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Foreword

Many scientific and industrial problems require different concepts or classes
to be distinguished. These problems encompass applications such as recogni-
tion, detection, discrimination and estimation. Examples of the various classes
are typically described by some form of measurement, assumed to be indica-
tive of it’s class identity. Repeated measurements may reveal inherent pat-
terns/structures that have the potential to be modelled or “learnt” from the
data. The goal is to extract sufficient discriminatory information to assign an
object reliably.

In some cases an explicit mathematical model can be used to perform the dis-
crimination task. However in many practical applications, measurements cor-
responding to objects from the same class have an inherent variability. It is also
common for data distributions of the measurements corresponding to the vari-
ous classes to overlap to a degree. Such problems are best posed in a statistical
framework, providing a mechanism for handling both the inherent variabilities
and the class overlaps. Statistical pattern recognition is concerned with these
types of problems, resulting in decision boundaries in “measurement space”
that account for both the inter- and intra-class variabilities/distributions. The
approach taken typically uses example objects from each class to estimate the
nature of the variability and class overlaps. This scientific area has developed
a theoretical foundation for these types of problems, tackling fundamental is-
sues such as generalisation, over-training, dimensionality reduction, and coping
with small sample sizes. The pattern recognition approach has been applied
successfully to a very diverse number of applications, and is finding more ap-
plications at an accelerated pace. This in turn introduces new challenges and
opportunities for further research.

In this thesis, a specific area of statistical pattern recognition is tackled, con-
cerned with how trained classifiers behave in various types of environments,
and how they can be optimised to suit various types of operating conditions.
This area is studied from the basis of what is called classifier “operating char-
acteristics”. Testing of a trained classification system with a representative
test set reveals the performance of a classifier, indicating how well classes are
separated, and the degree of error that occurs between classes.
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Interestingly, the trained classifier performance can be modified by weight-
ing of the classifier outputs. Any perturbation of these weighting parameters
results in a new performance configuration, or operating point. This type of
parameter variation can conceptually be seen as varying decision boundaries in
feature space. The decision boundaries inherently trade-off the various possible
misclassification rates. Thus understanding how different performance config-
urations relate to these classifier weightings is important in order to optimise
a problem (using for example misallocation costs). Operating characteristics
provide this level of understanding by characterising the performance that can
be achieved for all possible weighting parameter configurations.

A related topic is the fact that the performance of trained classification sys-
tems is affected by variations in operating conditions. For example, if prior
probabilities vary with respect to those assumed in the training phase, per-
formance of the system will vary. This imprecise knowledge of the operating
conditions is inherent to many problems in pattern recognition, leading to
unexpected performances, which complicates the design of the classifier. Oper-
ating characteristics are very useful for these imprecise problems, because the
variation in performance due to new conditions is in fact characterised by the
operating characteristic. Now a trained classifier can be evaluated for a range
of conditions, helping to decide on a classifier that is suitable over the expected
range of conditions.

This thesis consists of a collection of published conference and journal pa-
pers in the area of classifier operating characteristics. This emerging research
area is proving to be very useful and important for pattern recognition. The
works presented consider the use of operating characteristics in a wide variety
of scenarios, contributing both to standard practices, and also considering new
areas. First contributions are made to the more traditional 2-class operating
characteristic. Next the generalisation of some 2-class approaches to the more
elusive multiclass case is considered. Even though this is shown to be theo-
retically possible, the computational complexity is restrictive for all problems
barring those with few classes. The thesis presents a number of approaches
to deal with this limitation, with the most important finding being that mul-
ticlass operating characteristics can often be simplified considerably due to a
lower inherent complexity. It is also shown that operating characteristics are
useful tools for designing classifiers in the ill-defined domain, where all classes
may not be sampled representatively. Finally multi-stage classifier systems are
considered, arguing that constructing an overall operating characteristic for
the system is the optimal approach. The works in this thesis are applicable to
many new challenges that are emerging in pattern recognition. It is anticipated
that this may form the basis for further research.
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Chapter 1

Introduction

1.1 Background

The field of Statistical Pattern Recognition (SPR) is concerned with how to go
about separating/discriminating various types of concepts/classes. Such prob-
lems are common in many scientific and industrial problems for tasks such as
data analysis, identity recognition, and object sorting. Discrimination decisions
are made based on measurements taken from objects originating from these
classes. As the name suggests, SPR is targeted at applications that involve
data from which structures/patterns can be modelled/learnt, with the objec-
tive of assigning new unseen objects reliably. For example, in hand-written
digit recognition, it is of interest to distinguish between various types of digits,
typically via images of particular symbols.

The mechanism for separating the data into classes is called a “classifier”. A
classifier consists of a mathematical construct that assigns objects to various
classes, depending on where in “measurement space” they occur. The nature
of the partitioning of this space is dependent on the design/architecture of
the classifier. In few cases, a more analytic approach can be taken to solve
the problem via known data distributions, but in the vast majority of cases,
a classifier is constructed based on representative example objects from each
class. Representivity is important since SPR applications generally involve
statistical variability, which should be discovered so that the domain and dis-
tribution of the data can be inferred, as well as the occurrence prevalence (prior
probability). Importantly (for this thesis), the trained classifier partitions the
measurement space corresponding the the various classes, but these partition
boundaries (decision thresholds) can be modified at will to adjust the classifier
performance. This becomes important when class overlap exists, and trade-offs
need to be made.
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The types of problems fitting into the SPR domain have generally presented
a number of common core challenges, which have been a primary focus of SPR
in the past. Several good texts are available in the field, which study these
in detail, e.g. [3], [4], [1]. Some of the most important concepts are briefly
mentioned as follows (which are somewhat inter-related):

• Curse of dimensionality/small sample sizes SPR problems are often
high dimensional, i.e. measurements contain a multitude of dimensions
(features), for example images, spectra, signals etc. In the practical do-
main, there is frequently the dilemma that the number of training samples
available does not track the dimensionality (cost/computational limita-
tions). Thus sufficient samples do not exist to estimate the large number
of parameters required to train classifiers in this high dimensional space.
Fortunately measurements in SPR problems frequently contain redun-
dant information (e.g. noisy/correlated features) that imply that a lower
“intrinsic dimensionality” exists. The topic of feature reduction is con-
cerned with reducing the dimensionality of the problem, often resulting
in a more tractable situation.

• Classifier generalisation A classifier model may be found to fit well to
training data, but this performance may not generalise appropriately to
new unseen data due to overfitting on the training set (assuming all data
originates from the same data distribution). Careful attention must be
taken to estimate how well a classifier is expected to generalise, typically
by splitting given data into independent sets so that only a portion is
used for training, and the remainder for testing e.g. cross- validation.

• Classifier complexity Theoretically the classifier should be chosen such
that data is separated optimally e.g. by fitting a model to the data distri-
bution. Two confounding factors are prevalent: firstly the fact that data
is often high dimensional, it is not trivial to assess whether a “good fit”
has been achieved; and secondly, in some cases training data is severely
limited, restricting the classifier complexity since estimating a growing
number of parameters requires larger training sets. In the former case,
classifier performance is indirectly measured using evaluation approaches
such as cross-validation. In the latter case, the use of “learning curves”
has found to be useful, plotting classifier performance as the training set
size increases. SPR has found that adjusting the classifier complexity to
suit both the data distribution and the size of the training set leads to
good generalisation.

This brief introduction to SPR only intended to give a very brief look at where
this field is active, and the types of problems that are involved. Next the
specific thesis focus area is discussed, focusing on some specific aspects of the
classifier design process.
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1.2 Introducing operating characteristics

Operating characteristics pertain to trained SPR systems. This implies that
internal classifier parameters have been fixed, and the system is ready to de-
ploy. The trained classifier attempts to discriminate between various classes,
partitioning the inherent feature space into regions corresponding to each class.
In many problems, there are overlaps between the various classes, and thus the
partitioning is not ideal. A fundamental design question is how to go about
optimising the partitioning, and trade-off the various classification errors in
the most optimal fashion according to the problem requirements. A related
question arising in SPR is what impact new operating conditions (e.g. varying
class abundances) have on classifier performance.

A trained classifier can be evaluated via a representative test set, resulting in
a confusion matrix which demonstrates both intra- and inter-class performance.
Thus the error-rate between various classifier outcomes is quantified, as well
as the accuracy per class. Importantly, this evaluation reveals merely one
possible “performance configuration” that the classifier is capable of. In fact,
the classifier can present many different performance outcomes. An explicit way
in which to vary the classifier performance is to weight the C classifier outputs
(for a C−class problem). For example, consider the 3-class synthetic problem
illustrated in Figure 1.1. A Bayes quadratic classifier has been trained on
this problem for a balanced prior probability scenario, resulting in the decision
boundary depicted by the solid line. Weighting of the classifier outputs by
[1.0 0.3 0.8] results in the dotted line. This illustrates how the same trained
classifier can be manipulated to vary it’s performance configuration.

It is easy to see that the performance of a trained classifier can be modi-
fied by weighting of the classifier outputs. The important question is how the
weighting is related to the resultant performance configuration. Such informa-
tion is necessary to optimise a classifier to a particular problem e.g. some errors
may be more costly than others. Operating characteristics are the mechanism
for relating performances to classifier output weightings. Thus all possible per-
formance configurations are defined by the operating characteristic, allowing
for the interactions between the various classifier outputs to be evaluated. As
such, they provide a convenient mechanism for optimising a trained classifier to
suit conditions e.g. to known misallocation costs. A new operating point can
be seen to be a movement in the space of the operating characteristic. This
“space” is conceptually an evaluation space, with no relation to the feature
space.

In a similar way to the manner in which a trained classifier’s performance is
varied by weighting the classifier outputs, a variation in operating conditions, (a
variation in class abundances), results in a different performance configuration.
This type of situation occurs in a number of problems, where for example
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Figure 1.1: Three-class problem, illustrating a Bayes quadratic classifier at two
different operating points (solid and dotted lines respectively).

the class abundances assumed in the training phase are different in reality
(called imprecise environments [19]). Such a situation is problematic, since a
different performance configuration may not be sufficiently accurate. Operating
characteristics are very useful in this domain, since all possible performance
configurations are characterised. Thus they are a very useful tool for assessing
how well a classifier performs in new situations, helping to choose models that
cope best with the imprecision.

The works in this thesis demonstrate the importance of operating character-
istics for pattern recognition in a wide variety of situations, arguing that they
should be an integral part of designing a pattern recognition system. Consider
the block diagram in Figure 1.2. The diagram depicts a typical design chain
that is used in pattern recognition, and the role that operating characteristics
play1. In the first step, the problem specification and behaviour are analysed,
and an appropriate evaluation designed. The evaluation should indicate if a

1Note that this design chain is oversimplified for brevity. A more realistic depiction would
involve feedback between the various stages. This is usually necessary as more information
about a problem becomes available, and promising initial results justify more investment into
the problem (e.g. providing resources for further data capture).
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Figure 1.2: Typical pattern recognition system design chain, illustrating where
operating characteristics play a role.

particular classifier system will meet the necessary specifications, and it should
also consider aspects such as varying operating conditions, and even varying
system requirements. The next step is to gather representative data (actual
distributions are seldom known) that can be used to train and test classifiers
that are suited to the problem. Note that in pattern recognition, obtaining
large enough datasets is notoriously difficult and expensive, leading to several
core research areas such as coping with small sample sizes the curse of dimen-
sionality, dimensionality reduction and classifier complexity [3], [1], [4]. The
next step in the design chain is the classifier design, involving pre-processing,
representation, and the classifier model. A typical practice for complex prob-
lems is to investigate a number of different models, and even to combine models
[6] in order to capitalise on inter-model diversity. The various candidate clas-
sifiers are then evaluated, guiding towards the best classifier choice. This step
often involves the use of operating characteristics to evaluate performance over
multiple operating points (specific setting of decision thresholds), or a range
of operating conditions, or even a range of misallocation costs2. Subsequent
to model selection, the classifier can be prepared for deployment by optimising
the decision thresholds to best suit operating conditions. This is another part
of the design chain at which operating characteristics are particularly useful.
They can be used directly to obtain an equal-error or Bayes operating point,
or to select an operating point to suit misallocation costs and priors [1]. Al-
ternatively, a Neyman-Pearson type optimisation can also be performed [3],
in which one classifier error is fixed, and the dependent ones minimised. Fi-

2Designing classifiers for these imprecise environments has become extremely important
in pattern recognition because many practitioners have realised that assuming conditions
remain very well-defined is often unrealistic.
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nally, once the selected classifier has been trained and optimised, it is ready for
deployment.

The description of the classifier system design chain presents a satisfying
strategy for going about designing and optimising classification systems. The
works presented in this thesis have contributed towards this design philosophy
by addressing some gaps, and generalising various strategies to a wide vari-
ety of scenarios. This thesis also generalises operating characteristics to some
new areas in pattern recognition. In particular, these involve operating char-
acteristics to aid in classifier design in the ill-defined domain [2] (some classes
are poorly represented), and also in the optimisation of multi-stage classifier
systems. Each chapter is dedicated to one particular aspect of operating char-
acteristic analysis. The various chapters start with a short overview, motivating
the research, discussing some research outcomes, and pointing out some open
challenges that require further research. These are followed by contributions
to each area in the form of published conference and journal papers.

1.3 Outline

In Chapter 2 the traditional 2-class Receiver Operator Characteristic is con-
sidered. Two contributions to this area are presented. The first considers the
well-known Area Under the ROC (AUC) measure, that evaluates a classifier
independently of operating point and operating conditions by integrating over
the ROC. This was published in [9]. The emphasis for this contribution is on
the application in which prior probabilities vary. It is well known that perfor-
mance fluctuates along the ROC as the conditions vary. It is shown that when
comparing classifiers in this domain, it is important to consider both the in-
tegrated classification performance (AUC), and the sensitivity to the expected
variation in conditions. For example, two classifiers may have a competing
AUC, but one may be less sensitive to a variation in conditions, which may be
preferable. The second part of Chapter 2 considers the topic of precision-recall
analysis, which are popular evaluation criteria for problems where there is a
significant class imbalance/skew, or rare-event problems. This work has been
published in [7], based on previous works in [15]. It is shown that precision-
recall operating characteristics can be derived directly from the ROC. These
new operating characteristics (called P-ROC curves) vary as a function of a vari-
ation in class skew in the test/application phase, resulting in a 3-dimensional
evaluation surface. A methodology for designing classifiers in the imprecise do-
main is presented, involving the development of new performance criteria that
integrate across the operating surface.

In Chapter 3, the extension of some well-known 2-class ROC analyses are
considered for the multiclass case. Whereas ROC analysis is well understood
and applied in the 2-class case, generalising this to the multiclass case has not
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received much attention due to a number of challenges. The multiclass exten-
sion is important for pattern recognition because it broadens the scope to many
new potential applications. The first part of Chapter 3 considers the extension
of the Neyman-Pearson optimisation strategy to the multiclass case, which was
presented in [8]. This strategy involves the specification of a particular clas-
sification outcome (as defined by the confusion matrix), with minimisation of
the complementing outcome in the 2-class case. The multiclass extension con-
siders the situation in which there are many different classifier outcomes. A
practical algorithm is presented that allows one or more outcomes to be fixed,
with the remaining outcomes optimised by interrogating the multiclass ROC.
A solution is only guaranteed if one outcome is specified. The second part of
Chapter 3 presents a simplified extension of the AUC to the multiclass case, re-
sulting in a simplified Volume Under the ROC hyperSurface (VUS). This work
has been published in [13], based on [10]. The approach involves generating a
C−dimensional operating characteristic for a C−class problem, followed by a
numerical integration procedure to estimate the volume accurately. An impor-
tant part of the research is consideration of the performance bounds between
a perfect and random classifier (e.g. 1 and 1

2 respectively in the AUC case),
since these vary with C. The research shows that the lower bound is simply 1

C! .
Cost-sensitive optimisation is also pertinent to this Chapter, but the extension
to the multiclass case is trivial once the multiclass ROC has been generated.

Chapter 4 is concerned with multiclass ROC analysis for large numbers of
classes. The primary restriction for ROC analyses such as those discussed in
Chapter 3, is that the computational complexity of the ROC calculation in-
creases exponentially as the number of classes increases. These computational
considerations are discussed in the first part of Chapter 4, which has been pub-
lished in [11]. Also presented are a number of algorithms that are designed
to perform multi-class cost-sensitive optimisation in an efficient manner. In
particular, a pairwise algorithm is formulated that optimises classifier decision
thresholds/weights by using the most appropriate 2-class ROC curves that are
generated between all class pairs. The second part of Chapter 4 presents an
approach that efficiently approximates the full multiclass ROC by decompos-
ing the problem according to interactions between classes. This contribution
has been published in [12]. The decomposition results in various classes being
treated either independently or in groups, which may in many cases transform
an intractable calculation into a tractable one. The justification for this philos-
ophy is based on observations made in many real problems, which revealed that
many ROC dimensions are often (approximately) independent. An algorithm
is presented that efficiently analyses the interaction between ROC dimensions
based on interpreting classifier weight perturbations via the confusion matrix.
This results in a unified multiclass ROC approach that can be used directly to
perform any type of ROC analysis, extending to large numbers of classes.

9



In Chapter 5, operating characteristics are used to design, optimise, and eval-
uate classifiers in ill-defined environments. In these problems, one class is typi-
cally well defined, and another is poorly defined, or new unseen classes/clusters
could occur during the application phase. For example in road sign recognition
[18], the various road-sign classes can be modelled representatively, but the
distribution of non-signs that occur in images cannot be modelled. The design
objective in these problems is typically to obtain good discrimination perfor-
mance between known “target” classes, and to protect these known classes
from new unseen conditions i.e. new objects that do not originate from the
“target” classes should be rejected. The first part of Chapter 5 presents a new
rejection scheme that investigates the combination of a standard supervised
classifier trained between known classes, with a rejection stage that protects
the known classes from “non-target” classes. This work was presented in [17].
This two-stage approach uses a one-class classifier [20] to perform the rejec-
tion. It is shown that using different representations and models for the tasks
of classification and rejection respectively is often beneficial. This allows each
stage to be designed according to it’s objective. The second part of Chapter
5 considers the fact that increasing the degree of protection against unknown
conditions decreases the classification performance. This was published in [16].
The inherent trade-off/interaction is investigated via a 3-dimensional operat-
ing characteristic that accounts for all combinations of the classification and
rejection thresholds respectively. Such a framework is useful in selecting both
the best rejector-classifier combination, and for choosing the most appropriate
thresholds.

In Chapter 6, the use of operating characteristics for multi-stage classifiers
is considered, specifically focused on 2-stage recognition systems that use a de-
tector in the first stage, followed by a classifier in the second. This contribution
was published in [14]. An operating characteristic is constructed by considering
the variation of thresholds in both stages. This allows the entire system to be
optimised holistically, accounting for both inter-class and inter-stage interac-
tions.

This thesis by no means exhausts the possibilities and potential of operating
characteristics for pattern recognition. It is anticipated that this area will
receive much attention in the future. The thesis is not ordered chronologically,
but rather in a preferred reading order, starting with classical 2-class ROC
analysis, moving to multiclass ROC analysis, and then to ROC analysis applied
to ill-defined conditions and multi-stage systems.

1.4 Future perspectives

Tracking academic and industrial trends, it is quite clear that the field of pat-
tern recognition is extending and diversifying. Traditional pattern recognition

10



problems in which design and evaluation was often simple, and conditions re-
mained stable, are now being replaced by those in which design and evaluation
is frequently complex, and conditions less stable. Data is also increasing in
dimensionality, redundancy is ever-present, and new sensors are rapidly be-
coming available, to name a few progressions. The consequence of these trends
is that new approaches and techniques are required, some of which have been
proposed in this thesis. In anticipation of future challenges and opportunities
for pattern recognition, it is useful to consider a few noteworthy trends that
have been observed.

1.4.1 Towards problems with very large numbers of classes

Several emerging pattern recognition problems involve a very large numbers
of classes C. Examples include speech recognition and remote- sensing terrain
mapping [5]. A number of challenges must be faced, such as coping with ill-
defined and imprecise environments, as well as optimising operating points to
suit conditions. A factor that becomes increasingly dominant with increasing C
is the escalation of computational complexity of standard approaches. For ex-
ample, training a classifier, or constructing a multiclass operating characteristic
may be severely limited.

Another consequence inherent to this challenge stems from a practitioner’s
perspective. As C increases it becomes more difficult to assess performance,
and supervise the design in detail throughout the problem. Since the confusion
matrix has C2 outputs, even a 10-class problem has 100 different outputs, and
thus careful inspection of the system’s performance becomes elusive.

It is clear that more tools and philosophies are required to face problems with
large numbers of classes. Even though Chapter 4 considered some of these,
many open areas exist, which is an exciting opportunity for future research.

1.4.2 Cheap, mass-produced sensors

It is very apparent that there is currently a strong drive to mass-produce sensors
that were once out of reach of many industrial applications (cost/complexity).
Two stimuli are attributed to this trend. The first is because it is often the
case that the precision offered by some traditional sensors is not necessary, and
a simpler, cheaper variant is acceptable. The second stimulus is attributed to
efficient manufacturing processes and economies of scale.

The impact on pattern recognition is already evident (for example the areas
of hyperspectral imaging, x-ray imaging, and video-based surveillance), but this
is expected to increase even more radically with time. Challenges posed will
include coping with extreme data redundancy, fusion of multitudes of sensors to
leverage complementary information, and dealing with poor/ineffective sensors
that constitute a portion of the system.

11



1.4.3 Increasing computing power

A major challenge in the pattern recognition field is computational complexity,
which poses severe limitations. Examples include training of support vector
classifiers on large datasets, and construction of the multiclass ROC. However,
as computational power increases rapidly, this provides new opportunities for
designing better classifier systems. Now it becomes feasible to design more
complex classifiers, and to optimise larger systems. Related to this is increasing
parallelisation, which has a similar impact.

1.4.4 Holistic design

The core of traditional pattern recognition has typically focused on the design
and optimisation of the classifier as part of a greater system. It is, however, be-
coming apparent that considering the entire system can be beneficial for both
evaluation and optimisation. For example, integrating pre-processing, feature
extraction, and classification should yield more optimal systems than design-
ing each stage independently (Chapter 6 demonstrates this on an application
involving recognition systems). Pattern recognition certainly has a lot of scope
in this area, possibly taking a fresh look at traditional problems. A challenge
involved is ensuring that the design of each component/stage considers the
entire system performance as an evaluation criterion.

1.4.5 A mind-shift - from analytics to inference

It could be argued that in some fields such as signal processing, chemometrics,
and even physics, the typical approach that is taken is an accurate analytical
one. For example, in materials discrimination using spectroscopy, two material
types could be separated using information based on spectral peaks related to
the underlying chemistry. However it is becoming increasingly renowned that
data-driven approaches such as those provided by statistical pattern recogni-
tion can often perform such tasks in a far simpler manner, and make use of
apparently ineffective features. In this case class membership is inferred based
on various features/measurements. These are also very convenient in account-
ing for inherent intra- and inter-class variances, and class overlaps. In some
applications such as face recognition, shape discrimination, and texture-based
classification, it is also difficult to formalise a manual classification procedure,
whereas a data-driven approach is often very effective. This circumvents the
necessity of imposing a potentially cumbersome model.
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Chapter 2

Two-class operating
characteristics
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2.1 Overview

Two-class operating characteristics have received a lot of attention in the statis-
tical pattern recognition community, commonly known as Receiver Operator
Characteristic (ROC) analysis. Though this analysis has been restricted to
2-class problems, these form a large portion of problems in pattern recogni-
tion. The bulk of early pattern recognition problems tackled were well-defined,
allowing simple evaluations such as classification error-rate to be used. As pat-
tern recognition extended into new application areas, several challenges were
encountered, such as imprecise knowledge of prior probabilities, varying prior
probabilities, imbalanced misallocation costs, and different performance crite-
ria. The ROC emerged as a unified tool to deal with these challenges.

One of the most important outcomes of ROC analysis has been the design
of an evaluation criterion derived from the ROC, called the Area Under the
ROC (AUC) [2]. The AUC considers an integrated performance across a range
of imprecision, or operating points. The ROC also provides a convenient mech-
anism for inspecting the interaction between the classification errors, guiding
sensible trade-off choices. The ROC can thus be used directly for cost-sensitive
[1] and Neyman-Pearson [3] optimisation.

In this chapter, two contributions to this area are presented. The first con-
siders classifier evaluation for problems in which prior probabilities vary. The
standard approach uses the AUC to evaluate this problem, but this ignores
an important aspect, namely the performance sensitivity to a change in condi-
tions. It is shown that in some cases, two classifiers may compete in terms of
AUC, but have significantly different sensitivities. Thus the approach suggests
combining both the AUC and the performance sensitivity. The second contri-
bution considers the extension of standard ROC analysis to the precision-recall
case. This type of evaluation is important for applications such as retrieval and
rare event detection, where class-skew desensitises evaluations such as error-
rate with respect to minority class performance. It is shown that the derived
Precision-Recall Operating Characteristics (P-ROC’s) have a 3-dimensional na-
ture, with the third dimension necessary to account for precision variation due
to class skew. An analysis is presented that extends AUC concepts in the ROC
case to the P-ROC case, allowing for evaluation under imprecise circumstances.

Even though ROC analysis has received quite some attention lately, research
is still on-going. In particular, an open question has been how to statistically
compare ROC’s from different classifiers when there is variability in both types
of classification errors. In [6], a thorough study of this has been performed.
Another recent contribution has been how to adapt ROC analysis to instance-
varying costs, as presented in [4]. It is anticipated that 2-class ROC analysis
research will continue in the future, investigating areas such as the extensions
to other performance criteria, the use as a classifier optimisation criterion (see
e.g. [5]), and the understanding of the impact of poor data representivity.
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Abstract

Considering the classification problem in which class priors or misallocation
costs are not known precisely, receiver operator characteristic (ROC) analysis
has become a standard tool in pattern recognition for obtaining integrated
performance measures to cope with the uncertainty. Similarly, in situations
in which priors may vary in application, the ROC can be used to inspect
performance over the expected range of variation. In this paper we argue
that even though measures such as the area under the ROC (AUC) are useful
in obtaining an integrated performance measure independent of the priors,
it may also be important to incorporate the sensitivity across the expected
prior-range. We show that a classifier may result in a good AUC score, but
a poor (large) prior sensitivity, which may be undesirable. A methodology is
proposed that combines both accuracy and sensitivity, providing a new model
selection criterion that is relevant to certain problems. Experiments show that
incorporating sensitivity is very important in some realistic scenarios, leading
to better model selection in some cases.

2.2.1 Introduction

In pattern recognition, a typical assumption made is that class priors and mis-
allocation costs are known precisely, and hence performance measures such as
classification error-rate and classifier loss are typically used in evaluation. A
topic that has received a lot of attention recently is the imprecise scenario in
which these assumptions do not hold (see for example [9], [2], [1] and [10]),
resulting in a number of tools and evaluations suited to this problem. In par-
ticular, receiver operator characteristic (ROC) curves [6] have become very
popular due to their invariance to both class priors and costs, and are thus
used as a basis for performance evaluation and classifier decision threshold op-
timisation in these imprecise environments. The Area Under the ROC (AUC)
measure has thus been proposed, providing a performance evaluation that is
independent of priors.

In this paper we argue (and show) that considering the integrated perfor-
mance (AUC) alone may not be the optimal strategy for model selection in
these situations. This is because the AUC measure discounts an important
characteristic, namely the performance sensitivity across the prior range (we
distinguish prior sensitivity from the sensitivity measure often used in medical
decision making, which is equivalent to true positive rate). In fact, we show
that in some cases, two classifiers may compete in terms of AUC, but have
significantly different sensitivities over the same prior range i.e. one of the
classifiers may have a performance that varies rapidly from low to high values,
whereas the other may be more stable. In some problems e.g. medical deci-
sion making, the former scenario may be unacceptable, emphasising the fact
that this sensitivity should also be considered. A simple criterion is proposed
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that combines both AUC and sensitivity, called AccSens, allowing for a more
appropriate criterion for some problems1.

The paper is organised as follows: Section 2.2.2 introduces the notation in
the well-defined case, restricted to two-class problems for simplicity, and de-
rives the ROC. In Section 2.2.3, the problem of uncertain/varying class priors
is considered, discussing the AUC measure, which is invariant of priors. Sec-
tion 2.2.4 discusses the importance of considering prior-dependent sensitivity
in conjunction with integrated error, illustrated via a case study, and Section
2.2.5 subsequently introduces a new criterion, AccSens. A number of real
experiments are presented in Section 2.2.6 that show some cases in which com-
peting classifiers (using AUC) have significantly different sensitivities (and vice
versa). Conclusions are presented in Section 2.2.7.

2.2.2 Problem formulation and ROC analysis

Consider a 2-class classification task between classes ω1 and ω2, with prior
probabilities P (ω1) and P (ω2) respectively, and class-conditional probabilities
denoted p(x|ω1) and p(x|ω2). Each object is represented by a feature vector
x, with dimensionality d. Figure 2.1 presents an example of a 1-dimensional,
two-class example (means at −1.6 and 1.6 respectively, and equal variances of
2), and θd represents an equal prior, equal cost operating point.

Two types of of classification errors exist in the two-class case, namely the
false positive rate (FPr), and the false negative rate (FNr), derived as follows,
where θw is the classification weight, determining the operating point:

FPr(θw) = (1 − θw)P (ω2)
∫

p(x|ω2)I1(x|θw)dx

I1(x|θw) =

{

1 if θwP (ω1)p(x|ω1) > (1 − θw)P (ω2)p(x|ω2)

0 otherwise

FNr(θw) = θwP (ω1)
∫

p(x|ω1)I2(x|θw)dx

I2(x|θw) =

{

1 if (1 − θw)P (ω2)p(x|ω2) ≥ θwP (ω1)p(x|ω1)

0 otherwise

(2.1)

In the (realistic) case that distributions are not known, but are estimated
from data (that is assumed representative), class conditional density estimates
are denoted p̂(x|ω1) and p̂(x|ω2), and population prior estimates are denoted
π1 and π2. These are typically estimated from an independent training set that
is assumed drawn representatively from the true distribution. Equation 2.1 can
then be extended to this case. The classifier weight θw allows for FPr to be
traded off against FNr (and vice-versa) to suit a given application. A particular

1Even though we emphasise a varying/uncertain class prior, the theory and analysis in
this paper extends also to the related problem of varying misallocation costs [1], since these
both have a similar impact from an ROC perspective in that a variation in either prior or
cost results in a varying performance, strictly along the ROC [9]
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Figure 2.1: One-dimensional example illustrating two overlapping Gaussian
distributions, and the two error-types associated with an equal error, equal
cost operating point θd.

setting of θw results in a single operating point, with a corresponding FNr and
FPr combination. Varying θw (where 0 ≤ θw ≤ 1) allows for specification
of any desired operating point. An ROC plot [6] consists of a trade-off curve
between FNr and FPr (as a function of θw). As such, the ROC is a useful tool
in optimising and evaluating classifiers.

In the well-defined case that the priors can be estimated sufficiently well,
and remain constant (e.g. estimated from training data, and generalising to an
application scenario), the classification problem can be optimised (and evalu-
ated) directly using the ROC. Strategies vary, but the most popular ones are
as follows (also demonstrated on the ROC plot in Figure 2.2, which is the ROC
plot generated from the example in Figure 2.1):

• Equal error optimisation: In this case, FPr errors have the same
consequences as FNr errors, and the objective of the optimisation is to
select a θw such that FPr = FNr. In Figure 2.2, point A shows this
operating point.

