro-
bust novelty detection with single-class MPM. In Becker, S., Thrun, S., and Obermayer,
T., editors, Advances in Neural Information Processing Systems, volume 15. MIT Press:
Cambridge, MA. Referred to on pages: 15, 23

[Lauer, 2001] Lauer, M. (2001). A mixture approach to novelty detection using training data
with outliers. In Proceedings of the 12th European Conference on Machine Learning, pages
300–311. Referred to on pages: 18

[Lewis and Gale, 1994] Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for
training text classifiers. In Croft, W. B. and van Rijsbergen, C. J., editors, Proceedings
of 17th International Conference on Research and Development in Information Retrieval,
pages 3–12, Dublin, IE. Springer Verlag, Heidelberg, DE. Referred to on pages: 92, 93, 115

[Li and Lu, 1999] Li, S. and Lu, J. (1999). Face recognition using the nearest feature line
method. Neural Networks, 10(2):439–443. Referred to on pages: 39

[Lindenbaum et al., 2004] Lindenbaum, M., Markovitch, S., and Rusakov, D. (2004). Selective
sampling for nearest neighbor classifiers. Machine Learning, 54(2). Referred to on pages:
105, 112, 113

[Lobo et al., 1998] Lobo, M., Vandenberghe, L., Boyd, S., and Lebret, H. (1998). Applica-
tions of second-order cone programming. Linear Algebra and its Applications, 284:193–228.
Referred to on pages: 28, 63
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