• Cost-sensitive optimisation: In some applications e.g. medical de-
cision making, different errors have different misclassification costs (de-
noted c1 for FNr errors, and c2 for FPr errors). In this case θw should be
chosen such that the overall system loss is minimised, where the loss L can
be computed as L = θwc1π1FNr + (1 − θw)c2π2FPr (profits are ignored
here i.e. consequences of correct classifications). In Figure 2.2, point B
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illustrates an operating point for the equal prior case, with c1 = 0.2 and
c2 = 0.8.
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Figure 2.2: ROC plot for the example in Figure 2.1.

2.2.3 Varying priors, uncertain environments

The previous discussion assumed that the priors can be well estimated, and
remain fixed in application. However, in many real applications this is not
the case (see [9], [2]), confounding the problem of optimising the operating
point and model selection (fairly comparing classifiers). In these cases, priors
may not be known beforehand, or priors in an independent training set are not
representative, or the priors may in fact vary in application. In these cases, even
though an immediate optimisation and comparison is not appropriate, several
techniques have been proposed for classifier design e.g. [9]. These typically
use the ROC plot, since it has the desirable property of being independent
of priors/costs (i.e. the same ROC results irrespectively), allowing classifier
performance to be inspected for a range of priors (or costs). In particular, the
Area Under the ROC (AUC) measure [2] has been derived to give an integrated
performance measure, allowing for model comparison independent of the prior.
The AUC measure is defined as:

AUC = 1 −
∫

(FNr)dFPr (2.2)

This performance measure results in a normalised score between 0 and 1,
with 1 corresponding to perfect classification, 0.5 to random classification, and
below 0.5 as worse than random (i.e. swap classifier labels). The AUC measure
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can also be computed over a range of priors/operating points, accounting for
knowledge of the degree of uncertainty/variation. Thus, even though priors
may be uncertain/varying, the best overall classifier can be chosen based on
the most favourable integrated performance2.

2.2.4 The importance of incorporating sensitivity

In this paper we demonstrate that comparing classifiers in uncertain environ-
ments on the basis of integrated error (AUC) only may not necessarily be the
best strategy to take. This argument arose based on comparison of ROC plots
for a number of competing classifiers (the experiments will show some realistic
scenarios). It was observed that in some cases, two competing classifiers re-
sulted in a similar AUC score, but inspection of the ROC made it clear that in
one case, the performance range was small, but in another, much larger. This
implies that for the problem in which priors may vary, the latter classifier may
result in very poor performance at one extreme, and very good performance
at the other. Depending on the problem, it may be much better to select the
former model that is generally more stable over the expected prior range. Next
a case study is presented to demonstrate such a scenario.

Case study

Figure 2.3 depicts a demonstration of a model-selection scenario, comparing two
different classifiers, denoted A and B respectively. Each classifier is trained
on the distribution shown in the left plot, consisting of a two-class problem
between ω1 and ω2 respectively, where ω1 objects are drawn from N(µ =
3.0, 2;ω = 1) + 1

32N(µ = −2.0, 5.0;σ = 1) (N is the normal distribution with
mean µ and variance σ), and ω2 is one class from the banana distribution [4].
In this synthetic problem, 1500 objects are drawn from the true distribution
to create a training set, and a further 1500 objects are drawn independently to
result in an independent test set3. The two classifiers A and B are then trained
on the training set, resulting in the decision boundaries at a single operating
point as depicted in the left plot. A is a mixture of Gaussians classifier, with
two mixtures chosen for ω1, and one for ω2. Classifier B is a support vector
classifier with a second order polynomial kernel.

In this problem, it is assumed that the priors may vary (in application) such
that 0.05 ≤ π1 ≤ 0.9, i.e. the abundance of ω1 varies between 5% and 90%,
and the costs are assumed equal (priors at the low and high extremes for ω1 are
denoted πlo

1 and πhi
1 respectively, computed by analysing where on the ROC

the performance drifts to for the new prior, relative to the original operating
point). The scatter-plot shows the resultant classifier decision boundaries of
the two classifiers at the equal error point (i.e. equal priors). The ROC plot

2For threshold optimisation, the best strategy may be to use a θw corresponding to the
centre of the known range, or to apply the minimax criterion [3].

3Cross-validation is ignored here as this example is for demonstration purposes only.
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on the right depicts classifier performance for a range of operating points. For
the first extreme, i.e. π1 = 0.05, Alo and Blo show the respective operating
points for the two classifiers. For the second extreme, i.e. at π1 = 0.9, Ahi and
Bhi again demonstrate how the operating point shifts. Ae and Be show the
positions of the equal-error points.
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Figure 2.3: Case study illustrating performance of two competing classifier
models A and B. The left plot shows the data distribution, as well as the
respective decision boundaries at a single operating point. The right plot is
an ROC-plot for the two models across a range of priors. Alo and Blo are
operating points at π1 = 0.05, and similarly Ae and Be are equal-error points,
and Ahi and Bhi correspond to π1 = 0.9.

It can immediately be observed that the two classifiers have a distinct per-
formance characteristic as a function of the prior values, even though the equal
error points are rather similar. Table 2.1 compares some performance measures
between classifiers A and B. Firstly the error rate shows that both classifiers
result in a similar performance for the equal prior case. The AUC measure in-
tegrates the classification error over the range of priors (between Alo and Ahi),
and again this measure shows that both classifiers have similar performance
across the prior range as a whole. However, when investigating the sensitivity
with respect to the priors, it can be seen that classifier A is much more sen-
sitive than B across the range, with the FNr varying by up to 47.3%. Prior
sensitivity (denoted Sens) is computed as the Euclidean distance between the
upper and lower prior range, from a πlo

1 situation, to πhi
1 . This is performed by

considering the applicable ranges of FNr and FPr:

Sens =
1√
2

√

((FNr(πlo
1 ) − FNr(πhi

1 ))2 + (FPr(πhi
1 ) − FPr(πlo

1 ))2 (2.3)

This measure scales between 0 and 1, where a low score indicates the favourable
condition of low sensitivity, whereas a high score indicates a large sensitivity to
prior variation. Note that Sens is a simple measure in that it subtracts only
the extreme values, justified by the fact that an ROC increases monotonically.
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Model ε AUC Sens
A 0.057 0.942 0.340
B 0.052 0.945 0.131

Table 2.1: Performance measures for the synthetic example. Error-rate is de-
noted ε, AUC is the integrated error measure across the prior range, and the
sensitivity Sens shows how much the performance varies ( %

100 ) across the prior
range.

In this type of problem, classifier B is clearly more appropriate since it is
far less sensitive to a perturbation in prior. It is also clear that the error-rate
measure and AUC are not sufficient on their own in this case to choose the
best models, and that the prior sensitivity across the range of interest should
be included to aid in the model selection process.

2.2.5 Combining accuracy and sensitivity

The case study made it clear that in the uncertain prior situation, classifier
sensitivity should be considered in conjunction with integrated error over the
prior range. The next step is to develop a criterion that combines these two
performance measures, that is useful for evaluation/model selection in this do-
main. It is conceivable that some problems may have different consequences for
accuracy and sensitivity performances e.g. in some cases a low overall error (i.e.
high AUC) may be more important than a low sensitivity, in which case Sens
could be weighted lower than AUC. In another case, e.g. medical decision
making, a high sensitivity to priors may be more unacceptable than a slightly
lower AUC. Thus, for generality, we introduce a weighting corresponding to
each term, that can be used to penalise either according to the problem (anal-
ogous to misallocation costs). The AUC weight is denoted we, and the Sens
weight is denoted ws. We then define the combined measure, called AccSens,
consisting of the geometric mean of the weighted sum of AUC and Sens, as
defined in Equation 2.4. This is appropriate because both measures are scaled
between 0 and 1. In the case that we and ws are both set to unity (equal
importance), the AccSens error measure also scales between 0 and 1, where a
low score is favourable (the 1√

2
normalises the measure to this range).

AccSens =
1√
2

√

we((1 − AUC)2) + ws(Sens2) (2.4)

For the case study example (assuming unit weighting), the AccSens errors
are 0.244 for model A, and 0.100 for model B, indicating that B is superior.

2.2.6 Experiments

A number of experiments on realistic datasets have been undertaken. The
objective is to select the most competitive model, considering the problem of
varying/uncertain priors, with a known π1 range: 0.1 ≤ π1 ≤ 0.9. Additionally,

25



we assume AUC and Sens are weighted equally. For each model, we investi-
gate an integrated error over the prior range (AUC), the Sens (sensitivity)
across the range (Equation 2.3), the AccSens measure to combine the two,
and finally the equal error rate ε for comparison purposes. In each experiment,
a 10-fold randomised hold-out procedure is performed, effectively resulting in
10 ROC plots upon which the aforementioned statistics are computed. Sig-
nificance between models is assessed using ANOVA (99.5% significance level).
The following datasets are used:

• Road sign: A road sign classification dataset [8] consisting of various
sign and non-sign examples represented by images (793 pixels). All signs
have been grouped together into a single class (381 objects), to be dis-
criminated from non-signs (888 objects).

• Phoneme: This dataset is sourced from the ELENA project [5], in which
the task is to distinguish between oral and nasal sounds, based on five co-
efficients (harmonics) of cochlear spectra. In this problem, the “nasal”
class (3818 objects) is to be discriminated from the “oral” class (1586
objects).

• Sonar and Ionosphere are two well-known datasets from the UCI ma-
chine learning database [7].

Results are presented in Table 2.2. Various representation and classification
algorithms have been used. Preprocessing/representation: sc denotes unit vari-
ance scaling, pca is a principle component mapping followed by the number of
components used, or the fraction of variance retained, and fisher is a Fisher
mapping. Classifiers: knnc denotes the k-nearest neighbour classifier followed
by the number of neighbours considered, parzenc is a Parzen-window classifier,
ldc and qdc are Bayes linear and quadratic classifiers respectively, mogc is a
mixture of Gaussians classifier followed by the number of mixtures per class,
and svc is a support vector classifier, with p denoting a polynomial kernel fol-
lowed by the order, and r denoting a Gaussian kernel, followed by the variance
parameter.

Results show that there are many cases in which incorporation of sensitiv-
ity is important for this problem. In the Road sign case, an example of this
is demonstrated by comparing models 1) and 2). Both show a similar AUC
score, but 2) is much less sensitive to prior variation. The AccSens measure
is sensitive to this difference, showing significance (based on an ANOVA hy-
pothesis test). Another interesting comparison is between 3) and 4), in which
case model 3) has a significantly higher AUC, but 4) has a significantly better
Sens. Both result in the same AccSens score. Models 3), 4), 5), and 6) all
compete from an AccSens perspective (significantly better than 1) and 2)). In
the Phoneme dataset, model 3) competes with 1) and 2) in terms of AUC, but
2) results in a better Sens, and thus results in a superior AccSens score (sig-
nificant). This clearly illustrates the point of the paper once again - without
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Model AUC Sens AccSens ε
Road sign
1) pca8 mogc4,4 0.881(0.026) 0.272(0.039) 0.211(0.029) 0.127(0.022)
2) pca12 mogc2,2 0.886(0.058) 0.180(0.029) 0.154(0.028) 0.093(0.021)
3) sc svc r 16 0.951(0.016) 0.149(0.028) 0.111(0.021) 0.052(0.014)
4) pca17 mogc2,4 0.876(0.100) 0.080(0.026) 0.112(0.056) 0.043(0.017)
5) sc svc r 22 0.952(0.016) 0.128(0.019) 0.100(0.015) 0.049(0.013)
6) pca14 mogc2,4 0.907(0.061) 0.109(0.021) 0.106(0.033) 0.055(0.016)
Phoneme
1) sc knnc3 0.905(0.013) 0.271(0.049) 0.204(0.028) 0.140(0.011)
2) sc knnc1 0.913(0.009) 0.248(0.013) 0.186(0.010) 0.107(0.008)
3) sc parzenc 0.891(0.014) 0.294(0.023) 0.222(0.018) 0.128(0.015)
Sonar
1) sc knnc3 0.887(0.027) 0.310(0.107) 0.235(0.073) 0.147(0.039)
2) sc knnc1 0.892(0.036) 0.280(0.054) 0.213(0.043) 0.122(0.050)
3) pca6 parzenc 0.850(0.050) 0.405(0.069) 0.308(0.046) 0.167(0.054)
4) sc svc p4 0.829(0.056) 0.533(0.141) 0.398(0.100) 0.218(0.066)
Ionosphere
1) pca0.999 ldc 0.855(0.039) 0.385(0.118) 0.292(0.084) 0.145(0.043)
2) fisher qdc 0.855(0.037) 0.337(0.053) 0.260(0.041) 0.140(0.036)
3) fisher mogc3,3 0.834(0.035) 0.365(0.093) 0.285(0.063) 0.160(0.040)
4) sc svc r 1.0 0.853(0.171) 0.545(0.231) 0.434(0.095) 0.128(0.044)

Table 2.2: Results of real experiments, comparing AUC, Sens, AccSens, and
ε (equal-error point) for a number of models per dataset. Standard deviations
are shown.

considering sensitivity, model 3) could have been chosen instead of 1) or 2). In
the Sonar dataset, model 2) appears superior in terms of both AUC and Sens,
and thus there was no benefit of the new measure in this case. Finally, in the
Ionosphere dataset, models 1), 2) and 4) result in similar AUC scores, but 2)
appears less sensitive than 4) (not very significant). Using the AccSens mea-
sure, 1), 2) and 3) are significantly better than 4). As a final general comment
on experimental results, it is apparent that there are cases in which a model
selection based on AUC only is not the optimal procedure. Thus, we argue
that in the prior uncertain/unstable environment, prior sensitivity should also
be considered, using for example the AccSens measure.

2.2.7 Conclusions

In this paper the problem of varying/uncertain priors was investigated. ROC
analysis has become a standard tool in this domain, with the Area Under
the ROC (AUC) a popular model selection criterion. We argued that even
though this integrated measure can be used to compare classifiers independent
of priors, it may also be important to consider how stable a model is over the
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relevant range. A case study and some realistic experiments were presented
that demonstrated how classifiers that compete in terms of AUC may differ
significantly in terms of sensitivity (and vice-versa). It may thus be more
sensible for the given problem to consider both. A simple measure, called
AccSens was proposed, that combines the (weighted) geometric means of AUC
and sensitivity, allowing for model comparison that considers both integrated
accuracy (AUC), and prior sensitivity. A few real experiments demonstrated
that this methodology is superior in some situations. Acknowledgements
This research is/was supported by the Technology Foundation STW, applied
science division of NWO and the technology programme of the Ministry of
Economic Affairs.
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2.3 Precision-Recall Operating characteristic (P-
ROC) curves in imprecise environments

This section has been published as ’Precision-Recall Operating characteris-
tic (P-ROC) curves in imprecise environments’, by T.C.W. Landgrebe, A.P.
Bradley, P. Pacĺık and R.P.W. Duin, in 18th International Conference on Pat-
tern Recognition (ICPR 2006), Hong Kong, China, August 2006
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Abstract

Traditionally, machine learning algorithms have been evaluated in applications
where assumptions can be reliably made about class priors and/or misclassifica-
tion costs. In this paper, we consider the case of imprecise environments, where
little may be known about these factors and they may well vary significantly
when the system is applied. Specifically, the use of precision-recall analysis is
investigated and compared to the more well known performance measures such
as error-rate and the receiver operating characteristic (ROC). We argue that
while ROC analysis is invariant to variations in class priors, this invariance
in fact hides an important factor of the evaluation in imprecise environments.
Therefore, we develop a generalised precision-recall analysis methodology in
which variation due to prior class probabilities is incorporated into a multi-
way analysis of variance (ANOVA). The increased sensitivity and reliability of
this approach is demonstrated in a remote sensing application.

2.3.1 Introduction

In pattern recognition, a common evaluation strategy is to consider classifi-
cation accuracy or its complement error-rate. In many empirical evaluations
it is common to assume that the natural distribution (prior probabilities) of
each class are known and fixed [9]. A further assumption often made is that
the respective misclassification costs are known, allowing for the optimal deci-
sion threshold to be found [4]. Here, performance measures such as error-rate
may be applied to compare different models as appropriate. However, in im-
precise environments, misclassification costs can not be specified exactly, and
class priors may not be reflected by the sampling, or even worse, the priors
may in fact vary. Consequently, optimal threshold selection is ill-defined, and
model selection based on a fixed threshold is unsuitable. For example, in re-
mote sensing [8], the prior probability of various topography classes are not
known a-priori, and may vary geographically. In such a situation, a perfor-
mance measure should allow for an assessment that is either independent of
these imprecise/ill-defined conditions or incorporates this variation.

Receiver Operator Characteristic (ROC) analysis [9], [10], has become a
useful, and well-studied tool for the evaluation of classifiers in this domain.
Measures such as the Area under the ROC (AUC) [10] allow for a performance
evaluation independent of costs and priors by integrating performance over a
range of decision thresholds. This can then be viewed as a performance measure
that is integrated over a region of possible operating points.

In this paper we consider the evaluation of two-class classification prob-
lems where positive classes are to be distinguished from negative classes. In
an imbalanced setting, where the prior probability of the positive class is sig-
nificantly less than the negative class (the ratio of these being defined as the
skew or λ), accuracy is inadequate as a performance measure since it becomes
biased towards the majority class [13]. That is, as the skew increases, accuracy
tends towards majority class performance, effectively ignoring the recognition
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capability with respect to the minority class. In these situations, other perfor-
mance measures such as precision (in conjunction with recall) may be more
appropriate as they remain sensitive to the performance on each class. Figure
2.4 compares accuracy and precision as a function of skew for an example
(a linear discriminant trained on the Highleyman distribution [5]), illustrating
that as the skew increases, accuracy tends towards TNr (majority class per-
formance), effectively ignoring the recognition capability with respect to the
minority class.
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Figure 2.4: Comparing accuracy and precision for an example, as a function of
skew (λ), illustrating the tendency of accuracy to approach the majority class
performance (TNr) with increasing skew.

We apply a ROC analysis methodology to the case of precision-recall
curves. However, we show that because precision is dependent upon the de-
gree of skewing, an additional dimension (the skew) must be introduced into
the analysis. This effectively results in a 3-dimensional ROC surface. A simi-
lar approach was described in [3], where the relationships between a number of
performance evaluation criteria were derived with respect to the ROC curve.
In addition, we have previously presented an analysis specific to imbalanced
problems, involving precision operating characteristics for a number of se-
lected operating points and priors [7]. Here however, we generalise this work
so that the evaluation considers the entire operating surface, and integrated
performance measures are then derived in a similar way to conventional ROC
analysis. The performance of a number of models is statistically compared
using a hypothesis-testing framework involving a 3-way analysis of variance
(ANOVA) between classification thresholds, priors and models. We demon-
strate the approach via a remote sensing application.
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2.3.2 Formalisation

Consider a two-class classification problem between a positive and a negative
class, ωp and ωn respectively, with priors πp and πn. An evaluation of a trained
model is based on the outcomes following the application of a test set. In the
2-class case this results in a confusion matrix where test objects labelled by the
trained classifier as positive fall into two categories: true positives TP and false
positives FP . Correspondingly, true positive and false positive rates TPr and
FPr, are computed by normalising TP and FP by the total number of positive
(Np) and negative (Nn) objects respectively, where N objects are involved in
the test (N = Np + Nn). Data samples labelled by the classifier as negative
also fall in two categories, true negatives TN and false negatives FN . Also
note that TNr = 1 − FPr, and FNr = 1 − TPr.

Although a confusion matrix shows all of the information about a classi-
fier’s performance, it is usual to extract measures from this matrix to illustrate
specific aspects of the performance. For example:

1. Classification accuracy, or its complement error-rate (error), defined as
error = FN+FP

N
= πpFNr + πnFPr. This estimates the overall proba-

bility of correctly labelling a test sample, but combines results for both
classes in proportion to the class priors;

2. Recall = TPr. This indicates the probability of correctly detecting a posi-
tive test sample and is independent of class priors. TPr is often utilised in
medical applications where it is referred to as test sensitivity. In medical
applications the complement to sensitivity is also used, namely Speci-
ficity (TNr). Specificity indicates the probability of correctly detecting
a negative test sample and is also invariant of class priors;

3. Precision = TP
TP+FP

. This indicates the fraction of the positives detected
that are actually correct. Precision effectively estimates an overall poste-
rior probability and is therefore a meaningful performance measure when
detecting rare events. Precision combines results from both positive and
negative samples and so is class prior dependent. It is also often referred
to as purity, or in medical applications as positive predictive value (PPV).
Note: the complement to PPV is negative predictive value (NPV);

4. Posfrac = TP+FP
N

. This measure is useful in applications requiring
second-stage manual processing of the positive outcomes of the classifier
(such as medical screening tests), and estimates the reduction in manual
effort provided by the classification model.

These measures highlight different aspects of a model’s classification per-
formance and so selecting the most appropriate performance measure is clearly
application dependent. In medical applications for example, sensitivity (TPr)
and specificity (TNr) are well understood, can be related to the prior class prob-
abilities, and so are well accepted by the end-users. Therefore, these measures
are used almost exclusively in these applications. However, in applications such
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as database image retrieval and oil-spill detection from satellite radar images
precision-recall analysis is more appropriate [6]. In these applications recall
(TPr) only really makes sense when combined with precision, as the prior class
probabilities are unknown or highly variable. In these situations, end-users re-
late to precision-recall curves as they indicate how many true positives are
likely to be found in a typical search.

It is also worth noting that in a similar way in which error is used as a
scalar performance measure in well-defined pattern recognition problems, scalar
measures such as the F−measure [11] are used in the well-defined precision-
recall case (the geometric mean of precision and recall, in which the two
measures are weighted equally), defined as 2TPr

TPr+FPr+1 .

2.3.3 ROC analysis

The performance measures described before all relate to a single decision thresh-
old, or operating point, for a classification model. In well defined environments,
where class priors and misclassification costs are known, evaluation at a sin-
gle (perhaps optimal) operating point is appropriate. However, in imprecise
environments or when comparing models operating at different points, ROC
analysis is more appropriate.

Given a two class problem (ωp vs ωn), a trained density-based classifier
and a test set, the ROC curve is computed as follows4: the trained classifier
is applied to the test set, and the aposteriori probability is estimated for each
data sample. Then, a set of m thresholds (θ = θ1, θ2, . . . , θm) are applied
to this probability estimate and corresponding data labellings are generated.
This can be conceptualised as shifting the position of the decision boundary of
a classifier across all possibilities. The confusion matrix is computed between
each estimated set of labels and the true test-set labelling. The ROC curve
now plots the TPr as a function of the FPr. This effectively results in a
representation of all possible classification accuracy values for a given classifier,
and provided the train and test data are representative, the same ROC results
irrespective of priors/costs.

It is well known that evaluation measures such as accuracy vary with
prior/cost [10]. Thus a classifier trained to, for example, the Bayes operat-
ing point, would report a different accuracy as the priors vary. In order to
maintain the Bayes error-rate, the decision threshold would have to be ad-
justed according to the variation in prior/cost. In cases where costs/priors
are not defined well, there is a need to inspect performance for a range of dif-
ferent operating points and/or priors. If all operating points are used in the
evaluation, the overall ROC curve will be invariant to priors [9]. Integrating
performance over the whole ROC curve results in the Area Under the ROC
curve (AUC) [1] [10], which is a scalar performance measure ranging from 0.5
(random classification) to 1.0 (ideal). It is also often more practical to compute

4The true class-conditional distributions are typically not known, so the method we use
to derive the ROC is an estimate of the true ROC.
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the AUC over a limited range to suit the given problem.

AUC(θ) =
∫

TPr(θ)dFPr(θ) (2.5)

This can be approximated non-parametrically via trapezoidal integration:

AUC(θ) ≈ ∑m

i=2 ∆FPrTPr(θi) + 1
2∆TPr∆FPr

∆TPr = TPr(θi) − TPr(θi−1)
∆FPr = FPr(θi) − FPr(θi−1)

(2.6)

The point to note here is that while the ROC curve, and therefore AUC, is
invariant to priors/costs, in imprecise environments we are actually interested
in the variability in performance as the priors vary (we want to select the
best performing model across an expected range of priors). Therefore, the
traditional ROC analysis tools are not appropriate and require extension to
imprecise environments.

2.3.4 Precision-recall analysis

Whereas ROC analysis represents TPr(θ) against FPr(θ), the precision-recall
operating characteristics represent TPr(θ) against precision(θ). As discussed
in [7], we showed that precision is in fact dependent on the priors, i.e., a
new operating characteristic is obtained if the priors vary, as opposed to the
ROC where thresholds/operating points and priors are synonymous. The con-
sequence is that the operating characteristic constitutes a surface of operating
points, with each prior resulting in a slice of this surface. The precision defi-
nition can be written as:

precision(θ) =
TPr(θ)

TPr(θ) + λFPr(θ)
(2.7)

This allows the performances to be obtained analytically, given an ROC (de-
rived as in Equation 2.6). In Figure 2.5, an example of receiver (TPr vs FPr),
and precision-recall (TPr vs precision) operating characteristic curves are
shown for an example classifier and dataset. The precision characteristics are
shown for three different prior settings (πp = 0.5, 0.1, and 0.01) to demon-
strate the prior dependence from a balanced to an imbalanced situation. It is
clear that the precision characteristic varies significantly with λ.

The AUC is computed by integrating across all classification thresholds θ.
Similarly, the precision-recall characteristic can be integrated across both clas-
sification thresholds θ and priors λ, thus obtaining an integrated performance
measure, called AUPREC. This can again be derived using the trapezoidal
approximation, resulting in Equation 2.8. With this formulation, the original
ROC can be used, together with the given skew, to analytically compute the
new performance measures.

AUPREC(λ) =
∫

TPr(θ)dprecision(θ, λ)

≈ 1
2

∑m

i=2 ∆TPr[
TPr(θi)

TPr(θi)+λFPr(θi)
+ TPr(θi−1)

TPr(θi−1)+λ(FPrθi−1)
]

(2.8)
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Figure 2.5: Demonstrating an ROC curve (left), and precision-recall charac-
teristics (right).

The AUPREC results in a performance score for a single skew setting. How-
ever, we wish to estimate performance in problems in which the skew/costs
are unknown, or only a range can be specified. In this case we wish to eval-
uate precision across a range of priors. We therefore define an integrated
precision measure called IAUPREC. For a range of skew values (or priors)
λ = {λlo, λhi}, we obtain the IAUPREC as shown in Equation 2.9.

IAUPREC(λlo, λhi) =

∫ λhi

λlo

AUPREC(λ)dλ (2.9)

2.3.5 Hypothesis testing by 3-way ANOVA

In this paper, we use analysis of variance (ANOVA) to test the null hypothesis
that a number of models have, on the average, the same performance. If there is
evidence to reject this hypothesis then we can look at the alternative hypothesis
that one classifier has better performance than the others. ANOVA is simply
an extension of Hypothesis tests of means (such as the t and F tests) to the case
of multiple groups (in our case, > 2 classifiers) [12]. This avoids the necessity of
performing multiple hypothesis tests for each pair of classifiers as we effectively
test all hypotheses simultaneously.

ANOVA provides a method for splitting the variation in the data between
multiple components (e.g., experimental error, classifier model, cross validation
fold and prior probability). If the null hypothesis is true, then all components
provide an independent estimate of the experimental error (that is, no compo-
nents have a significant effect on performance). Clearly we expect that some of
these components will affect performance and although we may not interested
in them specifically, we use them as blocking factors to improve test sensitivity.
Conventionally in ANOVA an F-test is used, however other non-parametric
tests can also be used (e.g., rank statistics are used in the Friedman test).
In this paper, we use a conventional F-test, and we specifically compare the
efficacy of a 2-way ANOVA, with IAUPREC as the performance measure, to
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a 3-way ANOVA, with AUPREC as the performance measure, and πp as a
blocking factor. All tests are performed at the p = 0.005 level of significance,
which gives a 1 in 200 probability of rejecting the null hypothesis by chance.

2.3.6 Experiments

In this section a number of experiments are undertaken in a real problem do-
main to demonstrate the efficacy of the proposed precision-recall analysis. A
remote sensing application is targeted, which we call Satellite5. As discussed
in [8], this problem is appropriate because the prior probabilities of the various
classes vary geographically. The data consists of 6435 multi-spectral values
of a satellite image, with 36 dimensions (4 spectral bands in a 9 pixel neigh-
bourhood). Six classes have been identified to characterise the topography, of
which the second and fourth classes (cotton crop and damp grey soil) are con-
sidered ωp (1329 examples), and the remaining ones ωn (5106 examples). The
goal of the experiments is to select a classifier that remains relatively robust to
variations in the priors, measured in this case by precision.

Three classification models are compared, referred to as A, B, and C re-
spectively, where the first uses a principal-component analysis representation
(3 components), followed by a mixture of Gaussians classifier (3 mixtures per
class), and the second two use the dissimilarity approach [2], using 15 and 50
randomly selected prototypes respectively, and a minimum-distance classifier.
A 20-fold randomised hold-out method is used, in which 80% of the data is
used in training, and the remainder for testing (cross-validation is not recom-
mended for this dataset (image data), but we use it only for illustration of the
principles).In comparing the models, we consider 3 measures:

• AUPREC for πp = 0.5, 0.1, 0.01, indicating the integrated precision for
various skew values.

• IAUPREC([0.05, 0.20]), indicating the integrated precision for a range
of priors 0.05 ≤ πp ≤ 0.20. This score is normalised by the area over the
range.

• AUC, for reference purposes.

Results (with standard deviation) for the various measures are shown in Table
2.3. Initially, a general observation can be made that the absolute measures
indicate that the performance of C is superior to both A and B, and that B is
superior to A. We note, however, that there is a large variance in these results,
especially of B and C, which makes a firm conclusion hard to draw.

Considering the IAUPREC results, a 2-way ANOVA indicates that only
algorithm C is statistically better than A and B (with an F -value of 21.04),
and that there is no significant difference between A and B. However, the 3-
way ANOVA shows a significance between all 3 models (F -value of 483.85),
with C being superior to B, and B being superior to A. This result indicates

5Obtain from ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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Table 2.3: Summary of experimental results.
Model (A) (B) (C)
AUPREC(0.5) 0.554(0.014) 0.775(0.108) 0.803(0.084)
AUPREC(0.1) 0.554(0.013) 0.629(0.186) 0.781(0.082)
AUPREC(0.01) 0.552(0.013) 0.487(0.245) 0.734(0.075)
IAUPREC 0.554(0.013) 0.642(0.177) 0.783(0.082)
AUC 0.943(0.005) 0.825(0.046) 0.905(0.019)

that the 3-way ANOVA is more sensitive to model differences since it directly
incorporates the variance due to the priors.

Performing a 3-way ANOVA on the AUPREC measures for the 3 different
prior values shows that model C is indeed the best, significantly better than
both B and A. Similarly, B is significantly better than A over all 3 the priors.
Another observation that can be made for the three AUPREC measures is
that models A and C remain very stable with respect to a change in the skew,
whereas model B is sensitive to skew. This is a very important result, since for a
balanced case, models B and C result in similar performance (AUPREC scores
of 0.775(0.108) and 0.803(0.084) respectively). For the case in which πp = 0.01,
the AUPREC performance for B diminishes to 0.487(0.245), whereas C re-
mains relatively stable at 0.734(0.075). The IAUPREC score indicates a lower
score over 0.05 ≤ πp ≤ 0.20, corroborating the fact that B is sensitive to skew.
Model A is extremely insensitive to skew over the range, but because of the
high bias, it would probably not be considered. These observations point out
the importance of the precision analysis proposed here for evaluating imbal-
anced, imprecise problems. The ANOVA analysis also indicated that there
is a significant difference between the AUPREC(0.5) and AUPREC(0.01)
measures, but not between the AUPREC(0.5) and AUPREC(0.1), and the
AUPREC(0.1) and AUPREC(0.01) measures. These experiments demon-
strate practical application of the precision-recall analysis, and and also the
importance of incorporating the priors as an additional source of variance in
hypothesis testing.

2.3.7 Conclusions

In this paper we have presented an extension of the traditional ROC analysis
methodology in which we form a 3-dimensional precision-recall ROC surface.
Here the class priors represent the third dimension as the precision measure is
dependent on the class priors. This evaluation methodology was demonstrated
on a remote sensing application where priors are known to vary over a fixed
range. Models were compared using a 3-way ANOVA test in order to incorpo-
rate the priors as an additional source of variation. Experiments showed that
the incorporation of the priors results in a more sensitive hypothesis test than
the 2-way ANOVA test. This demonstrated the efficacy of this approach in
highlighting classifiers that are stable over variations in the priors, and so are
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suitable for application in imprecise environments.
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Chapter 3

Extending ROC analysis to
multiclass problems
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3.1 Overview

Since 2-class classification problems are only a subset of the plethora of prob-
lems that may be encountered in pattern recognition, generalising the ROC
confers the respective benefits to a much wider range of problems. Active re-
search in this area has only begun quite recently, lacking both a good formalism
of the multiclass generalisation (this chapter), and being severely restricted by
computational constraints (next chapter).

In this chapter, multiclass ROC surfaces are generated, and applied to two
popular ROC analyses. The first ROC generalisation considers the extension
of ROC-based Neyman-Pearson optimisation [1]. In the 2-class case, a trained
classifier has 2 possible errors, namely the false-negative and false-positive rates.
With Neyman-Pearson optimisation, the ROC is used to fix one of the errors,
and the model achieving the minimum error on the corresponding error is
chosen. In the C-class case, there are C2 − C different errors (and C perfor-
mances). A simple algorithm is proposed for fixing any of the classifier outputs,
proceeding to minimise the remaining outputs based on the feasible region on
the ROC hypersurface. A solution is only guaranteed if one output is spec-
ified, but the approach may nevertheless be practically useful in some cases
where the system is able to achieve multiple specifications. The second ROC
tool generalised to the multiclass case is an extension of the well known Area
Under the ROC (AUC) measure. The approach involves integrating the ROC
hypersurface, resulting in a volume that indicates a classifier’s overall perfor-
mance (over all operating points/conditions). Similar to the 2-class case, poor
classifiers result in lower scores, whereas good classifiers result in high scores.
In this contribution, a simplified approach is proposed which can be applied to
any classifier. The approach considers only inter-class performance, resulting in
C-dimensional volumes. Importantly, the bounds between random and perfect
classification as a function of C are computed.

Future work in this area includes the full extension of the volume under the
ROC, but a warning has been pointed out in [2]. The authors show that the full
extension may not be a useful measure because, as C increases, the measure
becomes less sensitive to the difference between a poor and good classifier.
The simplified approach proposed in this chapter does not suffer from this
limitation. Nevertheless, work in [4] has taken a number of steps in performing
this task.

Other research in this area which could be important for the future is the
efficient generation of the classifier operating weights, used to compute the
multiclass ROC. The approach in the 2-class case can be performed optimally
for a given dataset, using actual samples to generate as few as possible (and as
many as necessary) weights (see [3]). This approach is valid because classifier
outputs are monotonically increasing. However, this is not the case for multi-
class problems. The approach taken in this paper has been to generate a grid
of weights (logarithmically), which ensure very low to very high weightings.
However, different classifiers result in different output scalings. The manner in
which the output is scaled could impact the effectiveness/efficiency of a partic-
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ular weighting scheme. Research on this topic should consider various classifier
types, and possible re-scaling (non-linearly) of outputs. This research could
lead to much more efficient multiclass ROC calculations.

Another popular analysis used in the 2-class case via ROC analysis is cost-
sensitive optimisation. The extension is however natural, and trivial, given an
ROC hypersurface, essentially involving consideration of the overall risk/loss
at each operating point.
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3.2 On Neyman-Pearson optimisation for mul-
ticlass classifiers

This section has been published as ’On Neyman-Pearson optimisation for mul-
ticlass classifiers’, by T.C.W. Landgrebe and R.P.W. Duin, in Sixteenth Annual
Symposium of the Pattern Recognition Assoc. of South Africa, November 2005
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Abstract

Typically two procedures are used in optimising classifiers. The first is cost-
sensitive optimisation, in which given priors and costs, the optimal classifier
weights/thresholds are specified corresponding to minimum loss, followed by
model comparison. This procedure extends naturally to the multiclass case.
The second is Neyman-Pearson optimisation, in which costs may not be cer-
tain, and the problem involves specification of one of the class errors, which
subsequently fixes the corresponding error (in the two class case), followed by
comparisons between different models. This optimisation is well understood in
the two-class case, but less so in the multiclass case. In this paper we study
the extension of Neyman-Pearson optimisation to the multiclass case, involving
specifying various classification errors, and minimising the others. It is shown
empirically that the optimisation can indeed be useful for the multiclass case,
but obtaining a viable solution is only guaranteed if a single error is specified.
Specifying more than one error may result in a solution depending on the data
and classifier, which is determined via a multiclass ROC analysis framework.

3.2.1 Introduction

In statistical pattern recognition, a typical design procedure involves gathering
representative data for each class, and estimating model parameters to derive a
discrimination function (e.g. density estimation, support vector classification),
as well as a suitable representation (e.g. feature extraction, feature selection
[1]). Once a suitable model is found, the next step is to optimise the various
classification weights/thresholds. This optimisation is defined by the nature of
the problem at hand. In some situations, the optimisation can be posed as a
loss-minimisation problem. In this case classification costs are known, and the
respective loss can be computed for different classification weights by summing
confusion matrix errors, weighted by the respective costs and priors. This is
commonly known as cost-sensitive optimisation [1], [7].

In other situations, referring specifically to the 2-class case, precise costs
may be unknown, and a different optimisation strategy needs to be taken. Two
types of classification errors occur in the 2-class case, namely the false negative
rate (FNr), consisting of class 1 errors misclassified as class 2, and the false
positive rate (FPr) in the opposite case. In this situation, it is often desirable
to specify a fixed FNr or FPr, and select a model with the corresponding low-
est FPr or FNr. This is referred to as Neyman-Pearson optimisation1. The
optimisation is in selecting the best model. A well-known classifier analysis ap-
proach that is useful in this context is receiver operator characteristic (ROC)
analysis [6], consisting of a graph representing all possible classification condi-
tions as the classification weights are varied. It is important to note that in
the 2-class case, any FNr or FPr specification can be achieved, and a corre-
sponding weight obtained. This Neyman-Pearson design is useful in a number

1A more fundamental formalisation and derivation of Neyman-Pearson theory in a detec-
tion context can be found in [4], with application in a classification sense in [1].
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of areas such as detection problems, and medical decision making.

In the multiclass case, several possible classification outputs result, with
C2 − C interclass errors, and C intraclass correct classifications, in a C-class
problem. In this situation, it has been shown that both cost-sensitive opti-
misation and Neyman-Pearson optimisation extend theoretically [2], involving
the use of multiclass ROC hypersurfaces. In the case of Neyman-Pearson op-
timisation, it has thus been shown that specifying a particular classification
error in a C-class problem is achievable, with the subsequent objective to min-
imise all other C2 −C classification errors. However, a practical situation may
demand the specification of a number of classification errors, and subsequent
minimisation of remaining classification errors. This type of optimisation could
be applicable to areas such as medical decision making involving multiple dis-
eases, or remote sensing, in which the objective is to identify various types of
terrain, and minimise the false positive rates with respect to the desired classes
of all other terrain types. This type of analysis has not yet (to our knowledge)
been studied. In this paper we formalise multiclass ROC analysis, allowing for
an implementation of a multiclass Neyman-Pearson optimisation procedure.
Extendibility and limitations are identified, primarily discussing the fact that
a feasible point on the ROC hypersurface is only guaranteed if just one inter-
class classification error is specified. However, some experiments show that in
practical situations, specifying a number of classification outputs does result
in a feasible solution. This is a very interesting result, which may have a large
potential for Neyman-Pearson type problems in the multiclass case.

The paper is structured as follows: Section 3.2.2 formalises multiclass clas-
sification, allowing for derivation of the various inter- and intra-class outputs
inherent to multiclass classifiers. The foundation of the Neyman-Pearson op-
timisation is a multiclass ROC framework, defined in Section 3.2.3. Neyman-
Pearson optimisation using ROC analysis is then discussed in Section 3.2.4,
with some experiments to demonstrate the optimisation in realistic situations
in Section 3.2.5. A final discussion and conclusions are given in Section 3.2.6.

3.2.2 Formalisation of multiclass classification

Consider a multiclass problem with C classes, ω1, ω2, . . . , ωC , with input data
x, and d dimensions. The objective of a multiclass classifier f(x) is to discrim-
inate between the various classes as well as possible, according to the require-
ments of the problem. The classifier is usually trained based on independent
training data. Many strategies are possible, but the outcome is typically a
vector of continuous values, with higher values supporting higher confidence
(e.g. probability, distance to a decision boundary, support vector etc.) in par-
ticular classes. For class i, the classifier output is written as f(ωi|x). In the
density-based case, this would be the posterior estimate for the respective class.
Irrespective of the classification type, the class assignment is typically:

argmaxC
i=1f(ωi|x) (3.1)
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For example in Figure 3.1, a scatterplot is shown of a 5-class synthetic example,
together with the multiclass decision boundary of a Bayes quadratic classifier.
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Figure 3.1: Scatter plots of a synthetic 5-class problem, illustrating the decision
boundaries (degrees of freedom) for one operating point.

An observation that can be made is that there are a number of Degrees
Of Freedom (DOF) that can be used to adjust the classifier (analogous to
thresholds). In fact, there are C − 1 degrees of freedom in a C−class problem.
Thus in the 2-class case, there is only one DOF, and in the 10-class case, there
are 9 DOF to optimise the classifier.

When evaluating a classifier, both intraclass outputs (correct classifica-
tions), and interclass classifications (between-class errors) are of interest. These
are specified by a confusion matrix CM , with a size C2. Thus the number of er-
rors increases quadratically with increasing C. The CM is typically constructed
by applying an independent test set to a trained classifier. In the 2-class case,
only 2 interclass errors occur, namely the familiar False Negative rate (FNr)
and False Positive rate (FPr), with respect to one of the classes. ROC analysis
involves inspecting the interplay between these two errors as a function of the
single weight/threshold. The CM is defined in Table 3.1. The output between
class i and j is denoted cmi,j . CM outputs are usually normalised by the
absolute number of objects Ni per class ωi, N = [N1, N2, . . . , NC ]T , resulting
in the normalised confusion matrix Ξ, where each element is now referenced
as ξi,j , and ξi,j =

cmi,j

N(i) . We now consider the computation of each element

in Ξ via an example. Consider the class-conditional distributions in Figure
3.2, consisting of five Gaussian-distributed classes ω1, ω2, . . . , ω5, with means
occurring at µ1 = −6, µ2 = −3, µ3 = 0, µ4 = 6, µ5 = 9, and unit variance.
The respective priors are assumed to be equal. The class-conditional density
of class i is denoted p(x|ωi), and the prior p(ωi).
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estimated
ω1 ω2 . . . ωC

ω1 cm1,1 cm1,2 . . . cm1,C N1

true
ω2 cm2,1 cm2,2 . . . cm2,C N2

. . .
ωC cmC,1 cmC,2 . . . cmC,C NC

Table 3.1: A multi-class confusion matrix.
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Figure 3.2: Probability density functions for the 5-class example with known
distributions.

This example results in a 5 × 5 element confusion matrix. In order to
compute each confusion ξi,j (the percentage of of ωi misclassified as ωj), the
following integration is performed:

ξi,j(x) = p(ωi)

∫

p(x|ωi)Iij(x)dx (3.2)

The indicator function Iij(x) specifies the relevant domain:

Iij(x) =































1 if p(ωj |x) > p(ωk|x) ∀k,

k 6= j, i 6= j

1 if p(ωi|x) > p(ωk|x) ∀k,

k 6= i, i = j

0 otherwise

(3.3)

Equation 3.2 allows any confusion matrix output to be computed, generalised
for both diagonal elements (performances), and off-diagonal elements (errors).

52



3.2.3 Multiclass ROC analysis

Referring again to Figure 3.1, the plot shows only a single operating point, cor-
responding to a single weight setting. In fact, any combination of weightings
results in a different operating point (the challenge in multiclass optimisation
is in understanding the relation between a weight modification and the cor-
responding alteration of the confusion matrix). Application of this weighting
Φ involves modification of Equation 3.1, in which the class assignment is now
based on each output f(ωi|x), multiplied by a corresponding weight, denoted
φi, resulting in:

argmaxC
i=1φif(ωi|x) (3.4)

The concept of classifier optimisation can be formalised as the process by which
the optimal set of weights is found to suit the problem at hand. ROC analysis
involves generation of a hypersurface consisting of all possible combinations of
Φ, where Φ = [φ1, φ2, . . . , φC−1, 1 − φ1]. A multiclass ROC consists of C2 − C
dimensions (diagonal elements are superfluous), which can be constructed using
a similar equation to 3.2. In this case, each output between class i and j is
weighted by φi as follows:

ξi,j(x|Φ) = φip(ωi)

∫

p(x|ωi)Iij(x|Φ)dx (3.5)

The indicator function Iij(x|Φ) is as in 3.3, except each posterior is multiplied
by the corresponding class weight. Note that there are only C −1 weights, and
thus φC = 1 − φ1.

Consider the 2-class case between ω1, and ω2, in which a weighting φ is
applied to obtain the most appropriate threshold. In this case, the classifier
output can be written as:

p(x|φ) = [φp(ω1|x) (1 − φ)p(ω2|x)] (3.6)

For 0 ≤ φ ≤ 1, ξ1,2 and ξ2,1 vary across all possible combinations, resulting in
the ROC plot. In the multiclass case (C > 2), Equation 3.5 can be used to
construct a multiclass ROC, resulting in a C2 − C dimensional surface. For
example, in the 5-class Gaussian example, a 4-D grid of weights was computed
(C − 1 DOF), and a step resolution of 30 was chosen, resulting in 8.1e5 weight
combinations. Application of Equation 3.5 resulted in a 20 dimensional surface.
Even though this surface cannot be visualised, for demonstration purposes,
Figure 3.3 shows the ROC between the dimensions ξ1,2, ξ2,1, and ξ2,3.

3.2.4 Neyman-Pearson optimisation

Classifier optimisation in a Bayesian framework involves estimates (or given)
class conditional densities (pdf’s), denoted f(x|ωi),∀i, prior estimates πi,∀i,
and misclassification costs corresponding to each off-diagonal output of the
confusion matrix CM , denoted cij , i 6= j. The optimisation involves deriving
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Figure 3.3: Plotting ξ1,2, ξ2,1, and ξ2,3 for the example in Figure 3.2 as a
function of Φ.

the optimal weight vector Φ such that the overall system loss is minimised,
where the loss is computed via:

L =

C
∑

i=1

φiπi

Ni

(

C
∑

j=1,i6=j

cmi,jcij) (3.7)

In some problems (such as detection problems and medical decision making),
respective costs cannot be defined, and the cost-sensitive optimisation proce-
dure cannot be taken. However, it is assumed that the individual classes can be
modelled in some way, e.g. pdf estimates f(x|ωi),∀i. In the 2-class case, this
implies that an ROC curve can be estimated between ξ1,2 and ξ2,1 (referring
to the previous example), the false negative, and false positive rates respec-
tively, written as a function of the weight φ as (with population priors πi ∀i
estimated):

ξ1,2(x|φ) = φπ1

∫

f(x|ω1)I12(x|φ)dx
ξ2,1(x|φ) = φπ2

∫

f(x|ω2)I21(x|φ)dx
(3.8)

In Neyman-Pearson optimisation, either ξ1,2 or ξ2,1 is fixed at a specified value
α. The optimisation then involves computing a value for the weighting φ such
that the specification holds, and the dependent variable is obtained. In the
2-class case, optimisation occurs only across models. This is illustrated on the
ROC plot in Figure 3.4 (plotting the false negative rate against false positive
rate). In this example, ξ1,2 is fixed at 10.00%. The ROC curve is a useful
tool in this case, immediately resulting in the corresponding ξ2,1, which is
approximately 26%. The φ resulting in this point can then be used as the
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optimal Neyman-Pearson threshold (Note that each point on the ROC plot
corresponds to some φ value, and in the multiclass ROC, each point on the
ROC hypersurface corresponds to a C dimensional weight vector Φ).
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Figure 3.4: ROC plot example illustrating Neyman-Pearson design. In this
case the false negative rate has been specified at 10.00%.

The Neyman-Pearson optimisation is well studied and extensively used in
2-class problems, but this is not the case in the multiclass context. A practical
implementation involves the use of multiclass ROC analysis which is also a
relatively new research area (see some recent works in [3],[5], [2]). This was
also formalised in Section 3.2.3. Recently, the theoretical extension of Neyman-
Pearson optimisation to multiclass optimisation was proven in [2], with appli-
cability to multiple-diagnosis in medical decision making. This showed that by
fixing a single classification error in the confusion matrix, a solution is guaran-
teed. Thus the first step involves specifying some classification error, and sub-
sequently to return a Φ corresponding to a minimisation of all other C2−C−1
classification errors in Ξ. Section 3.2.5 demonstrates this optimisation in a few
experiments.

In this paper, we also wish to generalise the optimisation procedure such
that multiple errors in Ξ can be specified, followed by a subsequent minimi-
sation of remaining errors. It is obvious that when specifying more than one
error, a solution is not guaranteed (multiple dependencies). However, we argue
that in many practical situations, it may still be feasible to specify a number of
outputs, and obtain a solution. The usefulness is, however, data and problem
dependent. Next, an algorithm is developed that is generalised in the sense
that the original Neyman-Pearson optimisation holds (specifying one error),
and can also be used to specify multiple errors.
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Algorithm 1: Multiclass Neyman-Pearson optimisation
Inputs: ROC resolution step, C classes, trained
classifier D, error specification matrix Me, specification
index matrix MI , independent test set xts

Outputs: Optimal weights Φopt

1) Construct weight matrix Φ, with resolution step

2) Compute C × C multiclass ROC E, using Equation 3.5, with
step resolution, applying xts to D, for all Φ
3) m = 0
For each row of E i, and column j (i 6= j):
If (MI(i, j) = 1 and Me(i, j) > 0)

ind(m) = E(i, j, k) ≤ Me(i, j) ∀k )
Increment m

End
4) Find hypersurface regions that fulfil Me specifications:

indcom = ind(1) ∩ ind(2) ∩ . . . ind(m)

If size of indcom = 0, no solution - specifications not met
5) Minimise all other non-specified errors
m = 0
For each row i, and column j of E (i 6= j):
If (MI(i, j) = 0)

err(m) =
P

(
PC

i=1

PC
j=1(E(i, j, k) ∀k) i 6= j)

Increment m

End
Index corresponding to minimum error:
indmin = index(min(err(m))), ∀m

Final classifier weights: Φopt = Φ(indmin)
Return: Φopt, or no solution

The proposed optimisation algorithm is implemented by the introduction of
two C×C matrices, namely MI and Me (many other implementations are pos-
sible). The elements of these correspond to confusion matrix outputs, allowing
for a direct input of required specifications. The MI matrix is a binary indica-
tor matrix specifying which errors are to be specified. A 1 at position MI(i, j)
indicates that ξi,j is to be specified, and a 0 at position MI(k, l) indicates that
ξk,l is to be minimised. Working in conjunction with MI is Me, a matrix used
to specify the respective errors as specified in MI . For example, requiring an
error rate lower or equal to 5.00% for ξ3,1 would require a MI(3, 1) = 1 and
Me(3, 1) = 0.05.

Algorithm 1 presents a practical procedure that can be used to perform a
multiclass Neyman-Pearson optimisation2.

In step 2, the multi-class ROC is computed, denoted E using a matrix of
weights with C − 1 columns, as per step 1 (we assume dense sampling). It
is convenient to store this matrix in a similar form to the confusion matrix,
resulting in a C × C × stepC−1 dimensional matrix. The diagonal elements
are ignored, and need not be computed. In step 3, all ROC dimensions corre-
sponding to error specifications are inspected, and the portion of the surface
(in that dimension m) fulfilling the specification is stored. The range corre-
sponding to dimension m is stored in ind(m). Note that the leq operator is

2This algorithm can easily be adapted for the case in which the distributions are known.
We focus here on the practical situation in which the true distributions are unknown, and
data samples are assumed to originate from the true distribution.
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used here since the ROC is discretised. The next step 4 involves intersecting
each of these ranges, and identifying common indices (denoted indcom). If no
intersection occurs, this implies that the specifications cannot be met (no point
on the ROC hypersurface fulfils specifications). If a solution does exist, step 5
involves minimisation of all non-specified errors. This is achieved by summing
all non-specified errors for each Φ weighting corresponding to indices indcom.
The weighting resulting in the lowest error sum is then chosen as Φopt.

3.2.5 Experiments

To demonstrate the optimisation in a practical situation, the Satellite dataset
is considered3. This dataset consists of 6435 multi-spectral values of a satellite
image, with 36 dimensions (4 spectral bands in a 9 pixel neighbourhood). Six
classes have been identified to characterise the topography. These consist of red
soil, cotton crop, grey soil, damp grey soil, soil with vegetable stubble, and very
damp grey soil classes. In experiments, all the grey soil classes are grouped
together, resulting in a 4 class problem. As per dataset recommendations, the
first 4435 spectra are used as a training set, and the remaining data as the test
set.

The first experiment involves training a base classifier on the data. The first
17 principal components are used to represent the spectra, and a Bayes linear
discriminant classifier is then trained on this representation. The following
normalised confusion results following application of the independent test set:

| red cotton veget grey
------|--------------------------------------
red | 0.9491 0.0000 0.0081 0.0428
cotton| 0.0047 0.8826 0.0986 0.0141
veget | 0.0553 0.0046 0.7051 0.2350
grey | 0.0009 0.0000 0.0037 0.9954

Following classical Neyman Pearson, we now experiment by only specifying
single classification errors, and minimising all others. Two experiments are
demonstrated. In the first experiment, εveget,grey = 8.00%, and in the sec-
ond, εcotton,veget = 5.00%, resulting in the following two normalised confusion
matrices:

| red cotton veget grey
------|--------------------------------------
red | 0.9572 0.0000 0.0204 0.0224
cotton| 0.0047 0.8826 0.1127 0.0000
veget | 0.0461 0.0046 0.8756 0.0737
grey | 0.0009 0.0000 0.0454 0.9537

| red cotton veget grey
------|--------------------------------------
red | 0.9552 0.0000 0.0000 0.0448
cotton| 0.0047 0.9061 0.0469 0.0423
veget | 0.0599 0.0046 0.4516 0.4839
grey | 0.0009 0.0000 0.0009 0.9981

3UCI repository of machine learning databases, ftp://ftp.ics.uci.edu/pub/machine-
learning-databasesx.
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As expected, these result in a solution. Comparing with the original nor-
malised confusion matrix, it can clearly be seen that this new operating point
has resulted in different compromises between the various classes (which may or
may not be acceptable). In the next experiments, we attempt to specify a num-
ber of interclass errors, and minimise the remaining ones. Three experiments
are undertaken with the following specifications:

1. Specify εveget,red = 5.00%, εred,grey = 5.00%, and εveget,grey = 5.00%.

2. Specify εveget,red = 5.00%, εcotton,veget = 15.00%, and εveget,grey = 5.00%.

3. Specify εveget,red = 5.00%, εcotton,veget = 10.00%, and εveget,grey = 5.00%.

The optimisation is successful in the first two experiments, but fails in the
third. This implies that the specifications cannot be achieved by the classifier
in this case. The first two cases result in the following respective normalised
confusion matrices:

| red cotton veget grey
------|--------------------------------------
red | 0.9593 0.0000 0.0224 0.0183
cotton| 0.0047 0.8826 0.1127 0.0000
veget | 0.0461 0.0046 0.9171 0.0323
grey | 0.0009 0.0000 0.1186 0.8804

| red cotton veget grey
------|--------------------------------------
red | 0.9593 0.0000 0.0224 0.0183
cotton| 0.0047 0.8592 0.1362 0.0000
veget | 0.0461 0.0046 0.9171 0.0323
grey | 0.0009 0.0000 0.1186 0.8804

These normalised confusion matrices should be compared to the original
one. It can be seen in the first case that the output ξveget,veget has improved
from around 70% to over 90%, but ξgrey,grey is around 11% lower. Note that
many solutions are often possible. These specifications were also not met in the
first examples, in which single errors were specified. These experiments (which
are limited due to space constraints) demonstrate the potential and practicality
of the proposed approach. Once a multiclass ROC has been computed, a
practitioner can quickly and easily enter and modify a specification via the
matrices MI and Me.

3.2.6 Conclusion

This paper considered the applicability of Neyman-Pearson optimisation to
multiclass problems. This is a well-studied and extensively used technique in
2-class problems (stemming from detection applications), applicable in situa-
tions where costs cannot be defined, and it is more practical to specify a fixed
true- or false- positive rate. ROC analysis is a tool facilitating this optimi-
sation, allowing for a direct query of the corresponding classification thresh-
old/weight. In the multiclass case, several possible classification outputs result.
Work performed in [2] showed that Neyman-Pearson optimisation does hold in
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the multiclass case, in which case a single output/error is specified. A more
practical multiclass scenario may involve the necessity to specify multiple error
rates. This paper investigated this empirically, with results showing that this
is possible, but a solution is not guaranteed. Since the optimisation hinges on
ROC analysis, a multiclass ROC framework was developed, and an algorithm
designed to perform the optimisation. The algorithm attempts to find regions
on the ROC hypersurface that meets the specifications, and then subsequently
minimises all other classification errors. The algorithm terminates in the case
that a solution cannot be found. Some real experiments demonstrated the po-
tential of this approach. On-going research is focused on obtaining efficient
representations of the ROC hyper-surface for large C problems, which remains
a significant challenge to multiclass design.

Acknowledgements: This research is/was supported by the Technology
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3.3 A simplified volume under the ROC hyper-
surface

This section has been accepted as ’A simplified volume under the ROC hyper-
surface’, by T.C.W. Landgrebe, and R.P.W. Duin, in Transactions of the South
African Institute of Electrical Engineers, 2007, based on the paper published as
’A simplified extension of the Area under the ROC to the multiclass domain’,
by T.C.W. Landgrebe, and R.P.W. Duin, in Seventeenth Annual Symposium
of the Pattern Recognition Association of South Africa, November 2006.
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Abstract

The Receiver Operator Characteristic (ROC) plot allows a classifier to be eval-
uated and optimised over all possible operating points. The Area Under the
ROC (AUC) has become a standard performance evaluation criterion in two-
class pattern recognition problems, used to compare different classification al-
gorithms independently of operating points, priors, and costs. Extending the
AUC to the multiclass case is considered in this paper, called the volume under
the ROC hypersurface (VUS). A simplified VUS measure is derived that ignores
specific intra-class dimensions, and regards inter-class performances only. It is
shown that the VUS measure generalises from the 2-class case, but the bounds
between random and perfect classification differ, with the lower bound tending
towards zero as the dimensionality increases. A number of experiments with
known distributions are used to verify the bounds, and to investigate a nu-
merical integration approach to estimating the VUS. Experiments on real data
compare several competing classifiers in terms of both error-rate and VUS. It
was found that some classifiers compete in terms of error-rate, but have signif-
icantly different VUS scores, illustrating the importance of the VUS approach.

3.3.1 Introduction

A very active area in pattern recognition has been the consideration of classifier
design and evaluation in less well-defined environments e.g. undefined or vary-
ing prior probabilities [16], or poorly defined costs [1]. A primary analysis tool
developed for this domain is Receiver Operator Characteristic (ROC) analysis
[11], allowing a classifier to be inspected over a range of possible conditions.
A popular scalar performance measure that has emerged is the Area Under
the ROC (AUC) [3], allowing classifiers to be evaluated independent of priors,
costs, and operating points. The AUC measure is however only applicable to
the 2-class case. Considering the multiclass extension of this measure has be-
come a topic of interest more recently, often referred to as the Volume Under
the ROC hyper-Surface (VUS). Formalisation and computational aspects are
more complex, but nevertheless a number of steps have been taken to generalise
the AUC. In [15], a simplified VUS is estimated from a multiclass classifier by
considering the AUC between each class, and all other classes (a one vs all ap-
proach), resulting in a computationally tractable algorithm O(C), where there
are C classes. This measure is however inherently dependent on class priors
and costs, and ignores higher-order interactions. In [9], a similar estimation of
the VUS is proposed that averages the AUC between all pairs of classes, which
has a higher complexity of O((C−1)(C−3)(C−5) . . . 1). The exact theoretical
extension to the VUS in the 3-class case has been considered in [12] and [4]. In
[8] the generalised VUS has been studied, providing calculations/estimations
of the performance bounds of the VUS as a function of an increasing number of
classes C. This involved comparing performance between perfect (separable)
classifiers and random classifiers (random performance). This non-trivial study
provides an important step in understanding the VUS performance measure.
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A related paper was presented in [6], which argued that since the VUS of a
random classifier approaches that of a perfect classifier as C increases, the VUS
may not in fact be a very useful performance measure.

Previous works have not gone into detail as to how the VUS can practically
be applied to an arbitrary set of classifiers in realistic scenarios. In this paper
we consider the practical implementation of the VUS, applied to the simplified
scenario in which the overall class performances are considered, ignoring specific
intra- and inter-class errors. This type of simplification restricts the VUS anal-
ysis, but nevertheless may be suitable for some problems e.g. where we are still
interested in all operating points in terms of overall class performance, but the
class to which an erroneous object is assigned is arbitrary (hand-written digit
recognition/ face recognition are two possible applications). This simplification
ensures that good classifiers tend to result in higher VUS scores than poorer
ones, irrespective of C (as will be shown), resulting in an alternative measure in
line with the argument in [6]. The approach presented here provides a practical
methodology for computing the VUS for problems with low C4, demonstrated
via a number of experiments. In Section 3.3.2 the notation is presented, fol-
lowed by a brief formalisation of multiclass ROC analysis, and the well-known
AUC in Section 3.3.3. In Section 3.3.4 the simplified VUS is presented. First
performance bounds are derived as a function of C. A numerical integration
procedure is then proposed in order to resample the irregularly-spaced multi-
class ROC, allowing for accurate estimations of the VUS. A number of problems
involving known distributions are used to verify the bounds and the methodol-
ogy. In Section 3.3.5 a number of experiments involving real data are presented,
demonstrating practical usage of the VUS measure in 3- and 4-class problems.
Finally conclusions are presented in Section 3.3.6.

3.3.2 Notation

We use a framework similar to [10], in which observations x are to be classified
into one of C classes, ω1, ω2, . . . , ωC . Each class ωi has a class-conditional
distribution p(x|ωi), and prior probability P (ωi). Class assignment is based on
Bayes rule, which assigns membership to the highest posterior output:

P (ωi|x) =
P (ωi)p(x|ωi)

P (ω1)p(x|ω1) + P (ω2)p(x|ω2) + . . . P (ωC)p(x|ωC)
(3.9)

Thus x is assigned according to:

argmaxC
i=1P (ωi|x) (3.10)

In the practical case in which class conditional distributions are usually un-
known, these are typically estimated from representative examples that are

4Extension to the high C case remains computationally infeasible, and thus our approach
is restricted to low C problems e.g. C = 3 to 6. Simpler approaches such as [9] are the only
candidates for high C.
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assumed to be randomly drawn from the true distribution, and the same frame-
work can be used. A given classifier is analysed in detail via the C ×C dimen-
sional normalised confusion matrix Ξ, in which diagonal elements represent the
overall performance of each class, and off-diagonal elements the errors related
to each class. Each element (i, j) of Ξ is denoted ξi,j . Ξ can be written as:

estimated
ω1 ω2 . . . ωC

ω1 ξ1,1 ξ1,2 . . . ξ1,C

true ω2 ξ2,1 ξ2,2 . . . ξ2,C

...
...

. . .

ωC ξC,1 ξC,2 . . . ξC,C

Table 3.2: Defining the multi-class normalised confusion matrix Ξ.

Each element ξi,j is computed as follows:

ξi,j = p(ωi)

∫

p(x|ωi)Iij(x)dx (3.11)

The indicator function Iij(x) specifies the relevant domain (with the second
line specifying performances on the diagonal elements):

Iij(x) =











1 if p(ωj |x) > p(ωk|x) ∀k, k 6= j, i 6= j

1 if p(ωi|x) > p(ωk|x) ∀k, k 6= i, i = j

0 otherwise

(3.12)

In the practical case, ξi,j is estimated via representative test sets, counting
the number of objects classified to each element, normalised by the number of
objects in that class.

3.3.3 Multi-class ROC analysis

It is important to understand that the confusion matrix actually only indicates
the performance of a trained classifier at a single operating point i.e. different
operating points result in different confusion matrices. The operating point is
varied by weighting the posterior output of the classifier by the vector Φ =
[φ1, φ2, . . . , φC ], φi > 0,∀i, which is analogous to classifier thresholds. Thus
Equation 3.10 is modified as argmaxC

i=1φiP (ωi|x). All combinations of Φ result
in all possible operating points of the classifier, which is the multiclass ROC.
Note that there are in fact only (C−1) degrees of freedom for a trained classifier,
so one weight can be held constant, or normalised by the others. After applying
all combinations of Φ, a C2−dimensional operating characteristic results, with
each confusion matrix element attributed to a new dimension. Note that only
(C2 − C) dimensions are required, since:

εi,i = 1 −
j=C
∑

j=1,j 6=i

εi,j (3.13)
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The two class case is very well known, with two off-diagonal elements resulting
(ξ1,2 and ξ2,1, popularly known as the false negative- and false positive-rates),
and two diagonal elements (ξ1,1 and ξ2,2, the true positive and true negative-
rates). This operating characteristic has well understood characteristics and
bounds [3], [16]. Varying the classifier threshold results in a 1D ROC curve.
Figure 3.5 show ROC plots for three different scenarios, ranging from a per-
fect/separable classifier (A), to a classifier with some overlap (B), and finally
to the random classification case (C). Considering the area consumed by each
classifier allows performance to be inspected independent of priors, costs, and
operating points. In this 2-class case, perfect classification results in a larger
area, bounded by 1, and poor classification in a smaller area, bounded by 0.5
(since the random classifier bisects the unit square). This area is known as
the Area Under the ROC (AUC). Note that traditionally the ROC is plot-
ted between ξ1,1 and ξ2,1, but Figure 3.5 results in an equivalent performance
measure, and is extensible to the multiclass case.
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Figure 3.5: Comparing 3 different 2-class ROC plots. ’A’ depicts perfect clas-
sification, ’B’ is a classifier with some overlap, and ’C’ is a random classifier.

The AUC can be written as:

AUC =

∫

ξ2,2dξ1,1 (3.14)

The AUC can be applied to the realistic scenario by a numerical integration
scheme. This work uses the trapezoidal integration rule. The AUC can also
be estimated by counting the number of times two arbitrary objects in the test
set from both classes are correctly ranked by the classifier, and normalising.
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3.3.4 Simplified Volume Under the ROC

Extending the AUC to the multiclass case, i.e. the volume under the ROC hy-
persurface, can be achieved by measuring the volume bounded by the operating
characteristic. In this case we consider only ROC dimensions pertaining to di-
agonal elements of the confusion matrix. The simplified VUS can be written
as:

V US =

∫

. . .

∫ ∫

ξC,CdξC−1,C−1dξC−2,C−2 . . . dξ1,1 (3.15)

Thus the simplified measure considers the C−dimensional operating charac-
teristic of a C−dimensional problem. This measure allows a classifier to be
evaluated over all operating points responsible for the ROC dimensions cor-
responding to the diagonal confusion matrix elements. If these performances
only are considered, the VUS is similar to the AUC in that better classifiers will
result in a high VUS, and poorer classifiers in a lower score. However, before
the VUS is blindly applied, it is important to characterise and understand the
performance bounds between random and perfect classifiers.

Bounds as a function of dimensionality

Considering the 3-class case first, the simplified ROC dimensionality is 3, be-
tween the dimensions ξ1,1, ξ2,2, and ξ3,3. A random classifier produces the ROC
depicted in Figure 3.6. A more effective classifier (or more separable problem)
is depicted in Figure 3.7, showing how the VUS increases.
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Figure 3.6: Random classification performance of the simplified 3-class ROC.
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Figure 3.7: ROC plot for a 3-class problem with partially overlapping distri-
butions.

In fact, the VUS approaches 1.0 as the classification becomes perfect. The
VUS occupied by the random classifier can be found geometrically by comput-
ing the volume of the tri-rectangular tetrahedron formed under the surface,
which is simply 1

6ξ1,1ξ2,2ξ3,3 = 1
6 . Thus the bound has altered from 1

2 in the
two-class case, to 1

6 = 0.16666 in the 3-class case. Generalising the bounds
to C classes is more difficult geometrically. A more extensible approach is to
formalise the random ROC as a hyper-polyhedron, as proposed in [8]. Each
vertex vi of the hyper-polyhedron can easily be defined as (note that the origin
is always included as a vertex, and there are C points per vertex):

v1 0 0 0 . . . 0
v2 1 0 0 . . . 0
v3 0 1 0 . . . 0
v4 0 0 1 . . . 0

...
vC+1 0 0 0 . . . 1

(3.16)

As in [8], the optimised QHull [2] algorithm is used to estimate the volume
occupied by the hyper-polyhedron. The following lower bounds result, up to
C = 12, showing how the lower bound approaches zero with an increasing C.
In fact, it can be seen that the lower bound is 1

C! , which is proven in Appendix
3.3.75.

5The bounds of the simplified VUS suggest this method is a good alternative to the true
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C Estimated VUS
2 0.50000000001826
3 0.16666666668765
4 0.04166666667598
5 0.00833333333563
6 0.00138888888932
7 0.00019841269853
8 0.00002480158732
9 0.00000275573193
10 0.00000027557319
11 0.00000002505211
12 0.00000000208768

(3.17)

Estimating the VUS for general classifiers

In the practical situation in which a sparse set of points are given, representing
the multiclass ROC, a different approach is required. Since the ROC surface
is derived by the nature of the problem and classifier, it cannot be computed
analytically. A more appropriate approach to estimating the VUS is to use
a numerical integration approach. The inherent uneven sampling of the ROC
is converted to an even form via linear resampling and interpolation. The
trapezoidal rule is then used to estimate the volume (in C−dimensions), with
the following results as a function of r, the number of ROC steps used:

C r VUS estimation Actual VUS
3 50 0.1667014 0.1666666
3 100 0.1666752 0.1666666
4 50 0.0417014 0.0416667
4 100 0.0416752 0.0416667
5 50 0.0083507 0.0083333
5 100 0.0083376 0.0083333
6 20 0.0014275 0.0013889
6 40 0.0013980 0.0013889

These results show that the numerical integration approach provides a good
approximation of the true VUS, and that as expected a higher step size results
in higher accuracy.

Experiments with known distributions

In order to judge the numerical VUS approach and verify the bounds, a num-
ber of controlled experiments are conducted, consisting of generated Gaussian
classes with known parameters. The first set of experiments consist of 3-class

unsimplified VUS (regarding the argument given in [6] pertaining to poor resolution between
perfect and random classifiers for high dimensions, bringing the validity of the VUS into
question). This is because in the simplified case for high C, good classifiers tend to 1, and
poor ones tend to 0.
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Gaussian problems with classes ω1, ω2, and ω3, in which the means are varied,
and the variances held at unity. The means are varied such that the problems
range from near-separable problems, to near-random. Similarly the second set
of experiments involve varying the means of 4 Gaussian classes. Tables 3.3
and 3.4 depict the results for the 3- and 4-class cases respectively, also showing
r (a higher resolution was required as the distributions approached complete
overlap). In Figure 3.8, the distributions used in the 2nd and 4th 4-class ex-
periments are shown, demonstrating how class overlap was increased.

Means r VUS est.
−0.05; 0.0; 0.05 200 0.16876
−0.3; 0.0; 0.3 100 0.24140
−0.5; 0.0; 0.5 100 0.31428
−1.0; 0.0; 1.0 100 0.51214
−1.5; 0.0; 1.5 100 0.70597
−4.0; 0.0; 4.0 100 0.98582

(3.18)

Table 3.3: Results for 3-class experiments with known distributions.

Means r VUS est.
−0.15;−0.05; 0.05; 0.15 70 0.05688
−0.75;−0.25; 0.25; 0.75 50 0.07782
−1.00;−0.33; 0.33; 1.00 50 0.19972
−1.50;−0.50; 0.50; 1.5 50 0.33097
−2.25;−0.75; 0.75; 2.25 50 0.57990
−3.00;−1.00; 1.00; 3.0 50 0.75451

(3.19)

Table 3.4: Results for 4-class experiments with known distributions.

These experiments verify that the VUS approach used does make intuitive
sense, since it can be seen that as the problems vary from the separable to
the random case, the VUS decreases accordingly. For highly overlapping cases,
the two sets of experiments demonstrate a VUS that approaches the predicted
lower bounds.

3.3.5 Experiments

The VUS methodology is demonstrated in real settings by comparing a num-
ber of competing classifiers over a number of different problems. The first
group of experiments consist of 3-class problems, with the following datasets
used: Banana is a 2-dimensional dataset consisting of a Banana-shaped class
[5], a Gaussian distributed class, and a bimodal Gaussian class, which are all
overlapping, with 5073 objects generated in total. The Sign dataset [14] con-
sists of images of 3-classes of road-signs, with a total of 381 objects. The Sat
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Figure 3.8: Demonstrating the 2nd and 4th experiment in the 4-class case.

dataset [7] consists of 6435 multi-spectral values of a satellite image, with 36
dimensions (4 spectral bands in a 9 pixel neighbourhood). Classes 1, 3, 5 and
6 have been grouped together into a single class, forming a 3-class problem
together with classes 2 and 4. The second group of experiments consist of
4-class problems. The Vehicle dataset [13] consists of 846 objects of vehicle
silhouettes from 4 vehicle types, and the Digits dataset consists of examples
of ten handwritten digits, originating from Dutch utility maps (available from
[13]). In this dataset, Fourier components have been extracted from the orig-
inal images, resulting in a 76-dimensional representation of each digit. Digits
’3’, ’6’, and ’9’ have been extracted, and the remaining digits grouped into a
single class. The experimental methodology involves rotation of the data using
a randomised hold-out method in which 80% of the data is used in training, and
the remainder for testing, repeated 10 times. Two performance measures are
compared, namely the well-known equal-error rate (priors inherent to dataset
used), and the simplified VUS measure. Results are compared statistically via
a 2-way ANOVA (ANalysis Of VAriance) scheme, with significance judged via
a p− value of 0.995. In each experiment, a number of classifiers are compared,
with the following abbreviations: sc is where unit-variance scaling of the data is
used; pca is a principal component feature extraction followed by the number of
components used; fisher and nlfisher are the Fisher and non-linear Fisher pro-
jections; nmc, ldc, and qdc are nearest-mean, Bayes-linear, and Bayes-quadratic
classifiers respectively; mogc is a Bayes mixture of Gaussians classifier followed
by the number of mixtures used per class; knn3 is a 3-nearest neighbour clas-
sifier; svc p is a support vector classifier with a polynomial kernel, followed by
the order of the polynomial.

The 3-class table presents the first set of results. The Banana dataset shows
that the VUS scores tend to track the equal error scores, for example the nmc
classifier has a high error, and significantly lower VUS than the other classifiers.
An interesting result can be seen for the Sat case, comparing the second and
third models. In this case both classifiers have the same (statistical) error-
rate, but significantly different VUS scores (F-value of 275), showing that the
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third model is a better choice on average over all operating points. In the Sign
experiments, similar VUS scores result for all classifiers.

3-class Classifier Error VUS
Banana sc-pca1 nmc 0.329(0.004) 0.667(0.083)

sc-mogc2,2,1 0.058(0.003) 0.990(0.002)
sc-qdc 0.077(0.004) 0.970(0.006)
sc-ldc 0.091(0.004) 0.964(0.007)

Sat knn3 0.064(0.002) 0.911(0.020)
ldc 0.111(0.001) 0.729(0.015)
qdc 0.108(0.002) 0.862(0.012)
mogc2,1,2 0.099(0.002) 0.866(0.012)

Sign sc pca8 svc p2 0.115(0.018) 0.948(0.023)
sc-pca10 mog2,2,2 0.075(0.003) 0.946(0.025)
pca5 mog2,2,2 0.099(0.011) 0.954(0.019)
pca5 qdc 0.179(0.020) 0.945(0.023)

Table 3.5: Experimental results on 3-class problems.

Next the 4-class experiments are considered. A few interesting observations
can again be made, for example the first and second classifiers have competing
error-rates, but significantly different VUS scores. It appears the linear clas-
sifier was a far better fit to the data than the fisher-nmc model, which only
performed well for some operating points. Finally in the Digits case, the VUS
tended to track the error-rates. It can be seen that some classifiers perform
very well, approaching a VUS of 1, whereas others are poor.

4-class Classifier Error VUS
Vehicle fisher nmc 0.218(0.007) 0.512(0.037)

ldc 0.219(0.006) 0.714(0.035)
qdc 0.150(0.010) 0.834(0.036)
sc-svc p2 0.164(0.007) 0.794(0.022)
sc-svc p3 0.187(0.009) 0.727(0.039)
nlfisher qdc 0.208(0.005) 0.724(0.041)

Digits pca10 mog1,1,1,3 0.119(0.004) 0.985(0.008)
pca15 mog1,1,1,3 0.114(0.003) 0.955(0.007)
pca5 mog1,1,1,3 0.133(0.003) 0.956(0.008)
pca10 qdc 0.127(0.004) 0.978(0.006)
pca10 ldc 0.211(0.005) 0.704(0.041)
nlfisher mogc1,1,1,3 0.158(0.003) 0.857(0.024)

Table 3.6: Experimental results on 4-class problems.

The experiments showed the usefulness of the VUS approach in the multi-
class case, clearly showing examples where the VUS was required to perform
better model selection for classifiers that competed from an equal-error per-
spective.
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3.3.6 Conclusions

This paper considered the extension of the AUC measure to the multiclass
case, termed the volume under the ROC hypersurface. A simplified extension
was considered that evaluates the VUS over the C−dimensional ROC surface
pertaining to diagonal elements of the confusion matrix only, thus ignoring
specific inter- and intra-class performances. This allows for a measure that
generalises from the 2-class case, in which high scores result for good classifiers,
and low ones for poor ones. It was seen that the VUS bounds vary as a
function of the ROC dimensionality, with the lower bound tending to 0 with
high dimensionality. A few experiments using known distributions verified the
bounds, as well as a proposed numerical integration approach to estimating
the hyper-volumes. Finally a set of real experiments were performed that
compared equal-errors to VUS scores for a number of competing classifiers. It
was found that poor error rates often lead to poor VUS scores, but in some cases
competing classifiers in terms of error-rate are not competing in terms of VUS,
implying that some classifiers perform better on average over all operating
points than others. This work is considered useful to problems involving a
low number of classes, restricted by the computational complexity of the ROC
generation, but may nevertheless be useful for many real problems.
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3.3.7 APPENDIX: Proof of the simplified lower VUS bound

Figures 3.5 and 3.6, graphically depicted a random 2-class and 3-class ROC
plot. We refer to the volume consumed by a random classifier as the lower
bound. In the 2-class case, the lower bound can be written as in Equation
3.20, since ξ2,2 is the straight line 1 − ξ1,1.

AUCrandom =
∫ 1

0
(1 − ξ1,1)dξ1,1

=

[

ξ1,1 − 1
2ξ2

1,1

]1

0
= 1

2

(3.20)

In the 3-class case, the volume can be computed analytically by considering
the volume under the plane 1 − ξ1,1 − ξ2,2:

V USrandom =
∫ 1

0

∫ 1−ξ1,1

0
(1 − ξ1,1 − ξ2,2)dξ2,2dξ1,1

= 1
2

∫ 1

0
(1 − ξ1,1)

2dξ1,1

= 1
2

1
3

= 1
6

(3.21)

Similarly, the 4-class case considers the volume under the hyperplane 1−ξ1,1−
ξ2,2 − ξ3,3:

V USrandom =
∫ 1

0

∫ 1−ξ1,1

0

∫ 1−ξ1,1−ξ2,2

0
(1 − ξ1,1 − ξ2,2 − ξ3,3)dξ3,3dξ2,2dξ1,1

= 1
2

∫ 1

0

∫ 1−ξ1,1

0
(1 − ξ1,1 − ξ2,2)

2dξ2,2dξ1,1

= − 1
2

1
3

∫ 1

0

[

(1 − ξ1,1 − ξ2,2)
3

]1−ξ1,1

0

dξ1,1

= 1
2

1
3

1
4 = 1

24
(3.22)

As C increases, it can be seen that the VUS calculation can be simplified by
using the following well-known integration rule recursively:

∫

(ax + b)n =
(ax + b)n+1

a(n + 1)
, n 6= −1 (3.23)
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The bound for any C can then be computed as follows:

V USrandom =
∫ 1

0

∫ 1−ξ1,1

0

∫ 1−ξ1,1−ξ2,2

0
. . .

∫ 1−ξ1,1−ξ2,2−...ξC−2,C−2

0
(1 − ξ1,1 − ξ2,2 − . . . ξC−1,C−1)

dξC−1,C−1 . . . dξ2,2dξ1,1

= 1
2

∫ 1

0

∫ 1−ξ1,1

0
. . .

∫ 1−ξ1,1−ξ2,2−...ξC−3,C−3

0
(1 − ξ1,1 − ξ2,2 − . . . ξC−2,C−2)

2

dξC−2,C−2 . . . dξ2,2dξ1,1

= 1
2

1
3

∫ 1

0

∫ 1−ξ1,1

0
. . .

∫ 1−ξ1,1−ξ2,2−...ξC−4,C−4

0
(1 − ξ1,1 − ξ2,2 − . . . ξC−3,C−3)

3

dξC−3,C−3 . . . dξ2,2dξ1,1

= 1
2

1
3

1
4 . . . 1

C
= 1

C!
(3.24)
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Chapter 4

Multiclass ROC analysis for
large numbers of classes
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4.1 Overview

Contributions in chapter 3, as well as recent works such as [4], [2], and [9]
have shown that 2-class ROC techniques can indeed be extended to the mul-
ticlass case. However these approaches are only practical for problems with
low numbers of classes. The first part of this chapter shows how the com-
putational complexity increases exponentially with the number of classes. To
cope with this restriction, other approaches have been taken to perform typical
ROC tasks without computing the full ROC. For example [5] and [8] present
a simplified approach to evaluating multiclass classifiers independently of the
operating point. In [6] as well as the first part of this chapter, algorithms are
presented that perform cost-sensitive optimisation using a search paradigm. In
[3] an approach is taken that attempts to locate a multiclass ROC front using
an evolutionary sampling approach.

The second part of this chapter presents a novel approach to estimating the
entire multiclass ROC hypersurface. This can often be done efficiently because
it was found that in many practical problems, several ROC dimensions are
independent, allowing the calculation to be decomposed considerably. The
resultant ROC representation can be used subsequently for any type of ROC
analysis. An algorithm is presented that efficiently analyses interactions (over
various operating points), in order to identify potential simplifications.

The problems and challenges raised by this chapter will in all likelihood be
an active area of research in the years to come, but some of these contributions
could form a good base. An approach that also forms a good basis for further
research is the evolutionary approach proposed in [3]. Sampling the operating
characteristic in an efficient way may be another good approach that takes ad-
vantage of a lower intrinsic complexity of the multiclass ROC. Recent additions
to the multiclass cost sensitive optimisation problem such as [7] and [1] show
that there is still scope in this area for further research. Primary drivers here
are computational efficiency, and the quest for a global solution.
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Abstract

The use of Receiver Operator Characteristic (ROC) analysis for the sake of
model selection and threshold optimisation has become a standard practice for
the design of 2-class pattern recognition systems. Advantages include deci-
sion boundary adaptation to imbalanced misallocation costs, the ability to fix
some classification errors, and performance evaluation in imprecise, ill-defined
conditions where costs, or prior probabilities may vary. Extending this to the
multiclass case has recently become a topic of interest. The primary challenge
involved is the computational complexity, that increases to the power of the
number of classes, rendering many problems intractable. In this paper the
multiclass ROC is formalised, and the computational complexities exposed. A
pairwise approach is proposed that approximates the multi-dimensional oper-
ating characteristic by discounting some interactions, resulting in an algorithm
that is tractable, and extensible to large numbers of classes. Two additional
multiclass optimisation techniques are also proposed that provide a benchmark
for the pairwise algorithm. Experiments compare the various approaches in a
variety of practical situations, demonstrating the efficacy of the pairwise ap-
proach.

4.2.1 Introduction

In pattern recognition, the goal is to choose/optimise representations and classi-
fiers that provide acceptable discriminability between the various classes. Typ-
ically one output exists per class, with a new incoming object being assigned
to the highest output. The outputs can be weighted1 in order to vary the
trade-offs that exist between classes. These weights are called the operating
weights2.

Once a suitable classifier model has been found, the next step is typically
to optimise these operating weights to suit the given problem. For example in
the equal/minimum-error rate situation ([4]), e.g. face detection ([21]), errors
should be the same for all classes. In detection problems it is often the case
that some errors should be fixed, and the others minimised (see e.g. [6], and
[14]). In cost-sensitive problems, different classification outcomes have associ-
ated costs/penalties ([2]), and so the optimisation problem is to find a set of
operating weights that result in the lowest overall loss/risk. Other optimisation
scenarios exist, such as the necessity to choose and optimise the best classifier
when class priors/costs are unknown (see [22] and [1]), or varying ([15]). At this
point we emphasise that of interest in this case is the optimisation of classifier
operating weights, and not on internal parameters of the model. Any internal

1Even non-probabilistic classifiers e.g. support vector classifiers can be weighted in this
manner – outputs in this case are distances to support vectors, which are analogous to
probabilities ([16]).

2Conceptually similar to the 2-class concept of “thresholds”. In the multiclass case,
weighting of the output allows for a generalisation of the ROC, with the final discrimination
decision based on the highest weighted output
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adjustment of the model e.g. varying the thresholds in a one-vs-all multiclass
scheme, results in a new model, and a new operating characteristic.

Receiver Operator Characteristic (ROC) analysis ([18], [9]) was developed
for the 2-class case, allowing the classifier threshold to be studied for all possi-
ble combinations of the two respective classification errors involved, namely the
false positive rate, and the false negative rate (with each combination known as
the operating point). As such, this tool has become standard in the aforemen-
tioned optimisation scenarios, but applying it to the multiclass case is more
challenging, and poorly understood. Recently some work has begun in this
area, such as an extension to the 3-class case in [19], a study of the feasibility
of the extension in [23], and investigating some formalisations in [10], and [6].
For the imprecise case in which priors/costs are unknown, the work in [11]
presents an approximate method for evaluating classifiers in these conditions,
extending the well known Area Under the ROC (AUC) measure ([3]), resulting
in the approximate VUS (Volume Under the ROC Surface).

However, even though several works have investigated multi-class operating
characteristics, no known methods exist that result in the practical construc-
tion of a multiclass ROC that extends to problems involving large numbers of
classes, which is necessary in order to perform the optimisations and analyses as
discussed earlier. This is attributed primarily to the computational complexity
of the analysis. Recently two approaches emerged that are useful for multiclass
cost-sensitive optimisation, capable of using input costs and priors to optimise
operating weights. The first is a hill-climbing approach as presented in [13] that
can easily be adapted to the cost-sensitive case, and the second is an evolu-
tionary approach ([8]), attempting to find a global solution to the minimisation
problem. The problem with the former approach is that it is very susceptible
to local minima, dealing with interactions between classes sub-optimally. The
algorithm optimises the classifier operating weights successively, which is not
ideal for arbitrary interactions, but nevertheless improves performance in many
cases. The latter approach has only been demonstrated in problems with low
numbers of classes. The approach involves sampling of operating points, which
becomes less tractable as the number of classes increases, due to an exponential
computational complexity (shown later).

In this paper the multiclass ROC approach is formalised, and computa-
tional complexity investigated as a function of both the number of classes,
and the resolution of the operating characteristic. This shows that computing
the multiclass ROC is feasible for low numbers of classes (C), but rapidly be-
comes intractable as C increases. A new multiclass ROC approach is proposed,
in which ROC curves are generated between each type of classification error,
characterising the interaction between each pair, but ignoring other interac-
tions. In the cost-sensitive scenario, these characteristics are interrogated to
obtain the most optimal operating weight pairs to suit the priors and costs.
This involves exhaustively searching pair combinations in order to select the
most appropriate weight pairs, followed by a normalisation procedure that “cal-
ibrates” weights against each other. The number of weight pairs is reduced for
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large C problems by excluding weight pairs exhibiting little/no interaction to
reduce computation required. Even though this algorithm is not optimal, it
will be shown that it is both computationally tractable, and performs well over
many real problems. In addition to the pairwise multiclass ROC method, this
paper also presents two simple approaches to the cost-sensitive optimisation
problem, consisting of a naive approach that ignores interactions between op-
erating weights, and a greedy-search approach that accounts for interactions
(to an extent). These methods provide a benchmark with which to compare
the pairwise approach. As a further benchmark, the algorithm in [13] is also
included.

The paper is structured as follows: A notational overview and formalism
is presented in Section 4.2.2, followed by a formalisation of multiclass ROC
construction and an analysis of computational requirements in Section 4.2.3.
The naive and greedy multiclass cost-sensitive optimisation algorithms are pre-
sented in Section 4.2.4, followed by the proposed all-pairs approach in Section
4.2.5. A variety of experiments are discussed in Section 4.2.6, demonstrating
the various algorithms in cost-sensitive scenarios. Conclusions are given in
Section 4.2.7.

4.2.2 Notation and formalisation

Consider a C-class problem, with each class denoted ω1, ω2, . . . ωC , and new
observations characterised by vector x, with dimensionality d. The class condi-
tional probability of ωi is denoted p(x|ωi), with prior probability p(ωi). Class
assignment is based on the highest posterior output, denoted p(ωi|x), for the
ith class, formalised as:

argmaxC
i=1p(ωi|x) (4.1)

The posterior is computed via Bayes formula:

p(ωi|x) =
p(x|ωi)p(ωi)

p(x|ω1)p(ω1) + p(x|ω2)p(ω2) + . . . + p(x|ωC)p(ωC)
(4.2)

A multiclass classifier is evaluated by inspection of a C × C dimensional con-
fusion rate matrix ξ as defined in Table 4.1. Each element is referenced as
ξi,j . In order to compute each confusion ξi,j (the fraction of ωi classified as ωj

weighted by priors), the following integration is performed:

ξi,j = p(ωi)

∫

p(x|ωi)Ij(x)dx (4.3)

The indicator function Iij(x) specifies the relevant domain:

Ij(x) =

{

1 if p(ωj |x) > p(ωk|x) ∀k, k 6= j

0 otherwise
(4.4)

Equation 4.3 allows any confusion matrix output to be computed, generalised
for both diagonal elements (performances), and off-diagonal elements (errors).
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estimated
ω1 ω2 . . . ωC

ω1 ξ1,1 ξ1,2 . . . ξ1,C

true ω2 ξ2,1 ξ2,2 . . . ξ2,C

...
...

. . .

ωC ξC,1 ξC,2 . . . ξC,C

Table 4.1: Defining the multi-class confusion rate matrix ξ.

In the practical case where distributions are unknown, and only representa-
tive examples per class are available, a confusion matrix cm is constructed,
generated via application of a representative independent test set. These cm

outputs are normalised by the absolute number of objects Ni per class ωi,
N = [N1, N2, . . . NC ]T , resulting in the confusion rate matrix, where each ele-
ment ξi,j =

cmi,j

N(i) .

Each posterior output p(ωi|x) can be weighted by the scalar φi, φi ≥ 0,
in order to control trade-offs between the various classification errors (note
that all classifier outputs are scaled between [0, 1], irrespective of the classifier
type). The classifier weight vector Φ = [φ1, φ2, . . . φC ] is thus the mechanism
for manipulating a classifier’s decision boundary. Note that there are C − 1
degrees of freedom, and thus in the two-class case, Φ = [φ1, (1 − φ1)], since
there is only one degree of freedom. Similarly, where C > 2, one of the weights
is generally set to an arbitrary positive value e.g. for a 5-class problem Φ =
[1, φ2, φ3, φ4, φ5]. Class assignment can thus be modified as:

argmaxC
i=1φip(ωi|x) (4.5)

In the cost sensitive case, the optimisation goal is to minimise the various
classification errors, using a framework in which the importance of each error
is weighted via a classification cost, and the respective prior probability. The
cost sensitive situation is typically evaluated by considering the overall system
loss, L, given a matrix of costs s (see Table 4.2), and prior probabilities. Now

ω1 ω2 . . . ωC

ω1 s1,1 s1,2 . . . s1,C

ω2 s2,1 s2,2 . . . s2,C

...
...

. . .

ωC sC,1 sC,2 . . . sC,C

Table 4.2: Defining the multi-class cost matrix s.

the loss can be defined (in this paper the profits (diagonals) are set to zero):

L =

C
∑

i=1

p(ωi)(

C
∑

j=1,i6=j

ξi,jsi,j) −
C

∑

i=1

p(ωi)ξi,isi,i (4.6)

In the left of Figure 4.1, a 4-class example is shown for two different op-
erating points, consisting of Gaussian-distributed classes ω1, ω2, . . . , ω4, with
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means occurring at µ1 = −3, µ2 = 0, µ3 = 3, µ4 = 6 respectively, with
unit variance. The left plot shows an operating point involving equal priors
and Φ = [1.0, 1.0, 1.0, 1.0], and the right plot shows another operating point
Φ = [1.0, 0.3, 1.0, 1.0], in which ξ1,2 decreases at the expense of ξ2,1.
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Figure 4.1: Probability density functions for the 4-class example with known
distributions. Two operating points are shown, with the left plot involving
equal output weighting, and the right with a higher φ2 and lower φ1.

4.2.3 Multiclass ROC
Implementation

Referring to Figure 4.1, the plots show only two operating points, correspond-
ing to two different operating weight settings. In fact, any combination of
weightings results in a different operating point. The challenge in multiclass
optimisation is in understanding the relation between a weight modification and
the corresponding alteration of the confusion matrix, which depicts the conse-
quences of the new operating point. Multiclass operating weight (analogous to
threshold) optimisation is thus the process by which the optimal set of weights
Φ∗ is found to suit the problem at hand. Note that there may be multiple
optimal solutions for C > 2. Multiclass ROC analysis involves the generation
of a hypersurface consisting of all possible combinations of Φ, allowing these
various possible confusion matrices to be characterised. The dimensionality of
the hypersurface is C2 − C (diagonal elements are superfluous), which can be
constructed by adapting Equation 4.3. In this case, each output between class
i and j is weighted by φi as follows:

ξi,j(Φ) = φip(ωi)

∫

p(x|ωi)Ij(x|Φ)dx (4.7)

The indicator function Iij(x|Φ) is as in 4.4, except each posterior is multiplied
by the corresponding class weight:

Ij(x|Φ) =











1 if φjp(ωj |x) > φkp(ωk|x) ∀k,

k = 1, 2, . . . C, k 6= j

0 otherwise

(4.8)
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Since the classifier has (C − 1) degrees of freedom, the ROC is constructed by
generating a (C − 1) dimensional grid of all possible operating weights Φ, with
resolution r. This results in a set of confusion rate matrices, corresponding to
each weight combination, denoted ξ(Φ). Different elements of the confusion
matrices as a function of Φ are the dimensions of the ROC. An important
consideration for practical implementation is the choice of the resolution r
and scale Θ of each weight. The resolution must be fine enough, and the
scale adequately chosen to ensure the operating characteristic is well sampled.
Experiments in this paper consider a logarithmic scale, sampled 80 times, with
10−3 ≤ Θ ≤ 103.

The full multiclass ROC has been computed for the analytic example (see
Figure 4.1), of which 3 of the 12 (4 × 4 − 4) ROC dimensions are plotted in
Figure 4.2, illustrating the respective interactions. The full ROC in this case
results in 804−1 = 512 × 103 operating points.
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Figure 4.2: Illustrating the ROC dimensions ξ1,2, ξ2,1, and ξ2,3 for the example.

Computational considerations

In the 2-class case, ROC construction involves generating a 1-dimensional grid
of weights (since there are C − 1 weights, there is only 1 DOF in this case),
with r steps across the output range. In the multiclass case (C > 2), com-
puting the ROC involves the generation of a C − 1 dimensional grid with r
steps, resulting in rC−1 operating points. This increase to the power of the
number of classes minus 1 (O(rC−1)) explodes the computational complexity
with increasing C, becoming infeasible to compute for all but low C problems.
To illustrate the severity of this problem, Figure 4.3 plots the number of cal-
culations (and number of memory slots for storage of the hypersurface) as a
function of the ROC resolution r, for a number of C-values. It is clear that for
high C, computational complexity becomes prohibitive. Use of a lower r does
reduce the computation required, but this is at the expense of poorer sampling,
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which could lead to a poorly sampled ROC surface3. To illustrate, consider the
following real problems:

• Satellite (obtained from [7]), which consists of 6 classes of multi-spectral
remote sensing data. An ROC resolution of 80 requires 806−1 = 3.28×109

calculations.

• Letter (obtained from [20]) consists of 26 different classes of hand-written
digits, requiring 8026−1 = 3.78 × 1047 calculations for r = 80, which is
clearly prohibitive.
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Figure 4.3: The relationship between computational complexity, ROC resolu-
tion, and C.

Thus even though it is theoretically possible to construct any multiclass ROC,
only problems with low C are feasible to compute. This is the justification for
seeking approximate techniques for performing multiclass ROC analysis.

4.2.4 Naive and greedy cost-sensitive optimisation algo-
rithms

In the cost-sensitive case, obtaining a set of operating weights to suit new
costs s and priors p can be viewed as an optimisation problem ([8]). In this
Section two simple algorithms are presented that are suitable for this task. We
stress that these approaches simply result in a single set of weights, and not an
operating characteristic, and are thus unable to fulfil several functions that are
made possible by ROC analysis. However, they are still useful and relatively
straightforward in the cost-sensitive scenario, allowing for an adaptation of an

3Different classifier models e.g. a support vector classifier or a Bayes linear classifier,
typically result in outputs (e.g. posteriors) with different scales, and thus choosing a scale
suitable to the classifier used could improve the computational situation by allowing for a
lower r.

89



unoptimised classifier (the “default” classifier). These algorithms also provide
a basis for comparison with respect to the pairwise ROC approach.

The objective of both algorithms is to obtain the most appropriate weight
vector Φ∗, achieved by searching for a solution that reduces an initial system
loss (using Equation 4.6) by varying individual classifier weights. These ap-
proaches cannot guarantee a global minimum, but should always improve on
an initial “default” classifier that was trained to a typically equal-error oper-
ating point (and accounting for class priors). This initial classifier results in a
baseline confusion rate matrix used to obtain the initial loss for a given set of
conditions (equivalent to operating weights set to unity).

Naive multiclass cost-sensitive optimisation

The Naive algorithm attempts to optimise operating weights to given cost s

and prior probability p conditions by varying each operating weight successively
and independently, and inspecting overall system loss (Equation 4.6). This
approach ignores interaction between different weights, and simply “optimises”
each one in turn.

The following steps are taken: A threshold vector Θ is computed, 10−3 ≤
Θ ≤ 103, with resolution r, using a logarithmic scale. In the first step the
first weight φ1 is optimised, resulting in φ∗

1. This is obtained by varying φ1

according to Θ, while other weights are fixed, and computing the loss. The
minimum loss for this weight is denoted L∗(φ1|φi = 1,∀i, i 6= 1), which is then
used to obtain φ∗

1, computed using Equation 4.6:

L∗(φ1|φi = 1,∀i, i 6= 1) = min(L(φ1 = Θ)), φ∗
1 = Θ(L∗

1) (4.9)

This “optimises” the first weight independently of the others. The same pro-
cedure is then followed for all other weights, resulting in an “optimal” weight
value in each case, ignoring all interactions:

L∗(φ2|φi = 1,∀i, i 6= 2) = min(L(φ2 = Θ)), φ∗
2 = Θ(L∗

2)
L∗(φ3|φi = 1,∀i, i 6= 3) = min(L(φ3 = Θ)), φ∗

3 = Θ(L∗
3)

...
L∗(φk|φi = 1,∀i, i 6= k) = min(L(φk = Θ)), φ∗

k = Θ(L∗
k)

...
L∗(φC |φi = 1,∀i, i 6= C) = min(L(φC = Θ)), φ∗

C = Θ(L∗
C)

(4.10)

Even though the Naive algorithm is sub-optimal, it has a computational com-
plexity of O(rC) (where r is the resolution of Θ), extending linearly with C,
and is thus scalable to high C problems. The experiments (Section 4.2.6) show
that this approach is generally better than an un-optimised approach, but is
usually outperformed by other more sophisticated algorithms that do account
for interactions.
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Greedy multiclass cost-sensitive optimisation

The Greedy multiclass optimisation algorithm is quite similar to the Naive ap-
proach, except that some degree of interaction between weights is accounted
for. This is achieved by searching for a (local) optimal set of operating weights
by optimising weights with respect to each other in a greedy manner. This in-
volves randomly selecting a weight to update, followed by optimisation relative
to other weights. Subsequently another operating weight is randomly selected,
and optimised while taking into account previously optimised weights. This
process is repeated until all weights are accounted for. In an attempt to avoid
local minima, the algorithm is typically run a number of times with different
random initialisations. The algorithm is as follows: A threshold vector Θ is
computed as in the Naive case, and the weight vector Φ is randomly ordered,
resulting in ΦR, with the ith weight denoted φR

i . The first weight φR
1 is op-

timised, resulting in φR∗
1 , by considering all possible Θ, while other weights

are fixed, and computing the loss (Equation 4.6). The minimum loss for this
weight is denoted L∗(φR

1 |φR
i = 1,∀i, i 6= 1), which is then used to obtain φR∗

1 ,
computed using Equation 4.6:

L∗
1(φ

R
1 |φR

i = 1,∀i, i > 1) = min(L(φR
1 = Θ)), φR∗

1 = Θ(L∗
1) (4.11)

The Greedy algorithm then proceeds to optimise other weights in the order as
per ΦR. The primary difference to the Naive algorithm is that weights are now
updated dependent on previously updated weights, as follows:

L∗(φR
2 |φR

1 = φR∗
1 , φR

i = 1,∀i, i > 2) = min(L(φR
2 = Θ)), φR∗

2

= Θ(L∗
2)

L∗(φR
3 |φR

1 = φR∗
1 , φR

2 = φR∗
2 , φR

i = 1,∀i, i > 3) = min(L(φR
3 = Θ)), φR∗

3

= Θ(L∗
3)

...
L∗(φR

k |φR
j = φR∗

j ,∀j, j < k, φR
i = 1,∀i, i > k) = min(L(φR

k = Θ)), φR∗
k

= Θ(L∗
k)

...
L∗(φR

C |φR
j = φR∗

j ,∀j, j < C) = min(L(φR
C = Θ)), φR∗

C

= Θ(L∗
C)

(4.12)
The Greedy algorithm has a computational complexity of O(NrrC), where Nr

is the number of algorithm repetitions. This algorithm is thus also extensible
to large C. A similar algorithm was also recently proposed in [8], using a more
sophisticated search approach.

4.2.5 Pairwise multiclass ROC analysis

The pairwise ROC algorithm investigates interactions between each pair of op-
erating weights by analysing ROC plots between each pair. Only the respective
pair operating weights are varied (with other weights held constant), and the
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resultant confusion rate matrices stored. For a given problem, the pairs that
are most suitable are then chosen to be used. This results in a much more effi-
cient algorithm than the full multiclass ROC, since only individual pairings are
considered. The algorithm is simplified further by discounting pairs which are
approximately separable based on the Area under the ROC (AUC) criterion.
The limitation of this pairwise approach is that the pairs discount interactions
not included in the pair, leading to sub-optimality, but we argue that account-
ing for the most important interactions may result in a good approximation.
In an attempt to cater for some degree of further interaction, the algorithm is
followed by a post-processing step, using the Greedy algorithm in Section 4.2.4.

Given a C-class problem, the algorithm proceeds as follows: In the first step

a vector of weight pair indices PI is constructed, consisting of C2−C
2 pairs:

PI = [[φ1, φ2], [φ1, φ3], [φ1, φ4], . . . , [φ1, φC ], [φ2, φ3], [φ2, φ4], . . . , [φ2, φC ],
. . . , [φC−1, φC ]]

(4.13)
The next step involves computing an ROC curve corresponding to each pair
[φi, φj ], j > i, denoted ROC(φi, φj). This is performed via Equation 4.7, vary-
ing weights φi and φj only, and weights φk = 1, k = 1, 2, . . . C, k 6= i, j. This

process results in C2−C
2 ROC plots that can be analysed or interrogated to suit

a given problem. In the full multiclass case, the operating characteristic can be
analysed directly, but in this case, a secondary step is required to amalgamate
information from the most relevant ROC pairs.

Consider for example the cost-sensitive case given a cost s and prior p. The
task is to select the best ROC pairs to suit the new situation, but there is an
ambiguity in the pairwise case, since the same operating weight is optimised
(C − 1) times e.g. ROC(φ2, φ3) and ROC(φ2, φ4) both result in an optimised
φ2. The pairwise algorithm selects the pair best suited to the problem by con-
sidering all possible pairings. This is sub-optimal because interactions between
other classifier weights not in the pair are now ignored, but in some problems
certain interactions may be more significant than others. In addition, some
pairs may involve more costly implications than others, in which case these
pairs should be favoured. Thus the philosophy of the pairwise algorithm is to
consider both the degree of interaction, and the severity of an interclass error,
resulting in the most optimal pair selection for the given scenario. This is prac-
tically achieved by considering all feasible combinations of pairs of results, and
selecting the combination with the lowest overall loss. The number of possible
unique combinations of pairings is denoted NPC , computed as follows (not to
be confused with the total number of pairs):

NPC = (C − 1)(C − 3)(C − 5) . . . 1 (4.14)

For example, in the 6-class case, the following PI results (NPC = (6−1)(6−
3)(6 − 5) = 15 in this case):

92



PI = [[φ1, φ2], [φ1, φ3], [φ1, φ4], [φ1, φ5], [φ1, φ6], [φ2, φ3], [φ2, φ4], [φ2, φ5],
[φ2, φ6], [φ3, φ4], [φ3, φ5], [φ3, φ6], [φ4, φ5], [φ4, φ6], [φ5, φ6]]

(4.15)
Next, a matrix PIc is constructed from the PI pairs. Each row consists of

a different complete set of class pairs covering all classes. For example, in the
6-class case, PIc is:
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(4.16)

In the odd case, one weight will not be included, since it cannot be paired.
This weight is assigned a finite positive value (e.g. 1), and is excluded from the
optimisation, chosen based on lack of importance (e.g. low cost, or low degree
of interaction).

Now we have obtained a set of pairwise ROC curves ROC(φi, φj), i =
1, 2, . . . C, j > i, and the PIc matrix, which indicates how the ROC curves
can be interrogated based on feasible pairings. We now focus on the cost-
sensitive case to illustrate how this ROC approximation can be used. Each
pair is optimised using the given s and p, resulting in pairs of optimal weights.
These values are stored in a matrix with the same size as PI according to the
PI pairing, denoted PIΦ. In the next step, all the possible optimised weight
pairings are assembled according to PIc, and re-ordered to correspond with the
operating weight ordering, denoted ΦM .

At this stage an additional step is included to “calibrate” operating weight
pairs with respect to other pairs. This is necessary because the pairwise weight
optimisation considers the loss associated with the two respective weights, re-
sulting in an optimal weighting between them, but the overall weighting may
differ in scale with other groups. Thus it is important to adjust/“calibrate”
the various weight pairs with respect to each other. Importantly, the relative
values in a weight pair are held constant, but the overall weighting is adjusted
in a greedy fashion using an approach similar to the Greedy algorithm, with a
computational complexity of O( r

2 (C2 −C)). The “calibrated” weight pairs are
denoted ΦMc.

Subsequent to the computation of ΦMc, the best weight vector entry is
chosen (each row in ΦMc is one possible operating weighting) by computing
the overall system loss according to Equation 4.6 for each entry, and choosing
the weight vector resulting in the minimum loss, denoted Φ∗. A final optional
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post-processing step attempts to overcome the assumption of pairwise interac-
tions only by adjusting Φ∗ according to the Greedy algorithm in Section 4.2.4,
resulting in Φ∗∗.

Computationally, the pairwise algorithm increases in complexity as follows:
Firstly ( 1

2 (C2 − C)) ROC pairs must be computed, each of which have a com-
plexity O(r), resulting in an O( r

2 (C2 −C)) calculation, which is tractable even
for large C. The next step is to compute all possible pairings, resulting in NPC

pairs according to Equation 4.14, followed by the “calibration” step, resulting
in an O( rNP C

2 (C2 − C)). While problems with lower C are quite tractable
(e.g. NPC = 48 for C = 7, and NPC = 105 for C = 8), larger C problems
become less so (e.g. NPC = 10395 for C = 12). A useful approach to reduce
the computational complexity for large C problems is to remove pairs that
are considered unimportant. Fewer pairs implies a smaller NPC , reducing the
complexity radically for high C problems. These pairs are chosen based on
the degree of interaction - little or no interaction implies that these pairs will
play an insignificant role in the optimisation process. The AUC criterion is ap-
plied here AUC(φi, φj) = 1−

∫

(ξi,j)dξj,i, measuring the degree of separability
for each pair, with high AUC values implying a low degree of interaction. A
threshold tp is used to eliminate these pairs.

In summary, the pairwise algorithm proceeds as follows (for the cost-sensitive
case):

• Weight pair indices NI are computed according to Equation 4.13, result-

ing in C2−C
2 pairs.

• ROC curves are produced for each pair in NI.

• For large C problems, the AUC criterion is applied to each ROC pair,
eliminating pairs demonstrating little interaction according to a chosen
threshold tp.

• All possible pairwise combinations PIc are calculated, resulting in NPC

possibilities (or fewer if pairs were removed in the previous step).

• Given a new cost/prior situation, each ROC is optimised, resulting in a
set of optimised weight pairs.

• Optimised weight pairs are assembled and ordered to create ΦM , accord-
ing to PIc.

• Each weight pair is “calibrated” to normalise the overall scaling of pair
groups with each other, resulting in ΦMc.

• Each candidate weight vector in ΦMc is used to compute the overall loss
according to Equation 4.6, with best solution chosen as Φ∗.

• An optional Greedy optimisation (Section 4.2.4) is applied to Φ∗, resulting
in Φ∗∗, attempting to overcome the limitation of the pairwise assumption.
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Pairwise optimisation example

An example of the cost-sensitive pairwise ROC analysis approach is discussed,
referring to the synthetic problem in the left of Figure 4.4 (called the PRTools8
dataset), generated by the PRTools pattern recognition toolbox ([5]), consisting
of 8 classes, with balanced priors. In this experiment, a Bayes quadratic dis-
criminant has been trained on 500 independent training examples, as depicted
in the left of Figure 4.4, showing the resultant default decision boundary on an
independent test set with 500 examples. In this equal-cost, equal-prior case, it
can be seen that the classifier attempts to maintain the equal error state. A
cost-sensitive scenario is considered, in which balanced priors are present, but
the following cost matrix s occurs:

0.000 0.003 0.113 0.115 0.169 0.133 0.113 0.101
0.044 0.000 0.101 0.140 0.007 0.189 0.183 0.084
0.063 0.136 0.000 0.102 0.061 0.045 0.092 0.159
0.090 0.273 0.235 0.000 0.078 0.016 0.113 0.002
0.023 0.013 0.049 0.048 0.000 0.048 0.049 0.009
0.114 0.091 0.054 0.081 0.029 0.000 0.016 0.090
0.002 0.059 0.057 0.037 0.000 0.006 0.000 0.041
0.030 0.047 0.089 0.068 0.102 0.060 0.087 0.000

The default classifier results in a loss of 0.9359 in this example. The pair-
wise ROC algorithm attempts to reduce this by finding a new set of operating
weights, resulting in a loss of 0.6250 (with no post-processing), which is an
improvement over the default case. The following operating weights result:

Φ∗ = [0.1000, 0.9000, 0.7875, 0.2125, 0.9250, 0.0750, 0.7875, 0.2125] (4.17)

These operating weights are applied to the trained classifier, resulting in the
decision boundary depicted in the right plot. For comparative purposes, the
Naive algorithm resulted in a loss of 0.8081 which is better than the default
case, but worse than the pairwise algorithm and the Greedy algorithm resulted
in a loss of 0.6347, which is similar to the pairwise algorithm result.
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Figure 4.4: Comparing decision boundaries for an 8-class problem in the bal-
anced prior/cost case (left), and in the imbalanced case optimised using the
pairwise algorithm in the right plot.
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4.2.6 Experiments

A number of experiments are undertaken over a variety of datasets in order to
assess the applicability and efficacy of the pairwise multiclass ROC approach,
as well as the Naive and Greedy approaches in the cost-sensitive scenario. The
hill-climbing algorithm from [13] is also compared, called Lachiche. Two sets of
experiments are performed, consisting of synthetic and real datasets. The syn-
thetic experiments analyse performance of the various algorithms in synthetic
scenarios suited to the pairwise algorithm, and also investigate the impact of
a growing number of classes. The real experiments compare performance in
realistic scenarios. A trained classifier which is unoptimised (the “default”
classifier) is used as the basis for the comparison. The various problems are
studied over many different misallocation cost scenarios in order to assess the
strengths, weaknesses, and generality of the various algorithms over many sit-
uations.

Methodology

Each dataset is analysed, and an appropriate classifier trained (independently),
and tested on an independent test set. The chosen classifiers are not necessarily
optimal, since the objective is to demonstrate how a classifier can be tuned to
a new operating point, rather than how to design a classifier.

The experimental methodology involves the generation of 50 different ran-
dom cost-matrices (sampled uniformly, and zero diagonal elements), with priors
held constant, and comparing the results of the various multiclass cost-sensitive
optimisation algorithms. Each different cost-matrix is a new scenario, weight-
ing both inter- and intra-class errors in a variety of different combinations, with
the experimental objective of obtaining a diverse set of scenarios with which to
fairly compare different algorithms. The results of the various algorithms are
benchmarked against the default unoptimised classifier, with the loss measure
used to evaluate performance (Equation 4.6). For each new set of costs, the
following algorithms are compared:

• Default algorithm, in which no optimisation occurs, and the overall loss
is simply computed given the default confusion matrix.

• Naive algorithm, as described in Section 4.2.4.

• Greedy algorithm, as described in Section 4.2.4, with Nr = 3.

• Lachiche algorithm, implemented according to [13].

• Pairs algorithm, which is the multiclass pairwise algorithm as described
in Section 4.2.5.

• PairsG algorithm, which is the same as the Pairs algorithm, but the post-
processing Greedy optimisation step is included, using the first stage to
initialise the search, attempting to overcome the pairwise limitation.
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Even though loss (or cost) is a useful measure to observe relative differences
between algorithms, it is dependent on the number of classes, and the priors,
and scales according to the costs. This makes it difficult to assess the absolute
benefit of an optimisation, and how well the classifier is performing for a given
set of costs and priors. In [17], the L measure is rescaled using s and p into the
Mean Subjective Utility Score (MSU), that overcomes these issues, resulting in
a performance measure (higher scores imply improvement) that scales between
0 and 1:

MSU =
∑C

i=1(
∑C

j=1,i6=j ξi,js
′

ij)

S
′

= −β1S + β2

(4.18)

−β1(
∑C

i=1 p(ωi)si,i) + β2 = 1

−β1(
1
C

∑C

i=1 p(ωi)
∑C

j=1,j 6=i si,j) + β2 = 0
(4.19)

This measure can now be used to gauge the percentage improvement that
an optimisation may have, instead of using an arbitrary scale. For example, in
Section 4.2.5, the Default classifier resulted in a loss of 0.9359, and the pairwise
optimisation reduced this to 0.6250. The degree of improvement is not known,
but the MSU scores in this case are 0.8016 and 0.8675 respectively, implying
that the pairwise approach has improved performance by 6.59%. Thus the
MSU score is chosen to compare results since we can immediately assess the
impact an optimisation has on performance.

In summary, for each experiment, 50 different cost-sensitive scenarios are
considered for the various approaches, each of which results in a new operating
weight vector. This is used to weight the classifier outputs, resulting in a new
confusion matrix based on the independent test set. Each approach is compared
to the default unoptimised classifier, with the MSU measure showing the per-
centage improvement. The experiments consider the overall improvement the
various approaches give over the various scenarios. Note that if an optimisa-
tion results in a performance worse than the default case, the improvement in
performance is considered to be zero.

Dataset descriptions

The various algorithms are evaluated by considering a wide variety of problems.
In Table 4.3, the experimental datasets are summarised in terms of training/test
sizes, numbers of classes, and dimensionality. Also included are the number of
pairs involved in each case, followed by the AUC threshold tp used (if any),
which reduces the numbers of pairs used, shown in the ‘Pairs2’ column. The ta-
ble then shows which classifier has been chosen in each case, as well as the mean
classification error on the default classifier ε = mean(

∑C

i=1

∑C

j=1 ξi,j , i 6= j)
based on the test set. The classifier ‘qdc’ is a Bayes quadratic classifier, ‘mogc’
is a Bayes mixture of Gaussians classifier followed by the number of mixtures,
‘pca’ is a principal components feature extraction, followed by the number of
components used, and ‘fisherm’ is a Fisher projection on the original data.
The first two entries are the synthetic datasets, with the remainder consisting
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of real datasets. The PRTools8, Letter, and Satellite datasets have been in-
troduced earlier. The PRTools16 dataset is a second synthetic dataset based
on the PRTools8 dataset, with a repetition of the 8-classes in feature space,
resulting in 16 classes (simply by adding a value of 10 to both features). The
CBands dataset consists of chromosome band profiles [12]. The Digits dataset
consists of examples of ten handwritten digits, originating from Dutch utility
maps (available from [20]). In this dataset, Fourier components have been ex-
tracted from the original images, resulting in a 76-dimensional representation
of each digit. Comparing tp for the Letter and Cbands, it can be seen that the
Cbands appears to contain more interactions, since more pairs result even with
a lower threshold, suggesting that there is a higher “intrinsic complexity” than
in the Letter case.

Dataset Train/Test C d Pairs tp Pairs2 Classifier ε

PRTools8 500/500 8 2 28 - 28 qdc 13.05%
PRTools16 1000/1000 16 2 120 0.996 17 qdc 13.05%

Letter 16000/4000 26 16 325 0.980 22 fisherm qdc 12.50%
Cbands 6000/6000 24 30 276 0.975 34 pca10 mogc2 17.63%
Digits 1000/1000 10 76 45 0.980 10 ldc 20.50%

Satellite 4435/2000 6 17 15 - 15 fisherm mogc2 12.50%

Table 4.3: Important dataset statistics, showing number of train/test objects,
the number of classes, dimensions, number of pairwise ROC curves required,
the pairwise AUC threshold tp, followed by the actual number of pairs used
(’Pairs2’), the classifier model, and the mean classification error ε of the un-
optimised classifier.

Computationally, the pairwise algorithms for the PRTools16, Letter, CBands,
and Digits datasets used a reduced number of pairs by eliminating the least
interacting pairs. This reduced the NPC in each case, radically reducing the
computation required, since this becomes the determining factor with respect
to computational complexity when C is large.

Results

In Table 4.4, the results of the various algorithms are summarised over the
50 different cost-sensitive scenarios for each dataset. Each result subtracts
the MSU score of the respective algorithm with the MSU result (%/100) of the
default unoptimised classifier. Higher results thus indicate larger improvements
by the respective algorithm. The Table attempts to result in an overall analysis
of the use of each algorithm, showing the minimum, median, maximum, best,
and mean performance over the 50 different conditions.

The PairsG and Greedy algorithms are the two most promising approaches,
which are compared directly via Table 4.5. These results show the number of
experiments (out of 50) that the PairsG algorithm was superior.

In order to illustrate the experimental process in detail, the full results of
the Letter dataset are shown in Figure 4.5, comparing the various MSU results
for 50 different cost-sensitive scenarios. It can be seen that the default unop-
timised classifier is consistently inferior. The Naive algorithm is consistently
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better than the default classifier, but is inferior to the Greedy and PairsG algo-
rithms. The PairsG algorithm is superior in most cases, suggesting that this is
generally the best approach. The Pairs algorithm (omitted) did not work well
by itself, suggesting higher order (i.e. > 2) interactions. However, the supe-
rior performance of the PairsG algorithm shows that the Pairs algorithm did
provide a good starting point for the post-processing, by considering the most
important pairs. The Lachiche results are omitted because no improvements
resulted under any conditions.
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Figure 4.5: Detailed results for the Letter dataset, comparing MSU perfor-
mance (larger scores are better) across 50 different experiments, involving ran-
domly varying cost specifications.

Synthetic datasets The first two entries in Table 4.4 summarise the perfor-
mance on the two synthetic datasets. The Pairs and PairsG algorithm perform
best in both cases, with little difference in performance between them. This is
because these datasets suit the Pairs algorithm since there are only pairwise
interactions. The Lachiche algorithm results in no improvement in most cases
for the first dataset, and none at all for the second. The Naive algorithm gen-
erally results in an improvement in performance, but is outperformed by the
Greedy and Pairs algorithms. This is because of the limitation of the Naive
approach, which is prone to local minima. The Pairs algorithm outperforms
the Greedy approach here because all interactions are accounted for. Referring
to Table 4.5, it can be seen that the PairsG algorithm outperforms the Greedy
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algorithm more often as the number of classes increases. This shows that the
pairwise approach scales with increasing C, whereas the Greedy approach be-
comes more susceptible to local minima.

Real datasets Referring to Table 4.4, in general, the PairsG algorithm per-
forms best overall. In the Digits and Satellite cases, the Pairs algorithm per-
forms well (better than the Greedy approach), showing that in some cases the
raw algorithm is robust. This suggests that these datasets may be dominated by
pairwise interactions. In the case of the Letter and Cbands datasets, the Pairs
approach is inferior to the Greedy algorithm, suggesting important higher-order
interactions. The inclusion of the post-processing (PairsG) results in superior
performance, showing that the initial weighting from the pairwise algorithm
is in fact useful. The reason is that the initial Pairs algorithm optimises the
most important interactions for the given conditions, which is a good starting
point. As in the case of the synthetic experiments, the Naive algorithm im-
proves performance rather consistently, but as expected is inferior to the more
sophisticated Greedy approach. The Lachiche algorithm occasionally results in
a significant improvement in performance, but most scenarios result in none
at all. The Cbands dataset shows a scenario where the Greedy algorithm com-
petes in many cases with the PairsG algorithm. This dataset may have many
higher order interactions that are not dealt with effectively due to the pairwise
limitation.

Considering Table 4.5, it can be seen that the PairsG algorithm is generally
better than the Greedy approach. The Letter dataset results in the best PairsG
performance, with 49 out of 50 scenarios favouring this algorithm, whereas only
70% of experiments show superiority in the CBands case. Perhaps the PairsG
algorithm would perform better if more interactions were considered here (i.e.
increasing the AUC threshold tp), but this would significantly increase the
computational burden.

4.2.7 Conclusion

In this paper a practical framework for generalised multiclass ROC analysis was
presented, providing an extension of techniques and analyses commonly used
in 2-class ROC analysis. The computational complexity of multiclass ROC
analysis was discussed as a function of the number of classes and ROC resolu-
tion, showing a computational increase to the power of the number of classes
(−1). This severely limits it’s practical use to problems with a small number
of classes. This limitation was used as the argument for the development of
approximate techniques. For cost-sensitive applications, two simple algorithms
were proposed that use a search paradigm, in which a new cost and prior is
used to direct a search, resulting in new “optimal” operating weights. The
first uses a simple approach that optimises operating weights independently,
ignoring interactions, and the second uses a greedy search with random ini-
tialisations, attempting to account for interactions. Both algorithms extend
linearly with the number of classes C, and are thus tractable for even high C.
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Dataset Algorithm Min Median Best Mean
PRTools8 Naive 0.000 0.027 0.108 0.030

Greedy 0.021 0.054 0.147 0.058
Lachiche 0.000 0.000 0.071 0.002

Pairs 0.023 0.057 0.148 0.060
PairsG 0.023 0.058 0.148 0.061

PRTools16 Naive 0.000 0.022 0.094 0.022
Greedy 0.017 0.047 0.132 0.055
Lachiche 0.000 0.000 0.000 0.000

Pairs 0.019 0.050 0.135 0.057
PairsG 0.019 0.051 0.135 0.057

Letter Naive 0.003 0.015 0.026 0.015
Greedy 0.018 0.027 0.039 0.028
Lachiche 0.000 0.000 0.000 0.000

Pairs 0.014 0.024 0.036 0.024
PairsG 0.021 0.031 0.042 0.032

Cbands Naive 0.000 0.017 0.045 0.019
Greedy 0.013 0.030 0.060 0.031
Lachiche 0.000 0.000 0.000 0.000

Pairs 0.009 0.025 0.054 0.026
PairsG 0.014 0.032 0.061 0.032

Digits Naive 0.005 0.056 0.184 0.064
Greedy 0.033 0.081 0.199 0.090
Lachiche 0.000 0.000 0.164 0.011

Pairs 0.034 0.082 0.199 0.094
PairsG 0.037 0.086 0.201 0.098

Satellite Naive 0.000 0.009 0.084 0.007
Greedy 0.000 0.025 0.120 0.035
Lachiche 0.000 0.000 0.082 0.005

Pairs 0.000 0.033 0.135 0.040
PairsG 0.000 0.034 0.134 0.041

Table 4.4: Comparing the various algorithms for each dataset, summarising
results over 50 different cost-sensitive scenarios. Each value represents the dif-
ference between the algorithm MSU performance and the default classifier per-
formance, showing the minimum (Min), median (Median), maximum (Best),
and mean (Mean) performance across the 50 runs. Larger differences are
favourable. The best performers per statistic are highlighted in bold.

Dataset PairsG > Greedy
PRTools8 80%
PRTools16 96%

Letter 98%
Cbands 70%
Digits 88%

Satellite 74%
Table 4.5: Comparing the Pairwise algorithm with post-processing, with the
Greedy algorithm, indicating the percentage of experiments in which the
PairsG algorithm was superior.

101



However, these approaches do not result in a multiclass ROC, losing the var-
ious benefits, and are susceptible to local minima. The paper then presented
an approximation of the multiclass ROC, called the Pairwise Multiclass ROC,
which is tractable for high C problems. As the name suggests, this algorithm
investigates interactions between operating weight pairs (2-class ROC’s). In
the cost-sensitive case, each ROC pair is optimised to the new priors and costs,
followed by construction of the final operating weight vector. However several
possible pair combinations exist, so the pairwise algorithm considers the various
feasible pairings, and chooses the best one, based on minimum loss. Conceptu-
ally, this results in considering the most interacting pairs, and the most costly
errors, which impact the new situation most significantly. A variety of exper-
iments compared the various approaches, showing consistent benefits (except
the Lachiche algorithm) of the various algorithms over a default unoptimised
classifier in the cost-sensitive case. The naive approach is usually inferior to
the greedy approach, and the pairwise algorithm outperformed the other algo-
rithms in most cases, indicating that it is well formulated, and generally works
well.

It is anticipated that this study will encourage new algorithms and ap-
proaches to tackling the area of multiclass ROC analysis, which will further
diversify the field of statistical pattern recognition into new applications.
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4.3 Efficient multiclass ROC approximation by
decomposition via confusion matrix pertur-
bation analysis

This section has been accepted as ’Efficient multiclass ROC approximation by
decomposition via confusion matrix perturbation analysis’, by T.C.W. Land-
grebe, and R.P.W. Duin, in IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, February 2007.
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Abstract

ROC analysis has become a standard tool in the design and evaluation of 2-
class classification problems. It allows for an analysis that incorporates all
possible priors, costs, and operating points, which is important in many real
problems, where conditions are often non-ideal. Extending this to the multi-
class case is attractive, conferring the benefits of ROC analysis to a multitude
of new problems. Even though ROC analysis does extend theoretically to the
multiclass case, the exponential computational complexity as a function of the
number of classes is restrictive. In this paper we show that the multiclass
ROC can often be simplified considerably because some ROC dimensions are
independent of each other. We present an algorithm that analyses interactions
between various ROC dimensions, identifying independent classes, and groups
of interacting classes, allowing the ROC to be decomposed. The resultant de-
composed ROC hypersurface can be interrogated in a similar fashion to the
ideal case, allowing for approaches such as cost-sensitive and Neyman-Pearson
optimisation, as well as the volume under the ROC. An extensive bouquet of
examples and experiments demonstrates the potential of this methodology.

4.3.1 Introduction

Receiver Operator Characteristics (ROC’s) [22], [11] have become a standard
tool for the design, optimisation, and evaluation of 2-class classifiers. In cost-
sensitive problems the ROC can be used directly to select the best operating
point based on given priors and costs [28]. Similarly Neyman-Pearson type
optimisation can be carried out simply by selecting the operating point corre-
sponding to a specified error [6]. In imprecise environments ROC analysis is
particularly useful since it provides the means to compare competing models
over a range of operating conditions [28]. The Area Under the ROC (AUC)
[3] has become an important performance measure in this regard since it is in-
variant to operating conditions. Fluctuations in performance due to variations
in class abundances can also be analysed, since they are constrained to vary
along the ROC [16].

However the ROC has only been studied primarily in the 2-class case. Ex-
tension to the multiclass case is attractive since it would confer the benefits
of ROC analysis to many more problems in pattern recognition. Recently, a
number of studies in this area have been performed. The 3-class case has been
studied in [23] and [5]. In [18] we generalised the multiclass ROC using a
framework involving weighting of classifier outputs, which are analogous to the
2-class “classifier threshold”. The limitation of the extension was exposed by
showing that the computational complexity is exponential with an increasing
number of classes C, restricting the analysis to problems with low C. In [29]
the ROC convex hull method for comparing classifiers in [27] was shown to
extend theoretically to the C−class case. The Volume under the ROC hyper-
Surface (VUS), which is a generalisation of the AUC, has been studied in [12],
presenting calculations/estimations of the performance bounds of the VUS as
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a function of an increasing number of classes C. In [8], a theoretical study of
the VUS argued that since the VUS of a random classifier approaches that of
a perfect classifier as C increases, the VUS may not in fact be a very useful
performance measure. In [17] we presented a simplified VUS measure that does
extend with C, but these approaches are all limited to low C. The work in [26]
and [13] propose simplified VUS measures that are efficient for high C prob-
lems. The former averages AUC scores between each class, and all remaining
classes, and the latter averages AUC scores between all class pairs.

The area of multiclass cost-sensitive-, and Neyman Pearson- optimisation is
also related to ROC analysis. In the cost-sensitive case, the classifier weight/threshold
optimisation problem has been posed in an optimisation framework. In [14] and
[25], greedy search approaches were developed to optimise a classifier to given
costs/priors, but are prone to local minima. In [18], a naive and greedy ap-
proach was presented, as well as a data-driven approach involving the construc-
tion of 2-class ROC’s between all class pairs. Classifier weights are assembled
from the various ROC pairs based on the given class priors and costs. An evo-
lutionary approach was proposed in [10], attempting to find a global solution
to the optimisation problem. Other related approaches have been proposed in
[4] and [2]. In [7] the theoretical extension of Neyman-Pearson optimisation
to multiclass optimisation was discussed, allowing for the specification of any
element in the confusion matrix. In [15] we presented an algorithm allowing
multiple elements in the confusion matrix to be specified, but a solution is not
always guaranteed.

Even though recent research has tackled several areas involved with multi-
class ROC analysis, an efficient approach to constructing the ROC hypersurface
that scales to large numbers of classes does not exist. This is desirable, since it
would provide a unified tool to perform the various ROC tasks. In this paper
we present such an approach, based primarily on observations of many pattern
recognition problems. These have shown that it is often the case that many
ROC dimensions are independent of each other, based on a perturbation analy-
sis. Exploitation of this allows for the decomposition of the ROC problem into
a number of independent (or approximately independent) groups of classes that
can be optimised independently. These groups are often much smaller than the
original problem, reducing computational requirements drastically. An algo-
rithm is presented that identifies a potential decomposition, involving perturb-
ing the various classifier weights, and inspecting sensitivities in the confusion
matrix. The approach also takes a practical stance for problems that cannot
be decomposed sufficiently. The perturbation analysis provides information on
the most interacting dimensions, guiding the best compromise between ROC
construction accuracy, and computational burden.

The paper is constructed as follows: In Section 4.3.2 a multiclass analysis
framework is formalised, as well as the construction of the multiclass ROC. Next
Section 4.3.3 discusses the potential and consequences of ROC decomposition,
showing how perturbation analysis can be used to study interactions between
ROC dimensions. A case study shows just how effective a decomposition can
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be at reducing unnecessary complexity. The topic of approximate decomposi-
tion as a function of class overlap is studied in Section 4.3.4 via a controlled
experiment, showing results on cost-sensitive experiments and VUS estimations
as a function of class overlap. Section 4.3.5 presents the perturbation analysis
algorithm that inspects sensitivity to perturbations via the confusion matrix in
an efficient manner. A number of experiments are presented in Sec 4.3.6 that
investigate cost-sensitive optimisations using the decomposition in a number of
synthetic and real scenarios. Finally conclusions are presented in Section 4.3.7.

4.3.2 Notation and multiclass ROC analysis

Multiclass analysis framework

The output p(x) of a multiclass classifier consists of C values, corresponding
to classes ω1, ω2, . . . ωC , with d−dimensional measurement vector x. The prior
probability corresponding to class ωi is denoted P (ωi), with class-conditional
density distribution p(x|ωi). The posterior distribution p(ωi|x) can then be

written according to Bayes rule as p(ωi|x) = p(x|ωi)P (ωi)
p(x|ω1)P (ω1)+p(x|ω2)P (ω2)+...+p(x|ωC)P (ωC) .

New objects are assigned by the classifier to the class with the highest output
as per Equation 4.20.

arg
C

max
i=1

p(ωi|x) (4.20)

In the case of class overlap, erroneous classifications occur occasionally. The
multiclass classifier is evaluated via a C ×C dimensional confusion rate matrix
Ξ, showing the respective classification errors between classes (off-diagonal),
and correct classifications (diagonal elements), defined in Table 4.6. The in-
teraction between classes ωi and ωj is denoted ξi,j . Diagonal elements are
superfluous since they are equivalent to the complement of the sum of the off-
diagonal elements in the respective row i.e. ξi,i = 1 − ∑C

j=1 ξi,j , i 6= j. In the
practical case where distributions are unknown, and only representative exam-
ples per class are available, p(ωi|x) is approximated, or replaced by other types
of “confidence-like” measures such as distances to decision boundaries/support
vectors [19] etc. In this case a confusion matrix CM is generated via application
of a representative independent test set. These CM outputs are normalised by
the absolute number of objects Ni per class ωi, N = [N1, N2, . . . NC ]T , result-
ing in the confusion rate matrix Ξ, with ξi,j =

cmi,j

N(i) . In this paper we consider

both theoretical cases with known distributions, and practical problems where
only examples are available.

In order to compute each confusion element ξi,j in the ideal case, the fol-
lowing integration is performed:

ξi,j = p(ωi)

∫

p(x|ωi)Ij(x)dx (4.21)
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Table 4.6: The multi-class confusion rate matrix Ξ defined.
estimated

ξi,j ξi,1 ξi,2 . . . ξi,C

ξ1,j ξ1,1 ξ1,2 . . . ξ1,C

true ξ2,j ξ2,1 ξ2,2 . . . ξ2,C

...
...

. . .

ξC,j ξC,1 ξC,2 . . . ξC,C

The indicator function Ij(x) specifies the relevant domain:

Ij(x) =

{

1 if p(ωj |x) > p(ωk|x) ∀k, k 6= j

0 otherwise
(4.22)

Equation 3.2 allows any confusion matrix output to be computed, generalised
for both diagonal and off-diagonal elements.

Multiclass ROC

The confusion matrix only defines the performance at a single operating point,
valid for a single prior probability situation, and single position of the classifier
thresholds/weights. The classifier thresholds/weights can be manipulated by
weighting the classifier output p(x) by Φ = [φ1, φ2, . . . φC ], φi ≥ 0 ∀i. Equation
4.20 can then be generalised as Equation 4.5. Since the class assignment deci-
sions are relative, this implies that there are C − 1 degrees of freedom, and one
weight can be held constant4.

arg
C

max
i=1

φip(ωi|x) (4.23)

The full operating characteristic, or multiclass ROC, can be generated by con-
sidering all possible values of Φ. The new Ξ resulting from a new classifier
weighting can be calculated by modifying Equation 3.2, resulting in Equation
4.24.

ξi,j(Φ) = φip(ωi)

∫

p(x|ωi)Ij(x|Φ)dx (4.24)

The indicator function Ij(x|Φ) is as in 4.22, except each posterior is multiplied
by the corresponding class weight, i.e.:

Ij(x|Φ) =











1 if φjp(ωj |x) > φkp(ωk|x) ∀k,

k = 1, 2, . . . C, k 6= j

0 otherwise

(4.25)

4It is important to note that there are several manifestations of multiclass classifiers, such
as one-vs-all classifiers, error-correcting codes, etc, which each have architectural parameters
that can be tuned. In this paper we consider only the final classifier, i.e. all parameters have
been set, and define the operating characteristic by the surface resulting from all combina-
tions of classifier weightings only. Any variation of classifier internals would result in a new
classifier, and thus a new operating characteristic
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In the 2-class case, the ROC is monotonically increasing, so efficient generation
of thresholds is typically achieved using ordering of data samples [11]. This is
not the general case, so the approach taken here is to generate a combinatorial
(C−1) dimensional grid of weightings/thresholds, considering all possible com-
binations of inter-class weightings. A total of r different arbitrary weightings
are used, and thus the Φ matrix is rC−1 ×C in size, clearly demonstrating the
exponential computational complexity of generalised ROC analysis (O(rC−1)).
The resolution must be fine enough, and the scale of each weight adequately
chosen to ensure the operating characteristic is well sampled. In this paper r
is typically between 80 and 100, a logarithmic scale is used across the range
{10−3, 103}, and one arbitrary weight is set to 1. For example this leads to
1 × 1018 weightings in the 10-class case, with r = 100. See Figure 4.6 for an
example of a 3-class problem (univariate Gaussians with unit variances, and
means at −0.75, 0.00, and 0.75 respectively), showing the distribution (left),
and three ROC dimensions on the right, with r = 100, and linear resampling.
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Figure 4.6: Example with 3-Gaussian classes, showing the distributions on the
left, and ROC dimensions 1 − ξ1,1, 1 − ξ2,2, and 1 − ξ3,3 on the right.

4.3.3 The potential and consequences of decomposition

The exponential computational requirements (as a function of C) rule out prac-
tical construction of the multiclass ROC for high C problems. However, it may
still be possible to generate an equivalent5 representation in a more efficient
manner if a problem lends itself to this. In some cases, an approximate repre-
sentation may also be useful, if the resultant operating characteristic is suitably
accurate for the given problem.

Consider the problem in Figure 4.7, depicting a 4-class problem between
ω1, ω2, ω3, and ω4, with known distributions (Gaussian distributions with unit
variances, and means µ as follows: µω1

= −8, µω2
= −5, µω3

= 5, and µω4
= 8).

The normalised confusion matrix for the equal prior case, and Φ = [1 1 1 1]
is as follows:

5’Equivalent’ in this sense implies any analysis/measurements based on the new ROC
would return equivalent results to the theoretical case.
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Figure 4.7: Example with known distribution, showing significant interactions.

ξi,j ξi,1 ξi,2 ξi,3 ξi,4

ξ1,j 0.9332 0.0668 0.0000 0.0000
ξ2,j 0.0668 0.9332 0.0000 0.0000
ξ3,j 0.0000 0.0000 0.9332 0.0668
ξ4,j 0.0000 0.0000 0.0668 0.9332

(4.26)

In this problem the multiclass ROC consists of 42 − 4 = 12 dimensions.
However the confusion matrix (and of course the distribution, which is typically
unknown in practical scenarios) suggests that all possible ROC dimensions do
not interact e.g. the output ξ1,3 has a zero value, suggesting no interaction
with ω1.

Theoretically the multiclass ROC requires an analysis of all possible inter-
actions i.e. the impact of the variation of classifier weight φk, 1 ≤ k ≤ C on the
output ξi,j , 1 ≤ i, j ≤ C. However, the example in Figure 4.7 makes it apparent
that in some cases, varying some weights will have no, or little, impact on some
outputs of Ξ. Thus if we perturb φk by ∆φk, it is of interest to understand the
resultant variation (sensitivity) in ξi,j , denoted ∆ξi,j(∆φk). If ∆ξi,j(∆φk) = 0,
then ξi,j is independent of φk. If ∆ξi,j(∆φk) = 0 ∀i, this implies that weight
φk is independent of ωj , i.e. ωj is separable from ωk.

For classes that are completely separable, e.g. ωj , it holds that:

∆ξi,j(∆φk) = 0 ∀i, k (4.27)

What this implies is that no φk ∀k perturbations affect outputs corresponding
to ωj , and thus ωj can be excluded from the ROC calculation6, thus reducing
the computational requirements from O(rC−1) to O(rC−2).

6The classifier weight φj can simply be set to an arbitrary non-zero value, e.g. 1, for all
operating points.
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Another type of conceivable decomposition situation is illustrated in Figure
4.7, in which groups of classes interact independently from other classes/groups
e.g. ωk and ωl are inter-dependent, but independent of ωj ∀j, j 6= k, l. In
this case ∆ξi,k(∆φl) > 0 ∀i, and ∆ξi,l(∆φk) > 0 ∀i, but ∆ξi,k(∆φm) =
0 ∀i,m,m 6= k, l and ∆ξi,l(∆φm) = 0 ∀i,m,m 6= k, l. The implication of
this is that any variations in classifier weights/thresholds φm ∀m,m 6= k, l will
have no impact on outputs ξi,k ∀i and ξi,l ∀i, i.e. all operating points involving
different φm values do not affect ROC dimensions corresponding to the inde-
pendent groups. This in turn implies that the ROC could be decomposed into
it’s constituent groups. So in this example, the original 4-class ROC required
an O(r3) calculation, which can now be broken down into two O(r) calcula-
tions (note that in this example the two groups [ω1, ω2] and [ω3, ω4] are not
theoretically independent because p(x|ωi) > 0,−∞ < x < ∞ ∀i, but p(x|ωi)
becomes negligibly small, allowing for the decomposition). To illustrate the
group independence, in Figure 4.8 it can be seen that a perturbation of φ1

impacts ξ2,1 and ξ1,2, but no significant impact can be seen with respect to ξ3,4

and ξ4,3.
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Figure 4.8: Example with known distribution, with a perturbation of φ1 from
1.0 to 0.1.

This type of analysis could be applied to any trained classifier (given a
representative test set) in an attempt to decompose the ROC as far as possible,
with the objective of obtaining a tractable calculation.

Case study on a 10-class problem

Consider for example the the Digits-Zernike dataset, consisting of 2000 exam-
ples of ten handwritten digits (from ’0’ to ’9’), originating from Dutch utility
maps (available from [24]). In this dataset, Zernike-moments have been ex-
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tracted from the original images, resulting in a 47-dimensional representation
of each digit. This constitutes a 10-class problem, with an ROC complexity
of O(r9). A classifier is trained on half the data, using a principle component
mapping (20 components retained), followed by a Bayes quadratic classifier,
which is then evaluated on the remainder of the data. On the left of Figure 4.9
the resultant normalised confusion matrix is graphically shown.
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Figure 4.9: Normalised confusion matrix for the Digits dataset example, with
unit weighting on the left, and a perturbation of φ7 on the right.

It can be seen that most classes appear approximately separable except for
the 7th and 10th, corresponding to digits ’6’ and ’9’ (which is intuitive since
the representation does not account for orientation). Outputs ξ7,10 and ξ10,7

indicate a large degree of overlap. Perturbing φ7 from 1.0 to 10.0 results in
the normalised confusion matrix shown in the right of Figure 4.9. The result
shows that even though the classifier weighting has varied considerably, the per-
turbation has only affected ξ7,10 and ξ10,7 significantly. Similarly, perturbing
φ10 only impacts ω7 and ω10 outputs significantly. If a thorough perturbation
analysis is applied to the problem (using for example the algorithm presented
later), it would follow that the ROC would be found possible to simplify (ap-
proximately) via decomposition from O(r9) to O(8 + r). This reduces the
intractable calculation by 9 orders of magnitude.

4.3.4 Approximate decomposition

In some problems it may not be possible to decompose the ROC sufficiently for a
tractable calculation due to larger groups/more interactions. In these situations
it may be possible to construct an approximate ROC that is similar to the ideal
case. In the severe case in which there are still many significant interactions,
ROC decomposition may still be useful in accounting for the most prominent
interactions, resulting in a sub-optimal, but nevertheless useful, solution. In
the cost-sensitive optimisation case, the weights obtained from the decomposed
ROC could be treated as a good starting point for a post-processing search
approach (see e.g. evolutionary search in [10], naive and greedy search in [18],
and [25]). This could be performed to account for the smaller interactions that
were ignored.
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In this sub-optimal scenario, the perturbation analysis could be used to find
the most interacting groups, with the least interacting classes excluded from
a group. Consider the example in Figure 4.10, illustrating a 3-class problem
between normal distributions with unit variance, and means at −3.0, 0.0, and
6.0, corresponding to classes ω1, ω2, and ω3 respectively. There is a large degree
of interaction between ω1 and ω2, but only a little between ω2 and ω3. If the
problem is thus decomposed into groups [ω1, ω2] and [ω3], the ROC is reduced
from an O(r2) to an O(r + 1) calculation.
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Figure 4.10: A 3-class problem, with a low degree of interaction between ω2

and ω3.

It is of interest to understand the impact of the simplification in this case.
To assess this, we investigate the difference in performance between the true
ROC and the decomposed version in two different scenarios: firstly a cost-
sensitive optimisation scenario; and secondly by inspecting the impact on the
Volume under the ROC measure.

Cost-sensitive optimisation validation

Referring to the previous example, in this experiment, 50 different random
cost-matrices are generated (from a uniform distribution between 0 and 1), and
priors are set equal (i.e. performance is compared for 50 different operating
points). The C×C dimensional cost matrix S consists of profits on the diagonal,
and costs off-diagonal, denoted si,j for the cost incurred for a misclassification
between ωi and ωj . In the example, C = 3. The experiment is compared (using
the same cost matrices) for several different degrees of interaction between ω2

and ω3 by varying the mean of ω3, (denoted µ3), between 1.0 and 9.0. Thus the
degree of overlap is varied from an extreme to an insignificant degree, allowing
for an analysis of the decomposition consequences for higher and lower degrees
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of interaction. In Figure 4.11 the difference between the loss (Equation 4.28)
obtained via the true ROC (Lgt) is compared to the decomposed ROC loss (Ld)

as a function of µ3. The plot shows the median
Ld−Lgt

Lgt
, as well as the upper

and lower quartiles (distribution is heavily skewed). It can be seen that for a
high degree of interaction (low µ3 values), the decomposed ROC performance
is generally worse than in the case of lower interaction i.e. the loss has not been
reduced as far as possible. For low interaction, there is little difference between
the true ROC and decomposed ROC performance, showing that decomposition
has little impact on performance.

L =
C

∑

i=1

P (ωi)(
C

∑

j=1,i6=j

ξi,jsij) −
C

∑

i=1

P (ωi)ξi,isii (4.28)
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Figure 4.11: Comparing the cost-sensitive optimisation performance between
the ideal and decomposed ROC techniques as the degree of interaction between
ω3 and other classes is varied. The median, and upper and lower quartiles are
shown for each µ3 value.

Volume under the ROC validation

The cost-sensitive experiments validated the decomposition assumption for low
degrees of interaction over 50 different operating points. Another type of ROC
analysis that is important is the Volume Under the ROC hyper-Surface (VUS),
which extends the popular 2-class Area Under the ROC measure [3] to the
multiclass case. The VUS measure allows for an evaluation that encompasses
all operating points. The simplified VUS measure proposed in [17] is used
for this study, that considers only ROC dimensions corresponding to diago-
nal elements of the ROC. These performances are equivalent to the comple-
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ment of a summation of off-diagonal errors in the corresponding confusion
matrix row i.e. ξi,i = 1 − ∑C

j=1 ξi,j . The upper bound is 1.0, and the lower

bound was conjectured to be 1
C! . The VUS measure can be formalised as

V US =
∫

. . .
∫ ∫

ξC,CdξC−1,C−1dξC−2,C−2 . . . dξ1,1. This formulation results
in a measure that extends with C (at the expense of the simplification), and
does not suffer with the limitation as highlighted in [8]. It is also simple to
extend the simplified VUS measure to the decomposed case. Separable groups
imply that VUS scores could be computed per group and multiplied7. In the
3-class example with one separable class, the VUS can be approximated as the
VUS between the [ω1, ω2] group (AUC in this case) multiplied by the VUS for
ω3, which is 1. Thus the VUS is simply the AUC between ω1 and ω2.

The decomposition is compared to the ideal case in terms of VUS as a func-
tion of the degree of interaction in Figure 4.12. In these experiments the full
3-class ROC surface has been generated for each µ3 (following the same proce-
dure as in the cost-sensitive case), as well as the decomposed case, consisting of
a single 2-class ROC (between ω1 and ω2), and an independent dimension (cor-
responding to ω3). The VUS is then computed for the ideal case (V USgt) as
per [17], using 80-steps, and linear resampling. This is compared to the decom-
position VUS approximation (V USd), in which the 2-class VUS is multiplied

by 1.0 to account for the separable dimension. Figure 4.12 shows
V USd−V USgt

V USgt

as a function of the separability of ω3, indicating the accuracy of the VUS
estimation. Note that this VUS is a performance measure i.e. good classifiers
result in higher scores. As in the previous experiments, the results clearly show
that for higher degrees of interaction, the decomposition results in a poorer es-
timation. When the interaction is small, the performance difference becomes
negligible, and the VUS estimate approaches the true value.

4.3.5 Confusion matrix perturbation analysis

The previous sections showed that perturbing weights and analysing the sub-
sequent confusion matrix dynamics is useful for identifying independent ROC
dimensions, as well as independent groups of dimensions. This implies that the
ROC can be decomposed into a number of approximately independent groups.
In this section an algorithm is presented as a general and efficient approach to
recovering this decomposition, with a computational complexity that is linear
with C. The algorithm should also be capable of ignoring smaller interactions,
since it was shown that this has little impact on performance. This may be
important to maintain a reasonable computational complexity.

The decomposition algorithm basically involves inspection of the resultant
confusion rate matrices Ξ as each classifier weight is independently perturbed.
As a starting point, the algorithm considers a “default” un-optimised classifier
(often trained using population or balanced priors) i.e. a single operating point.
It is important that the default classifier is not at an extreme operating point
i.e. where one or more classes has no discriminability, by ensuring φi > 0 ∀i.

7Generalisation and proof of this is the topic of further research.
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Figure 4.12: Comparing the VUS performance as in Figure 4.11, with
V USd−V USgt

V USgt
representing the difference between the ideal and the decomposed

calculation.

Algorithm

In the first step of the decomposition, each weight φi is perturbed independently
of other weights φj ∀j, j 6= i, with φj weights held constant at fixed values
cj , 1 ≤ j ≤ c, j 6= i, cj 6= 0 (e.g. cj = 1 ∀j). The weight φi is successively
varied across the range {10α1 ; 10α2}, ranging from very small to large values.
In practice a log10 scale is used between the extrema α1 = −3 and α2 = 3, with
r steps (the same scale as used to generate the multiclass ROC). Each of the r
perturbations result in a new Ξ, denoted Λi, as formulated in Equation 4.29,
with dimensionality C ×C × r. The weight perturbation procedure is repeated
for each weight, resulting in C of these Λ structures.

Λi = ξj,k(Φi(Θ)) ∀j, k (4.29)

The perturbation matrix Φi(Θ) is constructed as follows (the subscript i spec-
ifies the column at which to apply the perturbation):

Φi(Θ) =











c1 c2 . . . ci−1 θ1 ci+1 . . . cC

c1 c2 . . . ci−1 θ2 ci+1 . . . cC

...
c1 c2 . . . ci−1 θr ci+1 . . . cC











(4.30)

The logarithmic perturbation vector Θ = [θ1, θ2, . . . , θr] is calculated given the
number of steps r across the range {10α1 , 10α2} as follows:

Θ = [10α1 , 10(α1+
α2−α1

r−1 ), 10(α1+2
α2−α1

r−1 ), . . . 10(α1+(r−2)
α2−α1

r−1 ), 10α2 ] (4.31)
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The Λ data cubes contain information pertaining to dependencies between
ROC dimensions, and a particular weight. The dependencies are revealed by
simplifying the C×C×r-dimensional Λi matrices into C×C matrices, denoted
Λs

i . These depict the sensitivity range of each Λi output. Each element of Λs
i

corresponding to the jth row, and kth column can be derived from Λi as shown
in Equation 4.32.

Λs
i(j,k) = ∆Λi(j,k)

= max(Λi(j,k,l)) − min(Λi(j,k,l))∀l, 1 ≤ l ≤ r
(4.32)

The C × C-dimensional Λs
i matrix can then be written as:

Λs
i =











∆Λi(1,1) ∆Λi(1,2) . . . ∆Λi(1,C)

∆Λi(2,1) ∆Λi(2,2) . . . ∆Λi(2,C)

...
∆Λi(C,1) ∆Λi(C,2) . . . ∆Λi(C,C)











(4.33)

This representation now summarises the degree of interaction that occurred
due to the perturbation analysis for each ROC dimension. It is important to
note that these “sensitivities” are the key to an algorithm that can recover the
decomposition independent of the default classifier operating point (provided it
is not extreme). For example, a particular operating point may result in some
finite Ξ output on say ξi,j . A different operating point may result in a different
ξi,j output. If this output is (approximately) independent of a certain weight
φk, even though the ξi,j values differ in both cases, the sensitivity as mea-
sured by Λs would be negligible, irrespective of the operating point. A heavily
interacting ROC dimension would result in large sensitivities independent of
operating point.

The next step of the algorithm involves simplifying the Λs
i matrices into

1 × C-dimensional vectors, denoted Λv
i . These vectors simply consider the

most interacting ROC dimension per class, with respect to φi. This simplifi-
cation is justified because if any ROC dimensions interact with φi, we cannot
simplify the ROC. These maximal sensitivity vectors are defined in Equation
4.34, calculating of the largest interaction per class.

Λv
i = [max Λs

i(k,1), max Λs
i(k,2), . . . max Λs

i(k,C)]∀k (4.34)

The Λv vectors can then be used to decompose the problem directly. This is
achieved by comparing each Λv

i ∀i. To simplify this analysis, the Λv vectors
can be binarised, with all “sensitive” entries set to 1, and insensitive ones to 0.
This is also the point at which interactions considered to be insignificant can be
eliminated by introducing a sensitivity threshold ts. The binarised sensitivity
vectors, denoted Λvb

i for ωi can be written as in Equation 4.35 for each element
k of Λv

i , denoted Λv
i(k), 1 ≤ k ≤ C.

Λvb

i(k) =

{

1 if Λv
i(k) > ts

0 otherwise
(4.35)
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Choosing an appropriate ts is achieved by inspecting Λv
i . Interacting classes

typically result in large values, whereas values corresponding to approximately
independent groups are much smaller. Thus ts should be set just larger than
the smallest ”insignificant” interaction, as justified by the study in Section
4.3.4. Importantly, ts can also be used to limit the computational burden by
restricting the maximum group size. In this case ts is chosen to obtain at
most M groups. In this scenario the decomposition may not result in optimal
performance, but may nevertheless be a reasonable approximation since the
most interacting classes are accounted for.

The decomposition is now complete. Common values of 1 in the columns
of the Λvb vectors indicate which classes interact with which weights. A 0
in the Λvb

i columns indicates which classes are independent of which weights.
Additionally, if only a single element in any Λvb

i is 1, this indicates that the
corresponding class is independent, and can be removed from the ROC calcu-
lation. In this case a fixed non-zero weighting could be used for all operating
points.

Illustration of algorithm

The algorithm is presented via a running example for clarity, consisting of
4 Gaussian-distributed classes ω1, ω2, ω3, ω4, with means occurring at µ1 =
−8, µ2 = 0, µ3 = −6, and µ4 = 5, and 0.5 variances (plotted on the left of
Figure 4.13).
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Figure 4.13: Probability density functions for the 4-class example with known
distributions on the left, with default Ξ for the example on the right (Φ =
[1 1 1 1]).

It can be seen that classes ω1 and ω3 interact together significantly, approx-
imately independently of the near-separable ω2 and ω4. For reference purposes,
the normalised confusion matrix Ξ for an equal prior is shown on the right of
Figure 4.13, illustrating interclass errors and intraclass performances for a fixed
operating point (this is referred to as the default confusion matrix).

Figure 4.14 presents some Λ slices for the example, shown for 3 different
weightings (the 4 columns correspond to Λ1,Λ2,Λ3, and Λ4 respectively). It
can be seen that varying φ1 or φ3 affects both ω1 and ω3 outputs significantly
in each case, whereas ω2 and ω4 perturbations have little effect on any outputs,
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suggesting independence. The Λ matrices thus provide a mechanism to assess
the dependence between a particular weight, and the various ROC dimensions.
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Figure 4.14: Slices of Λ for the 4-class example for a number of different Φ
weightings, shown above each plot.

Next the Λ matrices are simplified into C × C-dimensional sensitivity ma-
trices Λs, as depicted in Figure 4.15. These show clearly that there is an
interaction between ROC dimensions ξ1,1, ξ1,3, ξ3,1, and ξ3,3.

The most interacting ROC dimensions per class are then identified via Equa-
tion 4.34, resulting in the following Λv vectors:

Λv
1 = [0.8554 0.0000 0.8554 0.0000]

Λv
2 = [0.0000 0.0058 0.0003 0.0055]

Λv
3 = [0.8554 0.0003 0.8558 0.0000]

Λv
4 = [0.0000 0.0055 0.0000 0.0055]

(4.36)

These are then binarised via Equation 4.35, resulting in Λvb , using ts = 0.01,
resulting in:

Λvb

1 = [1 0 1 0]
Λvb

2 = [0 0 0 0]
Λvb

3 = [1 0 1 0]
Λvb

4 = [0 0 0 0]

(4.37)
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Figure 4.15: Sensitivity matrices Λs for the 4-class example, resulting from a
sensitivity analysis of the Λ structures.

The decomposition groupings for the example are thus [ω1, ω3], [ω2], and [ω4],
reducing the O(r3) calculation to O(2 + r).

The necessity of sensitivity analysis

At first glance it could be reasoned that a confusion matrix at any operating
point is useful in identifying dependent and independent ROC dimensions.
Theoretically this is true (ξi,j = 0 if ωi is independent of ωj , irrespective
of the operating point), but from a practical standpoint it is of interest to
get some measure of how sensitive various dependencies are to variations in
operating point. To emphasise this rather subtle point, consider the 3-class
problem in Figure 4.16, between ω1, ω2, and ω3. The first class consists of a
bimodal Gaussian distribution with means at 0.0, and 7.5, modal weightings of
0.95 and 0.05 respectively, and variances of 0.5. The second and third classes
are unimodal Gaussians with variances of 0.5, and means at −3.0 and 8.0
respectively. Two different operating points are investigated, consisting of a
near-balanced weighting on the left, and a more imbalanced setting on the
right.

The following Ξ results correspond to the operating points depicted in Fig-
ure 4.16:

ξi,j ξi,1 ξi,2 ξi,3

ξ1,j 0.9273 0.0227 0.0500
ξ2,j 0.0142 0.9858 0.0000
ξ3,j 0.0000 0.0000 1.0000

(4.38)

ξi,j ξi,1 ξi,2 ξi,3

ξ1,j 0.9508 0.0018 0.0474
ξ2,j 0.1016 0.8984 0.0000
ξ3,j 0.0119 0.0000 0.9881

(4.39)
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Figure 4.16: Comparing two operating points for a 3-class problem, with close
to a balanced weighting on the left, and a more imbalanced weighting on the
right.

Inspection of the first Ξ may lead to the (false) conclusion that the prob-
lem is approximately separable, since all off-diagonal elements are relatively
small. However, the second Ξ makes it apparent that there is a large interac-
tion between ω1 and ω2. Thus it can be reasoned that in attempting to find
significantly interacting ROC dimensions, it is important to inspect some sensi-
tivity to variations in operating point. Perturbation analysis can identify these
“weakly”-interacting dimensions independent of the default operating point.

4.3.6 Experiments

Overview

The efficacy of the ROC decomposition approach is demonstrated via a number
of experiments in cost-sensitive scenarios, involving large numbers of classes.
Two experimental sets are presented, the first consisting of synthetic examples
that demonstrate performance in ideal circumstances, and the second consisting
of realistic examples, that are not necessarily ideal.

The experimental protocol is as follows: each dataset is analysed separately,
and a competitive classifier is chosen based on minimisation of the equal error-
rate ξeq = 1

C

∑C

i=1

∑C

j=1 ξi,j , i 6= j. Each classifier is evaluated via a 10-fold
cross-validation procedure, with 80% of data used for training, and the re-
mainder for testing. The multiclass decomposition algorithm (called Decomp)
is applied to each test set, with a decomposition threshold ts (applied via
Equation 4.35) chosen to suit the problem, or to keep the maximum decom-
position size smaller than 5 (this constrains the computational complexity to
O(r3)). Subsequent to the decomposition analysis, the decomposed multiclass
ROC is generated, with r = 80. The experiments involve computing the over-
all loss (Equation 4.28) for 50 different randomly generated cost-matrices, and
balanced priors, effectively evaluating performance at 50 different operating
points. Since the experiments involve problems with high C, it is not possible

122



to compute the optimal classifier weightings (as was done in the 3-class case in
Section 4.3.4).

The evaluation approach taken is to compare the loss obtained via the
Decomp approach with 3 other (non ROC-based) cost-sensitive optimisation
approaches. Optimisation is with respect to a single operating point, and thus
the algorithms cannot be used for other ROC tasks (such as computing the
VUS), but are nevertheless useful as a benchmark in this application. The
first approach, denoted Simple, uses an extremely basic, but fast method for
choosing the classifier weights. Each weight is optimised by considering the
overall cost per class, multiplied by priors. So for ωi, the corresponding weight
φi = p(ωi)

∑C

j=1 sij . Both intra-class costs and interactions are ignored, but the
approach is nevertheless fast, and occasionally yields good performance. The
other two approaches benchmarked against are two search-based algorithms,
called the Naive and Greedy algorithms respectively [18], the first of which is
a slight modification of the algorithm in [14]. These algorithms attempt to
optimise classifier weights according to given priors and costs using a search
paradigm. The Naive algorithm optimises each classifier weight independent
of others, ignoring possible interactions between weights. The Greedy algo-
rithm attempts to account for some interaction by tuning successive classifier
weights randomly, dependent on previously optimised weights. The algorithm
is repeated 3 times in experiments with random initialisations in an attempt
to avoid local minima. Note that other cost-sensitive optimisation algorithms
are possible, as discussed in Section 4.3.1, which is currently an active area of
research. A final algorithm that is implemented involves a post-processing step
applied to the ROC decomposition algorithm, attempting to overcome the inde-
pendence assumption of the decomposition. This post-processing step involves
a “constrained” Greedy algorithm, in which the output of the decomposition
is used as an initialisation. The algorithm is “constrained” in the way that
relative weightings in groups (identified by the decomposition) are unaltered,
but classifier weights between groups or independent classes may be varied.
This final algorithm is called the DecompG algorithm, with 3-iterations of the
post-processing used in experiments.

Synthetic experiments

Three experiments have been constructed in order to compare the performance
of the various algorithms in an ideal scenario. Each experiment consists of a
number of identical, independent 2-class and 3-class clusters, in which data
has been drawn from a unit-variance Gaussian distribution in two dimensions,
with a repeating of these clusters by varying the means only. The means
of the 2-class clusters are a distance of 3.0 apart. The means of the 3-class

clusters are
√

29
4 apart between the first and second class,

√
8 between the

first and third, and
√

37
4 between the second and third. The first experiment

is an 8-class problem with one 2-class cluster, and two 3-class clusters. The
second experiment is a 16-class problem, repeating the same structure as the
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8-class case, staggered in feature space, as shown in Figure 4.17. Finally the
third experiment consists of a 40-class problem, with five repetitions of the 8-
class structure. In each experiment, a Bayesian quadratic classifier is used.To
illustrate a typical experiment, a cost-sensitive example is presented for the
16-class case. The following cost matrix is passed to Decomp algorithm:

2 4 6 8 10 12 14 16

2
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0.02

0.04

0.06

0.08

0.1

0.12

The default unoptimised classifier results in a loss of 0.3079 in this example,
with the solid line in Figure 4.17 representing the respective decision bound-
ary. The Decomp algorithm attempts to minimise this by finding a new set of
classifier weights, resulting in a loss of 0.1993, which is better than the default
case. The following classifier weights result:

Φ∗ = [1.000 0.323, 0.005, 1.216, 0.651, 0.377, 0.377, 5.356,
0.515, 0.476, 0.761, 0.019, 0.218, 0.276, 0.037, 1.124]

(4.40)

The dashed line in Figure 4.17 depicts the decision boundary resulting from
the Decomp algorithm, deviating significantly from the default case.

In Table 4.7 the results of the synthetic experiments are shown. The ta-
ble shows the number of times (out of the 50 cost-sensitive experiments) that
the decomposition algorithm is better (Won), or worse (Lost) than other ap-
proaches. Significance is tested via Analysis Of Variance (ANOVA), with the
number in parenthesis stating the number of experiments that are significantly
better/worse based on a 95% confidence i.e. for each new cost situation, the dif-
ference between the Decomp and other algorithm performance is compared for
each fold. The variability across algorithms and folds is incorporated into the
ANOVA test. The approaches compared are the Simple approach, as well as
the two search-based algorithms, Naive and Greedy. The number of wins/losses
is computed by comparing the mean performance for each experiment over the
10 cross-validation folds. A decomposition threshold ts of 0.08 was used for
all three datasets. The following computation reduction due to decomposi-
tion resulted for the 8-class, 16-class, and 40-class cases respectively (denoted
Synth8C, Synth16C, and Synth40C ):
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Figure 4.17: Scatter plot for the 16-class synthetic dataset. The solid line is
the decision boundary of the default classifier, and the dashed line is that of
the operating point provided by the Decomp algorithm for a particular cost.

• Synth8C : O(r7) reduces to 2O(r2) + O(r)

• Synth16C : O(r15) reduces to 4O(r2) + 2O(r)

• Synth40C : O(r39) reduces to 10O(r2) + 5O(r)

It can be seen that for all 3 datasets, the Decomp algorithm is consistently
better than the Simple case, significant for all experiments. This shows that
the Decomp algorithm was able to improve classification performance for all
conditions. Similarly, the Decomp algorithm is consistently better than the
Naive approach, which is expected since the latter approach ignores interactions
that are present between the various clusters. In the Greedy case it can be seen
that it occasionally competes in the 8-class case, showing that it is better able
to account for interactions than the Naive algorithm. However, in the other
two datasets with larger numbers of classes, the Decomp algorithm dominates.
The Decomp algorithm scales easily with the number of classes, whereas the
Greedy algorithm becomes more susceptible to local minima. These results
demonstrate efficacy of the decomposition approach up to large numbers of
classes in ideal circumstances.
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Table 4.7: Results of synthetic experiments, comparing results obtained using
the decomposition algorithm to the Simple case, as well as to the Naive and
Greedy algorithms. Each comparison shows the number of experiments (out
of 50) that the Decomp algorithm was superior (won), and inferior (lost). The
number exceeding 95% statistical confidence is shown in parenthesis.

Dataset Simple Naive Greedy
Lost Won Lost Won Lost Won

Synth8C 0 (0) 50 (50) 0 (0) 50 (50) 8 (1) 42 (16)
Synth16C 0 (0) 50 (50) 0 (0) 50 (50) 3 (0) 47 (34)
Synth40C 0 (0) 50 (50) 0 (0) 50 (50) 0 (0) 50 (49)

Experiments with real datasets

The experiments undertaken consider a number of datasets with varying num-
bers of classes, as described in Table 4.8. Competing classifiers were chosen by
minimisation of the equal error-rate ξeq over 10-folds. In the Table, “fish” is
a Fisher projection, with the weighted pairwise Fisher mapping [20], denoted
“nlfish”. Classifiers are denoted “ldc”, “qdc”, and “mogc”, which are Bayes
linear, quadratic, and mixture of Gaussians classifiers respectively, with the
latter followed by the number of mixtures used per class. The Table also shows
the resultant computational reduction due to decomposition for one fold (this
is usually quite stable over folds, but does vary occasionally).

In many of the experiments, an ideal decomposition with a low enough
computational complexity did not result, so an approximate decomposition
was forced using the decomposition threshold. This often resulted in poor
performance because some significant interactions were ignored. The DecompG
algorithm discussed earlier attempts to cope with these limitations.

Table 4.8: Important dataset statistics, showing the dataset source, the number
of objects, classes, and dimensions (d). The classifier chosen is also shown, fol-
lowed by the equal error-rate ξeq (with standard deviation), the decomposition
threshold used, and the resultant computational reduction due to decomposi-
tion.

Dataset Source Objects C d Classifier ξeq ts Decomposition

Delve [1] 2310 7 16 fish qdc 13.10(1.27)% 0.20 2O(r2)
Soybean [24] 562 15 35 ldc 5.20(2.29)% 0.05 O(r3)
Dermatology [24] 358 6 34 fish ldc 4.09(1.56)% 0.04 O(r2)
Satellite [9] 6435 6 17 fish mogc2 15.39(0.87)% 0.50 O(r2) + O(r)
Segmentation [24] 2310 7 19 fish qdc 7.92(1.15)% 0.40 2O(r2)
Nist [30] 2000 10 256 nlfish mogc2 10.90(1.37)% 0.20 O(r2) + 2(r)

Comparing the Decomp and Naive results, it can again be seen that the
former algorithm is usually superior, but in the Nist dataset it is outperformed.
An oversimplified decomposition is attributed to this, but this limitation is
again overcome by the DecompG algorithm. Considering the Greedy results,
the Decomp algorithm is often beaten, but the DecompG algorithm appears
superior in most cases. In the Nist case, the DecompG and Greedy algorithms
result in very similar performances. The post-processing step is thus important
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to refine results when an over-simplified decomposition is used.

Summary

The experimental results show that in some datasets, a very efficient decom-
position can be created, resulting in good performance. In these cases there
are only a few (significantly) interacting ROC dimensions. In other datasets,
there are fewer independent groups/large groups, and thus for computational
reasons the decomposition must be oversimplified. In these cases the DecompG
algorithm is important, helping to overcome these limitations.

Table 4.9: Results of real experiments for the Decomp algorithm, following the
same format as Table 4.7.

Dataset Simple Naive Greedy
Lost Won Lost Won Lost Won

Delve 0 (0) 50 (46) 3 (0) 47 (40) 24 (2) 26 (17)
Soybean 0 (0) 50 (50) 0 (0) 50 (49) 19 (0) 31 (2)
Dermatology 0 (0) 50 (42) 0 (0) 50 (46) 46 (0) 4 (0)
Satimage 22 (16) 28 (15) 8 (4) 42 (33) 45 (29) 5 (2)
Segmentation 1 (0) 49 (48) 0 (0) 50 (47) 45 (4) 5 (0)
Nist 45 (1) 5 (0) 43 (8) 7 (0) 50 (50) 0 (0)

Table 4.10: Results of real experiments for the DecompG algorithm, following
the same format as Table 4.7.

Dataset Simple Naive Greedy
Lost Won Lost Won Lost Won

Delve 0 (0) 50 (47) 0 (0) 50 (45) 0 (0) 50 (28)
Soybean 0 (0) 50 (50) 0 (0) 50 (49) 7 (0) 43 (7)
Dermatology 0 (0) 50 (49) 0 (0) 50 (50) 0 (0) 50 (0)
Satimage 0 (0) 50 (34) 0 (0) 50 (45) 7 (0) 43 (11)
Segmentation 0 (0) 50 (49) 0 (0) 50 (50) 4 (0) 46 (4)
Nist 0 (0) 50 (49) 0 (0) 50 (49) 21 (0) 29 (0)

A final result is presented in Figure 4.18 in order to give some indication
of how much improvement, on average, the DecompG algorithm gives over the
default case (i.e. no optimisation performed). A useful measure to consider
here is the Mean Subjective Utility score (MSU) [21]. The MSU score scales
the resultant loss L obtained between 0 and 1 (higher scores are better), based
on the given priors and costs. This is more meaningful than L in assessing the
absolute improvement, since L scales according to costs and prior probabili-
ties. In Figure 4.18, the default MSU scores are subtracted from the DecompG
algorithm scores for each dataset. The median of each cost-sensitive experi-
ment (over the 10 folds) is considered, resulting in 50 MSU scores. The figure
shows the median of these scores, together with the respective upper and lower
quartiles. It can be seen that in some cases the new operating points improve
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performance by over 8%, which illustrates how beneficial the optimisation can
be.
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Figure 4.18: Plot showing the median improvement (%) in performance that
the DecompG cost-sensitive algorithm gives over the default case, across the
various datasets.

4.3.7 Conclusion

This paper has considered the construction of multiclass ROC curves, pointing
out that even though this is theoretically possible, the exponential computa-
tional complexity with an increasing number of classes (C) is severely restric-
tive. It was argued, however, that many practical problems can be simplified,
because not all of the C2 −C ROC dimensions interact (significantly). In fact,
in some cases there are only a few interacting dimensions, with the consequence
that the ROC can be decomposed into a number of lower dimensional groups.
This reduces the computational complexity drastically. The consideration of
approximate decomposition was discussed, showing that if there is only a small
degree of interaction between two decomposed groups, the interaction can be
ignored since it does not have a significant impact on performance. This was
shown on an example for both cost-sensitive optimisation experiments, and via
a simplified volume under the ROC hypersurface study. Approximate decom-
position allows for a more efficient ROC construction, which is required for
many real problems.

An algorithm has been proposed that identifies independent classifier weights
and groups of weights, given a trained classifier at an arbitrary operating point,
and a representative test set. The algorithm inspects the sensitivity of each
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ROC dimension to variations of each classifier weight, and has a computational
complexity that is linear with increasing C. A number of cost-sensitive optimi-
sation experiments were conducted, involving synthetic experiments in ideal cir-
cumstances, and realistic ones with no restrictions. The synthetic experiments
showed the efficacy of the proposed methodology in problems up to 40 classes,
outperforming the unoptimised classifier significantly in all experiments, and
outperforming two search-based techniques. Experiments with real datasets
showed that the decomposition approach is generally significantly better than
the unoptimised case. In many cases it was found that the search-based ap-
proaches competed or dominated, attributed to oversimplified decomposition
(required for computational reasons). A modified algorithm was also imple-
mented that uses a search approach as a post-processing step. This proved to
perform better, helping to overcome the limitation of the over-simplification.

The theoretical arguments and experiments make a strong case for this type
of methodology for general multiclass problems in pattern recognition, scaling
with large numbers of classes. This may form the basis for important future
works, generalising the various useful tools used in 2-class ROC analysis to
multiclass problems.
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Chapter 5

Operating characteristics
for classifier design in
ill-defined problems
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5.1 Overview

In some pattern recognition problems, a well-defined ”target” class is to be
discriminated from a ”non-target” class that is less well-defined. For example,
new unseen clusters may occur in the ”non-target” class. One strategy to deal
with this situation is to use one-class classifiers [5] that model the ”target”
class, and enclose the feature space occupied by this class, providing protec-
tion against a poorly defined ”non-target” class. A second strategy is to use
the distance-based reject-option [2], that uses a supervised classifier trained
between known classes, with an internal classifier thresholding to enclose the
classes of interest, providing protection from unseen classes. This thresholding
could be based on, for example, class conditional density estimates, or distances
in the case of classifiers such as nearest-neighbour, or support vector classifiers.

The objective in these problems is good discrimination between known
classes, and effective rejection of objects from new/unseen classes. The first
part of this chapter presents an alternative strategy to perform this task. A
two-stage classifier is used, consisting of a one-class and a supervised classi-
fier, which perform the tasks of rejection and classification respectively. The
advantage of this approach is that models can be optimised to perform the
two respective tasks separately. The second part of this chapter applies the
convenience of operating characteristics to this area in order to investigate the
interaction between classification and rejection performance. This has been
a neglected topic to date, but is nevertheless important because increasing
rejection performance is at some expense of classification performance (and
vice-versa). Operating characteristics can indicate an appropriate threshold
selection.

Important further work in this area involves the evaluation of the reject per-
formance. Since the ”non-target” information is not reliable, a typical approach
used is to measure the volume occupied by the target class description (lower
volumes are less likely to accept randomly-distributed ”non-target” objects).
This becomes challenging as the dimensionality increases, and thus approaches
such as those described in [6] and [3] have been used to date. Another inter-
esting open area involves inspecting the sensor domain, and it’s relation to the
feature-space representation. Since real-world sensors, and possibly representa-
tion schemes, are bounded, this bounds the potential location of ”non-target”
objects in feature space. Incorporating this information could be important for
improving rejection-system design. Another related topic that has potential to
tackle many new problems in a pattern recognition framework is domain-based
classification [4], and the related topic of sensor-drift [1].
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5.2 A combining strategy for ill-defined prob-
lems

This section has been published as ’A combining strategy for ill-defined prob-
lems’, by T.C.W. Landgrebe, D.M.J. Tax, P. Pacĺık, and R.P.W. Duin, and
C.M. Andrew, in Fifteenth Annual Symposium of the Pattern Recognition As-
sociation of South Africa, 57-62, November 2004
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Abstract

In this paper we present a combining strategy to cope with the problem of clas-
sification in ill-defined domains. In these cases, even though a particular target

class may be sampled in a representative manner, an outlier class may be poorly
sampled, or new outlier classes may occur that have not been considered during
training. This may have a considerable impact on classification performance.
The objective of a classifier in this situation is to utilise all known information
in discriminating, and to remain as robust as possible to changing conditions.
A classification scheme is presented that deals with this problem, consisting of
a sequential combination of a one-class and multi-class classifier. We show that
it can outperform the traditional classifier with reject-option scheme, locally
selecting/training models for the purpose of optimising the classification and
rejection performance.

5.2.1 Introduction

Consider a problem in which a target class is to be discriminated with respect
to an outlier class. In many applications, both classes are sampled as a set
of measurements in order to construct a training set that represents the class.
A classifier can then be designed, for example, by estimating the class condi-
tional densities for both classes. Good estimates allow for an optimal tradeoff
to be made between the classes. However in some applications some classes
may not be well-defined. In this paper we assume that the target class is well
represented, but the outlier class is not. This may be due to a variation in
outlier class distribution, such as sensor drift [3], or new outlier classes may
be present that were not represented during training. Examples of this phe-
nomenon include:

• Diagnostic problems in which the objective of the classifier is to identify
abnormal operation (outlier class) from normal operation (target class)
[4]. It is often the case that a representative training set can be gathered
for the target class, but due to the nature of the problem the outlier class
cannot be sampled in a representative manner. For example in machine
fault diagnosis [12] a destructive test for all possible abnormal states may
not be feasible.

• Recognition systems often involve a detection and classification stage. An
example is road sign classification, in which a classifier needs not only to
discriminate between examples of road sign classes, but must also reject
non-sign class examples [7]. Gathering a representative set of non-signs
may not be possible. Similarly face detection [9], where a classifier must
deal with well-defined face classes, and an ill-defined non-face class, as
well as handwritten digit recognition [6], where non-digit examples are a
serious issue.

The goal of a classifier in these cases is to obtain a high true positive rate and
low false positive rate, with respect to the target class. Even though the outlier
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class is poorly defined, we would still like to make use of all knowledge that
exists for the problem (to account for known class overlaps). Thus the objective
is to obtain a high classification performance, and robustness to changes in
the outlier class (referred to as rejection performance). Formalisation and
consequences of this problem are given in Section 5.2.2.

Previous work in this area has typically been the classifier with reject-option,
first proposed by Chow in [2], often called the ambiguity reject-option. In this
reject-option, when the cost of misclassification is higher than the cost of rejec-
tion, the example in question should be rejected, based on thresholding of the
posterior probability. This reject-option is applicable for handling ambiguity
between classes (examples close to the target class), which is not of interest
here. In this paper we are interested in rejecting examples occurring far away
from the target class. Dubuisson and Masson proposed the distance reject-
option in [4]. This rejection scheme was designed to cope with the condition in
which new classes are present that are not represented during training, intro-
ducing a different type of reject class ωr. New examples situated a particular
distance (based on a reject threshold td) from known class centroids are re-
jected. A similar procedure can be applied to density-based classifiers, except
here the class conditional density is thresholded. In this way a closed decision
surface is obtained, providing protection against new unseen classes1. New
classes will be rejected if they fall outside the class description. Thus to min-
imise the probability of accepting examples from class ωr, assuming they are
uniformly distributed in feature space, the volume of the description should be
minimised. The reject-option is discussed further in Section 5.2.3.

The limitation of the reject-option approach is that a model chosen for
good classification performance does not necessarily imply good rejection per-
formance. The opposite is also true. Improved performance may result from a
practitioner viewpoint if an adequate evaluation methodology is used. However
as will be discussed later, since the same model is used for classification and
rejection, we may have to sacrifice the performance of one for the other. In this
paper we present a classification strategy that can in some cases alleviate this
situation, consisting of a sequential combination of one-class and multi-class
classifiers (called SOCMC ). The proposed 2-stage scheme allows both rejec-
tion and classification performance to be explicitly modified by varying the
respective models and representations. Thus a classifier model can be designed
to obtain good performance on known classes, and a separate classifier model to
improve robustness with respect to unknown classes. The SOCMC is discussed
in Section 5.2.4.

A number of experiments are performed to investigate the SOCMC ap-
proach in Section 5.2.5. All experiments benchmark SOCMC results with the
distance-based reject option, as well as with traditional discriminant-based ap-
proaches. Experiments are performed on a number of real datasets, showing
the applicability of the new approach. Finally, conclusions are given in Section
5.2.6.

1This thresholding of a single class model is equivalent to one-class classification [10].
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5.2.2 Ill-defined problems

To formalise this problem, we assume that there is a well defined target class ωt,
and the outlier class is composed of two classes ωo and ωr, where the former
consists of known class information, and the latter of unknown information
(called the reject class). Note that in this setup, we classify examples considered
to be either ωo and ωr as outlier. Examples of each class are composed of
vectors of measurements x with dimensionality d. It is assumed that x is
represented by a feature space χ (later we discuss classifiers that operate on
the data in new feature spaces, consisting of various mappings of the original
space χ). The unconditional density p(x) can then be written as in Equation
5.1.

p(x) = p(ωt)p(x|ωt) + p(ωo)p(x|ωo) + p(ωr)p(x|ωr) (5.1)

To evaluate classifiers in this situations, two performance measures are of in-
terest:

1. The classification performance (performance between known classes/data),
denoted perf(ωt, ωo).

2. The rejection performance (performance between the ωt and ωr), denoted
perf(ωt, ωr).

Ideally both perf(ωt, ωo) and perf(ωt, ωr) should be high. Note that estimation
of perf(ωt, ωr) is not straightforward, since this class is by definition absent
during training. In the experimental Section 5.2.5 a methodology is given to
provide some estimate of this. In Figure 5.1 an example of this problem is
shown, demonstrating the weakness of general discrimination approaches with
respect to this problem. Here a synthetic dataset has been constructed in two
dimensions. In the left image, the training set consisting of ωt and ωo is shown,
upon which a Bayes quadratic classifier is shown. In the right image the testing
situation is shown, in which a new class ωr is present. The classifier is clearly
not robust to these changes in conditions.

Two classification approaches are utilised in this paper. The first are multi-
class classifiers (sometimes referred to as MCC’s/discriminators). In this paper,
we deal specifically with two-class discriminant classifiers, denoted DMCC . A
classifier trained on ωt and ωo can be defined as in Equation 5.2, with p̂(ω|x)
representing an estimate of the posterior probability of class ω. These classifiers
result in an open decision boundary, since it is assumed that ωt and ωo are well
represented.

DMCC :

{

target if p̂(ωt|x) > p̂(ωo|x)

outlier otherwise
(5.2)

The second classification approach used is one-class classification (sometimes
referred to as OCC’s), denoted DOCC [10]. These classifiers are trained on only
a single class, resulting in a closed description of the class density or domain.
No assumptions about other classes are made, and thus these classifiers do not
make a trade-off between overlapping classes. The decision boundary is however
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Figure 5.1: Illustrating a discrimination classifier applied to the problem in
which a new unseen class is present in testing. The left plot shows the classifier
decision boundary for the training data, and the right plot for the testing data,
in which a new class ωr is present. A Bayes quadratic classifier is used.

constrained/closed, i.e. all objects situated outside the class description are
rejected as outliers, providing protection against new, unseen classes. The
OCC description/model is trained, with some allowance made for outliers in
the training set by adjusting a decision threshold θ. The DOCC can be written
as in Equation 5.3, classifying all objects as either target or outlier.

DOCC :

{

target if p̂(x|ωt) > θ

outlier otherwise
(5.3)

5.2.3 The classifier with reject-option

As previously mentioned, the original reject option (ambiguity reject) [2] rejects
objects that are considered to be ambiguous, based on a threshold td. For an
incoming test object, the classifier assigns a class label. The relevant posterior
of the assigned class is examined and compared to td. Examples are either
assigned to an ACCEPT region <accept or REJECT region <reject, as shown
in Equation 5.4.

<accept = {x|max
i

p(ωi|x) ≥ td}, i ∈ {t, o}
<reject = {x|max

i
p(ωi|x) < td}, i ∈ {t, o} (5.4)

With the distance reject option, the conditional density of the class of interest
is thresholded, resulting in a closed decision boundary2, providing protection
against unseen classes. Again a two-stage procedure is undertaken. In the
first stage an example is assigned to a particular class ωi, i = t, o, referring
to target and outlier, using Bayes rule. In the second step, if the example

2For classifiers that are not density-based such as k-Nearest Neighbour, Dubuisson and
Masson proposed to reject based on the mean distance to the k nearest neighbours. In this
case a meaningful threshold should be chosen based on the scale of the distances.
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has been assigned to the target class, the conditional probability p(x|ωt) is
thresholded via a reject threshold td. Examples exceeding this threshold are
rejected. Examples are either assigned to an ACCEPT or REJECT region,
<accept and <reject as shown in Equation 5.5.

<accept = {x|p(x|ωi) ≥ td}, i ∈ {t, o}
<reject = {x|p(x|ωi) < td}, i ∈ {t, o} (5.5)

The distance reject option is illustrated on a simple example in Figure 5.2.

−10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Feature 1

Fe
at

ur
e 

2

Scatter plot

A

outlier
target

−10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Feature 1

Fe
at

ur
e 

2

Scatter plot

A

outlier
target

Figure 5.2: Illustrating the distance reject option classifier in a two-class 2D
example, showing a linear classifier model in the left plot which results in good
classification performance, but poor rejection performance. The right image
depicts a more complex mixture-of-Gaussians classifier, resulting in good re-
jection, but poor classification. The decision boundary indicates the threshold
used for class assignment. Poor models have purposefully been chosen for the
sake of illustration to simulate realistic conditions.

The left plot shows a model based on a linear classifier, and the right image
a mixture-of-Gaussians classifier with 15 mixtures. It is clear that a closed
boundary results, and the trade-off between known classes is accounted for.
We discuss two situations that could lead to sub-optimal performance.

In the first situation we discuss the practitioner. If the practitioner de-
signs a classifier based on knowledge of the ωt and ωo classes only, a situation
such as that depicted in the left figure may result. Here the classifier obtains
near optimal classification performance, but since the model is not chosen ex-
plicitly to fit the target class distribution, sub-optimal rejection results. Thus
we propose to evaluate classifiers in these situations based on both classifica-
tion and rejection performance. This may lead to choosing more appropriate
models. For example some classifiers focus on discrimination only, discarding
domain information (e.g. support-vector classifier). A better choice would be
to choose models modeling the distribution (e.g. mixture-of-Gaussians density
estimation).

In the second situation we assume the practitioner is aware of an adequate
evaluation methodology. In this case the practitioner will focus on obtaining
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the best-possible rejection/classification performance. In real problems, typi-
cal limitations are that the training set size is limited, the input dimensionality
high, and computation time limited. In these situations, choosing a model
that results in high classification performance (i.e. focus on known overlapping
regions) may be at the expense of a worse performance in terms of rejection
performance e.g. the class conditional density may be well estimated in the
overlapping region, but poor in other areas. This is depicted in the left plot
of Figure 5.2 where a new outlier example marked A on the plot will be in-
correctly classified as target. Similarly, the classification performance may be
compromised for the case in which a model is chosen for good rejection per-
formance (right plot). In Section 5.2.4 a classification scheme is presented in
which different models can be selected/trained explicitly for classification and
rejection respectively. We argue that in some cases it is better to choose a local
model suitable to perform the classification, and another for rejection. This
flexibility is lacking in the reject-option case.

5.2.4 Sequential combining of a one-class and multi-class
classifier

We present a classification scheme here consisting of the sequential combining
of one-class and multi-class classifiers (SOCMC). The rationale is that the
class model and representation used in the first stage (denoted DOCC) can
be explicitly chosen for the purpose of rejection i.e. between ωt and ωr. In
a similar way the second stage classifier DMCC can be chosen locally in the
area of known overlap to obtain good classification performance between known
classes, i.e. between ωt and ωo. The SOCMC classifier is depicted in the block
diagram in Figure 5.3. In the first stage, the one-class classifier DOCC attempts

Dx

STAGE 2STAGE 1

x

outlier

target

D OCC MCC

~

Figure 5.3: Block diagram of the SOCMC classifier. The first stage classifier
DOCC consists of an OCC, trained on the well defined target class. The sec-
ond stage classifier DMCC is a multi-class discriminant trained on examples
considered to be target by the first stage.

to detect all target examples from p(x), given a test set. A one-class classifier
[10] is appropriate for this stage since it protects against unseen classes ωr, and
capitalises on the knowledge that the target class is well defined by the training
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set3. At this stage it is not important if examples of the class ωo are incorrectly
accepted, since we rely on this discrimination in the second stage. Thus it is
assumed that the output of DOCC , denoted x̃ will consist only of examples of
class ωt and ωo, with all ωr having been rejected (as well as ωo examples that
do not overlap with the target OCC description.).

Note that both the representation and class description model can be se-
lected/trained to improve the rejection performance perf(ωt, ωr). The DOCC

represents the input data x, derived from the feature space χ, by a new rep-
resentation χOCC (DOCC consists of both a representation and classification
stage). The classifier can thus be written as DOCC(xOCC), defined as in Equa-
tion 5.3 for class ωt. The output x̃ is then shown in Equation 5.6.

x̃ = {x|DOCC(xOCC) = target} (5.6)

The output x̃ is then applied to the second stage classifier DMCC . Note that
DOCC is used to select objects for the second stage. We still have the oppor-
tunity to optimise the representation and model selection used in the second
stage. Thus x̃ is used by DMCC in the original representation χ. The DMCC

classifier is trained on the data x̃, which is assumed to be a mixture of data
from ωt and ωo only, which are represented by the training set. A discriminator
is thus trained, with the objective of obtaining an optimal trade-off in terms of
class overlap. As with the DOCC , the representation and classification model
can be chosen, but in this case for the purpose of optimising the classification
performance perf(ωt, ωo). A model is trained focused on the local region, spec-

ified by a training dataset (̃x)tr. The input data x̃ that is represented by χ
is now mapped to a new representation space χMCC , resulting in the classifier
DMCC( ˜xMCC), defined as in Equation 5.2 between classes ωt and ωo. The final
SOCMC classifier, denoted DSOCMC is defined in Equation 5.7.

DSOCMC(x|DOCC , DMCC) =

{

outlier if DOCC(x) = outlier

DMCC(x̃MCC) otherwise
(5.7)

We illustrate the operation of the SOCMC classifier in the same situation as
in Section 5.2.3, in Figure 5.4. We noticed that the classifier D1 in the left
plot of Figure 5.2 resulted in high classification performance, and low rejection
performance. The opposite was true for the classifier D2 in the right plot. In
the SOCMC classifier, we select/train specific local models for the purposes
of classification and rejection respectively, illustrating that the SOCMC can in
some cases improve performance. In this example the model used for D1 is
chosen for the DMCC stage (i.e. a linear classifier), and the D2 model is used
for the DOCC stage (Mixture-of-Gaussians with 6 mixtures). This classifier
results in a good classification and rejection performance. A number of training
considerations need to be made for the SOCMC classifier:

3New classes will be rejected if they fall outside the class description. Thus to minimise
the probability of accepting examples from class ωr, assuming they are uniformly distributed,
the volume of the description should be minimised.
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Figure 5.4: Illustrating the SOCMC classifier. A linear model has been cho-
sen locally in the area of overlap for good classification performance, and a
Gaussian-mixture model with 15 mixtures is used for rejection, showing that
example A is correctly classified.

• Training set size for DMCC : If a training set xtr is used, only a subset x̃tr

will be available for the DOCC . If xtr is small, or x̃tr � xtr, there may
not be sufficient samples to train DMCC . This may limit the complexity
of the model/representation used. Alternatively the entire xtr could be
used to train the DMCC .

• Training technique: The SOCMC classifier is analogous to the trained
combiner used in classifier combining, as discussed in [5]. If the same
training set xtr is used to train both DOCC and DMCC , the DSOCMC

could overfit to the noise in the training set. An alternative training
strategy could be to split xtr into two independent training sets xtr1 and
xtr2, with the first used to train DOCC , and the second used to train
DMCC . This may generalise better, but may actually be worse than the
former strategy when the training set size is small.

5.2.5 Experiments

Evaluation

Since the exact nature of the outlier conditional distribution cannot be pre-
dicted in advance, estimating perf(ωt, ωr) is not straight forward. We propose
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an evaluation method to provide some confidence as to the robustness of the
classifier, and to compare classifiers. The evaluation assumes a uniform out-

lier distribution. This test allows a classifier to be evaluated assuming that
outlier examples can occur anywhere in feature space around the target class.
It provides a measure for how well the classifier protects the target class (in
the respective feature space) from changing conditions. However for real high
dimensional problems, the number of artificial examples to be generated may
be computationally prohibitive, so two methods of artificial data generation
are used in real experiments to attempt to overcome this problem:

1. In the first method, called perfa1(ωt, ωr), a number of outlier examples
are artificially generated uniformly in a sphere around a subspace of the
target class [11]. Here examples are generated within a PCA (Principal
Component Analysis) subspace. The original data is scaled to unit vari-
ance, and the artificial data is then generated within this space with a
radius of 1.1 of the covariance of the target class. These can be mapped
into the original space by an inverse of the PCA mapping.

2. Similar to the previous analysis, except data is generated in the origi-
nal representation, following a Gaussian distribution. Here examples are
generated around the target class, using an enlarged covariance matrix
of the target class. The covariance matrix is enlarged by a fraction of
1.5 (this is simply a multiplication of the covariance matrix to spread the
new generated examples further). The test is called perfa2(ωt, ωr).

The perf(ωt, ωo) measure relates to the known classes ωt and ωo. This perfor-
mance is approximated using standard techniques. For all experiments a 20-fold
cross-validation procedure is carried out, and the primary performance measure
used is the AUC (Area under the Receiver-Operator Curve). The variance of
the estimates is depicted in terms of the standard deviation. To summarise,
the following performance measures are computed for each experiment:

• perf(ωt, ωo), estimated using cross-validation with 20-folds, computing
the respective AUC.

• perfa1(ωt, ωr), estimated using 20-fold cross-validation procedure. In test-
ing, for each fold an independent target portion of x is used, together with
the generated artificial outlier data that was not used for training. Again
the AUC is computed.

• perfa2(ωt, ωr), estimated as per perfa1(ωt, ωr).

Dataset description

A number of real-world datasets are used in the experimentation. These
datasets have been selected based on their relevance to this problem. The
following datasets are used:
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1. Face-amsterdam (Face): This dataset consists of a face class ωt, and non-
face class ωo, and is described in [9], and downloaded at [8]. Each face
is stored as a 20 × 20 image. Only the first 1000 faces from the face
database, and the first 1000 non-faces from the non-face test database
are used. This dataset is used because it can be argued that finding a
representative set of non-face examples may be infeasible.

2. Mfeat-Fou Digit4 (Mfeat): This is a dataset consisting of examples of ten
handwritten digits, which can be found in [1]. In this dataset, Fourier
components have been extracted from the original images, resulting in a
76-dimensional representation of each digit. 200 examples of each digit
are available. In these experiments, digit 4 is used as the target class,
and all the others as outlier.

3. Geophysical (Geo): A multi-modal dataset, in which a target and outlier

class are represented by spectra. In this problem, new outlier classes
may appear during testing. 3982 target examples exist, and 3675 outlier

examples.

Results

The results for a number of experiments on the real-world datasets are now
presented. The objective of the experiments is to assess the SOCMC classifiers
on the real-world problems to ascertain whether they do in fact outperform
conventional discriminant-based classifiers. This paper also shows that the
SOCMC classifiers can result in higher performance than the distance-based
reject-option classifiers. In each experiment, SOCMC results are shown bench-
marked against discriminant and reject-option classifiers. For a fair compar-
ison, the same model and representation used for the discriminant classifier
is used in the reject-option classifier, and also in the multi-class stage DMCC

of the SOCMC. A number of different DOCC models are then chosen to at-
tempt to improve the rejection performance perf(ωt, ωr), with only the best
results shown for brevity (there are examples where SOCMC classifiers do not
work – some optimisation is required is to select appropriate models). The
reject threshold for the reject-option and one-class classifiers is fixed to reject
5.00% of target examples for the given training set. As a starting point for
the comparison, it is important to note that the SOCMC classifier results in
a similar performance to the reject-option classifier when the same model (i.e.
same representation and data model) is used for both the DOCC and DMCC

results. Small differences in results are attributed to the fact that only a subset
of x is used to train the DMCC . These results are not included due to space
constraints.

In Table 5.1 details of each experiment are shown. The first column indi-
cates the dataset used, and the second column the model used for the discrim-
inant classifier M, the reject-option classifier R and the DMCC stage of the
SOCMC classifier S. The last column shows the representation and classifier

148



Dataset Base algorithm SOCMC DOCC model
Face A PCA 0.99 QDC PCA 0.99 Gauss
Face B Fisher-map QDC PCA 0.99 MoG-8
Face C PCA 0.99 LDC PCA 0.99 Gauss
Mfeat A Nearest-mean Gauss
Geo A PCA 0.9 QDC PCA 0.9 MoG-5
Geo B PCA 0.999 QDC PCA 0.999 MoG-5
Geo C PCA 0.9 MoG-5/class PCA 0.999 MoG-5

Table 5.1: Description of experiments. The first column shows the dataset
used. In the second column the algorithm used for the discriminant classifier
M, the reject-option classifier R and the DMCC stage of the SOCMC classifier
S is given. The last column shows the representation and classifier used for
the DOCC of the SOCMC. PCA is a principal component analysis mapping,
followed by the percentage of retained variance. Gauss is a Gaussian model.
MoG-N is a Mixture-of-Gaussians model with N mixtures. LDC and QDC are
Bayes linear and quadratic classifiers respectively.

used for the DOCC of the SOCMC. For each classifier, three performance re-
sults are shown (in terms of mean AUC4 over 20-folds with standard deviations
shown). These consist of the perf(ωt, ωo), perfa1(ωt, ωo) and perfa2(ωt, ωr) mea-
sures, denoted clf , rj1, and rj2 respectively. Ideally, all three performances
should approach 1.00.

First we discuss the face results in Figure 5.5. In the first experiment face
A, it can be seen that the discriminant classifier MA has a rejection perfor-
mance (rj1 and rj2) that is much lower than the classification performance clf .
This is attributed to the fact that the target decision space is unconstrained,
providing little protection against changing conditions. The reject-option clas-
sifier RA then shows a marked improvement in rejection performance in terms
of test rj1, with a small decrease in clf . This sacrifice of classification perfor-
mance for improved rejection performance alludes to a tradeoff between these
two measures. The poor performance on rj2 was unexpected at first, but on
closer inspection of the model used (QDC), which assumes unimodality, and the
fact that data generated in the rj2 test is also distributed in a uniform manner
only in the region of the target class, may provide an adequate explanation.
These results only show marginal (but significant at times) improvements of
the SOCMC classifier over the reject-option. It is suspected that this dataset is
largely unimodal, and close to Gaussian-distributed (and the outliers in rj2 are
generated in a similar fashion). In the first experiment, the SA performances
in terms of clf and rj1 are slightly better than RA. In the second experi-
ment face B, SB results in a much higher rejection performance than RB,
but with some loss in classification performance. Again we observe a trade-off
between classification and rejection performance. The third experiment once
again shows small improvements over the reject-option with respect to SC.

4where an ideal performance in a separable problem would result in an AUC score of 1.
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In the left-most plot of Figure 5.6, the results of the mfeat-fou digit4 exper-
iments are shown. Here a nearest-mean classifier has been used, resulting in a
92.44% AUC classification performance for MA. The rejection performances
are however around 50.00%. The reject-option classifier RA is not significantly
better than MA at rejection. In this case a large number the outliers generated
were accepted by a clearly sub-optimal rejection model, even though the clas-
sification performance is high. However the SOCMC classifier performs much
better here. Even though a nearest-mean classifier is used for classification, the
Gaussian model is much better at rejection. Low performances on rj2 suggest
again that the target data is unimodal, with most generated outlier examples
falling within the domain of the target class.

In the three right-most plots in Figure 5.6, the results of the geophysical
experiments are shown, showing considerable improvements achieved by the
SOCMC scheme. In Geo A it can be seen that both RA and SA improve
in terms of rj1 performance. However the SOCMC is much better at rj2
performance. In this case, the DOCC model used was a Mixture-of-Gaussians,
that could model the apparent multi-modality of the target class, and thus
provide better protection against the outlier examples generated in rj2. The
reject-option rejection model was constrained to the unimodal QDC. In the
second experiment Geo B, a good example of the SOCMC approach is shown
(see RB and SB), with a clear performance improvement over the reject option.
The third experiment shows that the SOCMC and reject option classifiers result
in a similar performance, with a slightly better rj2 performance achieved by the
SOCMC. We conclude that a strong classification model (fitting the data well)
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Figure 5.5: Summarised results of the face-amsterdam experiments.
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Figure 5.6: Summarised results of the mfeat-fou digit4 and geophysical exper-
iments.

will result in optimal classification and reject performance. It was observed
that a discriminator can indeed obtain high classification performance, but
a model chosen for good classification performance can be at the expense of
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rejection performance. The SOCMC results showed that this classifier can
improve upon the reject-option, with separate models trained locally for the
purposes of classification and rejection respectively.

5.2.6 Conclusions

In this paper classification strategies for ill-defined problems was discussed.
It was assumed that a well defined target class is to be discriminated from
an ill-defined outlier class. First the implications on performance with re-
spect to standard discrimination approaches was discussed, showing that a
closed/constrained decision space around the target class is necessary for ro-
bustness to changing conditions. The state-of-the art classifier suited to this
task is the distance-based reject option. It was pointed out that a practitioner
should make use of an adequate evaluation methodology in selecting a classifier,
considering both classification and rejection performance. A new classification
strategy was proposed for these types of problems, involving the sequential
combination of one-class and multi-class classifiers. These classifiers allow a
model to be explicitly selected/trained in local regions of known overlap to
emphasise either classification or rejection performance. Experimentation on
a number of real-world datasets showed that in some cases the SOCMC clas-
sifier does indeed outperform the distance-based reject-option approach. An
observation made during experimentation is that an inherent trade-off occurs
between classification and rejection. Optimising this will be a focus of future
research.
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Abstract

Consider the class of problems in which a target class is well defined, and an
outlier class is ill-defined. In these cases new outlier classes can appear, or the
class-conditional distribution of the outlier class itself may be poorly sampled.
A strategy to deal with this problem involves a two-stage classifier, in which
one stage is designed to perform discrimination between known classes, and the
other stage encloses known data to protect against changing conditions. The
two-stages are, however, inter-related, implying that optimising one may com-
promise the other. In this paper the relation between the two stages is studied
within an ROC analysis framework. We show how the operating characteris-
tics can be used for both model selection, and in aiding in the choice of the
reject threshold. An analytic study on a controlled experiment is performed,
followed by some experiments on real-world data sets with the distance-based
reject-option classifier.

5.3.1 Introduction

In pattern recognition, a typical assumption made during the design phase
is that the various classes involved in a particular problem can be sampled
reliably. However, in some problems, new classes or clusters may appear in the
production phase that were not present during the design/training. In other
problems, some classes may be sampled poorly, leading to inaccurate class
models. Examples of applications that are affected by this are for instance:

• Diagnostic problems in which the objective of the classifier is to identify
abnormal operation from normal operation [5]. It is often the case that
a representative training set can be gathered for one of the classes, but
due to the nature of the problem, the other class cannot be sampled in
a representative manner. For example in machine fault diagnosis [20] a
destructive test for all possible abnormal states may not be feasible or
very expensive.

• Recognition systems that involve a rejection and classification stage, for
example road sign classification. Here a classifier needs not only to dis-
criminate between examples of road sign classes, but must also reject
non-sign class examples [14]. Gathering a representative set of non-signs
may not be possible. Similarly face detection [15], where a classifier must
deal with well-defined face classes, and an ill-defined non-face class, and
handwritten digit recognition [9], where non-digit examples are a serious
issue.

For simplicity we consider the problem as one in which there is a well
defined target class, and a poorly-defined outlier class. The primary objective
is to maintain a high classification performance between known classes, and
simultaneously to protect the classes of interest from new/unseen classes (or
changes in expected conditions, reflected in the change of distribution of these
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classes). We refer to the latter performance measure as rejection performance.
Classification performance is defined between a well defined target class ωt, and
some partial knowledge existing for the outlier class ωo. Rejection performance
is defined between ωt and a new (unseen) cluster/class from the outlier class
ωr that is not defined precisely in training.

Several strategies have been proposed. The first strategy to cope with this
situation was proposed in [5], called the distance-based reject-option. Here a
reject-rule was proposed to reject distant objects (with respect to the target

class) post-classification. This evaluation differs considerably from the second
strategy, the ambiguity reject option (defined in [5]) as proposed in [3]. In am-
biguity reject a threshold is included to reject objects occurring in the overlap
region between two known classes. There is assumed that all classes have been
sampled in a representative manner. This is in contrast to this study, in which
it is assumed that classes are poorly sampled or not sampled at all.

Classifiers with the reject rule differ from conventional classifiers in that two
thresholds are used to specify the target area, namely a classification threshold
θ, and a rejection threshold td (we define the target area to be the region in
the feature space in which all examples are labelled target). A limitation of the
distance-reject criterion is that the threshold itself has no direct relationship
with the distribution of the known classes, as discussed in [13]. Thus a modified
reject-rule was proposed in [13], involving computing the probability of a new
object belonging to any of the known classes, based on covariance estimates.
The threshold can then be based on on a degree of model-fit to the known
classes.

In [8] we presented a third reject strategy, involving combinations of one-
class [17] and supervised classifiers. This scheme allowed different models to
be specifically designed for the purposes of classification or rejection. It was
argued that a model optimised for the sake of classification may differ from that
optimised for rejection, and that combining both optimised models can improve
the overall combined classification/rejection performance. Experiments showed
that this strategy outperforms the other reject-rules in some situations. It was
also observed that a relation between the classification and rejection perfor-
mance exists, and that optimising either performance is at the detriment of the
other.

Each of the strategies has a classification and rejection threshold. In both
[5] and [13], it has been shown how the distance-reject rule can be applied
in practise, involving distance- or class conditional probability- thresholding of
new incoming objects. In the case of the ambiguity-reject option, the classifiers
can be evaluated and optimised since it is assumed that all classes have been
sampled, as shown in [3] for known costs, and applied to imprecise environments
in [7], and [19] to name a few. However, in the case of the distance-based reject
option, a challenging problem posed is that the distribution of the unseen
class is by definition absent, and thus standard cost-sensitive evaluations and
optimisations become ill-defined, lacking a closed Bayesian formalism.
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In [8], the ill-defined class problem was tackled by deriving strategies that
can be used to study the way in which classification and rejection performance
interact, based on the assumption that a new unseen class could occur anywhere
in feature space. The rationale is that a minimal target area provides, in
general, the most robust solution to an unseen class that could occur anywhere
in feature space5. The methodology involved the artificial generation of the
unseen class by assuming a uniformly distributed unseen class. Based on this
methodology, it was observed that similar to the ambiguity-reject case, there
is interaction between classification and rejection performance.

This paper is concerned with evaluating and optimising classifiers taking
into account this interaction between classification and rejection. For this,
Receiver-Operating Characteristic (ROC) curves will be used. ROC analysis
[10], is a tool typically used in the evaluation of two-class classifiers in impre-
cise environments, plotting detection rate (true positive rate) against the false
positive rate. We extend this analysis to the unseen class problem by including
an additional dimension that is related to the general robustness of the classi-
fier to an unseen class. A similar 3-dimensional ROC analysis has been applied
elsewhere, such as in [7], [11], and [4], but in these cases this did not involve the
ill-defined class problem. Our approach attempts to minimise the volume of
the classes of interest in the feature space for robustness against unseen classes.
It allows models to be compared (in a relative sense, since an absolute measure
cannot be obtained) and provides insight into the choice of a reject-threshold
that does not impact too much on classification performance.

In Section 5.3.2 an example is studied analytically to investigate the nature
of the relation between classification and rejection rates, and the extended ROC
analysis is presented. In Section 5.3.3 a criterion is proposed for the comparison
of the extended ROC’s. This criterion is applied to a synthetic 2-dimensional
example with three different models. Finally, we discuss how to optimise an
operating point (i.e. choose a classification and rejection threshold). Section
5.3.4 consists of a number of experiments to demonstrate the methodology in
some realistic scenarios. Conclusions are given in Section 5.3.5.

5.3.2 The relation between classification and rejection per-
formance

First we will develop our notation and illustrate the interaction between the
classification and rejection performance by showing an example. In Figure 5.7 a
synthetic example is presented in which ωt and ωo are two Gaussian-distributed
classes distributed across domain x. Additionally we assume that a class ωr is
uniformly distributed across x. The class conditional densities for ωt, ωo and
ωr are denoted p(x|ωt), p(x|ωo), and p(x|ωr) respectively, with priors p(ωt),
p(ωo), and p(ωr), which are assumed equal here. The unconditional density

5Rather than assuming that unseen classes can occur anywhere in feature space, it may be
better to consider the nature of each problem, incorporating prior knowledge with respect to
natural bounds in this space. To keep the discussion general, for now we assume a uniform,
maximum entropy distribution.
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p(x) can then be written as in Equation 5.8. Note that in training we only
have access to ωt and ωo, and in testing ωr will also appear.
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Figure 5.7: A synthetic example, illustrating the class conditional densities for
ωt, ωo, and ωr, with a distance-based reject-option classifier. The classification
boundary is specified by θ, and the rejection boundary by td, td = 0.15.

For the total probability distribution of x therefore holds:

p(x) = p(ωt)p(x|ωt) + p(ωo)p(x|ωo) + p(ωr)p(x|ωr) (5.8)

For this 1-dimensional data, a classifier is defined which only consists of
a single threshold, denoted θ. The position of θ determines the classification
performance, and can be specified given a desired true-positive rate (TPr) or
false-positive rate (FPr). As θ varies, so do the respective TPr and FPr,
resulting in the ROC between ωt and ωo. In a typical discrimination problem
(ignoring the reject threshold), we can define the true positive rate (TPr) and
false positive rate (FPr) in terms of θ as in Equation 5.9.

TPr(θ) =
∫ ∞
−∞ p(ωt)p(x|ωt)I(x|θ)dx

FPr(θ) =
∫ ∞
−∞ p(ωo)p(x|ωo)I(x|θ)dx

(5.9)

The indicator function I(x|θ) specifies the relevant domain, as defined in Equa-
tion 5.10.

I(x|θ) =

{

1 if p(ωt)p(x|ωt) − p(ωo)p(x|ωo) > θ

0 otherwise
(5.10)

In a typical discrimination problem, the evaluation criterion used is the
mean classification error between ωt and ωo and the ability to reject new unseen
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classes ωr is often not considered. In ill-defined classification problems, the
performance with respect to both the known outliers ωo and the unknown
outliers ωr is important [8]. The FPr(θ) can therefore be decomposed into two
parts:

FP o
r (θ) =

∫ ∞
−∞ p(x|ωo)I(x|θ)dx

FP r
r (θ) =

∫ ∞
−∞ p(x|ωr)I(x|θ)dx

(5.11)

Standard classifiers will ignore FP r
r and only focus on minimising FP o

r . For
these situations the distance-based rejection option classifier [5], or the com-
bined sequential one-class and multi-class classifier [8] should be used. A reject-
option classifier is demonstrated in Figure 5.7.

It can be seen that the class conditional density p(x|ωt) is thresholded such
that any object x assigned to ωt will only be accepted if p(x|ωt) > td. Thus for
the distance-based reject-option classifier, TPr (Equation 5.9), FP o

r and FP r
r

(Equation 5.11), can be written for the general multivariate case as:

TPr(θ, td) =
∫ ∞
−∞ p(ωt)p(x|ωt)I(x|td, θ)dx

FP o
r (θ, td) =

∫ ∞
−∞ p(ωo)p(x|ωo)I(x|td, θ)dx

FP r
r (θ, td) =

∫ ∞
−∞ p(ωr)p(x|ωr)I(x|td, θ)dx

(5.12)

where I(x|td, θ) is the indicator function:

I(x|td, θ) =

{

1 if p(x|ωt) > td and p(ωt)p(x|ωt) − p(ωo)p(x|ωo) > θ

0 otherwise
(5.13)

Equation 5.12 can be used to study the complete operating characteristic of
a classifier. Note that in a real situation, it is unlikely that the class-conditional
densities are known. A typical classifier evaluation in these situations involves
computing the ROC curve on an independent test set.

We define the complete operating characteristic by all combinations of θ
and td. The operating characteristic of the example in Figure 5.7 is illustrated
in Figure 5.8. This is similar to standard ROC analysis, in which the TPr is
traded off against the FPr. Here the FPr is decomposed into FP o

r and FP r
r ,

resulting in a 3D ROC plot with a 2D ROC surface.

In Figure 5.8, the operating characteristics are shown for a number of rejec-
tion thresholds (td), and across all classification thresholds (θ). The left-column
plots depict the class conditional density distributions, with the respective td

shown in relation to the actual ωr distribution. In the centre column plots,
the ROC curve is presented for all TPr, FP o

r , and FP r
r . By projecting this on

the (TPr, FP o
r )-plane, the traditional ROC curve is retrieved. The plots in the

right column simplify the 3-dimensional surface, plotting the classification per-
formance in terms of mean classification performance for each θ and td, against
FP r

r . The mean classification performance is defined as

pmean(θ, td) = 1 − (1 − TPr(θ, td)) + FP o
r (θ, td)

2
(5.14)
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td = 0.00

td = 0.01
< p(x|ωr)

td = 0.05
= p(x|ωr)

td = 0.20
> p(x|ωr)
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Figure 5.8: Fixed td, and varying θ.

It can be observed that as td is increased, the FP r
r progressively decreases:

the amount of unseen data that is classified as target decreases, and conse-
quently the rejection performance increases. In the top row (td = 0) there is no
rejection protection, the classification performance is maximal but the rejec-
tion performance is very poor (high FP r

r ). As soon as some td is enforced, the
FP r

r decreases radically, indicating a lower probability of accepting a randomly
distributed example from ωr. Even a very loose boundary in the tails of the ωt

distribution significantly decreases the volume of the decision space. As td is
increased, the rejection performance increases at some sacrifice of classification
performance. This effect is most apparent when td is quite high, due to the
fact that more target examples from the tails of the distribution are excluded.

This synthetic example makes it evident that classification and rejection are
inter-related. In Section 5.3.3, these extended ROC plots are used to derived
a performance criteria to evaluate different models in these situations, and
provide insight into threshold selection.
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5.3.3 Model selection and optimisation

Now a model selection criterion is formalised that makes use of the full operat-
ing characteristics, extending ROC analysis to this problem domain. This will
be developed and demonstrated by a synthetic example using three different
classifier models.

Model selection

To select the optimal model, an evaluation criterion for the 3D ROC should be
defined. In [11], [4], and [7] the 3-dimensional volume under the 2-dimensional
surface is related to the overall performance. This is an extension of the AUC
(Area under the ROC curve) [2]. In a similar manner, we derive an evalu-
ation of the 3-dimensional ROC in our analysis, providing a measure of the
classification-rejection performance for the classifier. The ROC in this case
plots the TPr achieved against FP o

r and FPm
r (see the example in Figure 5.8).

Plotting 1 − TPr against FP o
r and FPm

r , it is evident that the volume under
this ROC surface should be minimal in the ideal case, implying generally that
the classifier achieves low classification error rates, and has high rejection per-
formance (low volume of target decision space). Formalising this performance
criterion, we derive the VUC (Volume under the ROC):

V UC(θ, td) = 1 −
∫ ∫

(1 − TPr(θ, td))dFP o
r (θ, td)dFP r

r (θ, td) (5.15)

The volume itself is subtracted from 1 to form a performance measure (high
scores are favourable). In some cases it may be sensible to also integrate over
a restricted range of FP o

r (θ, td) (by restricting the range of θ). This effectively
analyses a patch of the ROC surface. This is because an AUC integrated over
all classification decision thresholds is not always ideal. This occurs in the case
in which the ROC surfaces of two different models intersect. In this case model
selection is operating-point dependent [1], and thus the ROC should only be
analysed for a range of interest.

Evaluation on artificial data

In Figure 5.9 a scatter-plot of the data is shown. The left plot shows the
data available in training (ωt and ωo only), and the right plot shows an addi-
tional reject-class uniformly distributed, assumed to occur during testing. The
dataset consists of 1600 ωt examples, 800 ωo examples, and 2400 ωr examples.
The experimental procedure involves using 80% of the data for training, and
20% for testing, with ωr excluded from training. This is repeated 10 times,
following a randomised hold-out procedure. The right plot also depicts the de-
cision boundary of three different classifiers trained on the data, namely a Bayes
linear classifier (LDC), a Bayes quadratic classifier (QDC), and a Mixture of
Gaussians classifier (MOGC), with three clusters per class. The decision bound-
ary is plotted for a single fixed classification and rejection threshold. From the
decision boundaries, it is clear that the MOGC fits the data well, as opposed
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to the LDC and QDC models. These weaker models are typical in real-high
dimensional problems where both data and computation time are limited, and
thus a model choice may not be obvious.
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Figure 5.9: Scatter-plot for the synthetic example. The left plot shows the data
available in training, and the right plot shows a testing scenario, in which a
new unseen class exists that should be rejected. The right plot also shows the
classifier decision boundaries for three classifiers, at a set operating point. The
classifiers are labelled LDC, QDC and MOGC respectively.

In Figure 5.10 the operating characteristics are shown for the three clas-
sifiers. The top row shows the full operating characteristics, and the bottom
row depicts the mean classification performance (see Equation 5.14) versus the
FP r

r . These clearly show that the classification-rejection characteristic varies
considerably across the different models. The MOGC is able to achieve a higher
mean classification performance for a lower FP r

r than the LDC and QDC for
most regions. For example, for MOGC, it can be seen that the optimal pmean

is over 90.00% for a FP r
r of around 25.00% (based on the assumed ωr distri-

bution). The LDC, however, only achieves a pmean of around 80.00% for the
same degree of rejection performance. Even though the ωr distribution is un-
known, it is apparent in this case that the MOGC classifier can achieve higher
rejection robustness than the LDC for the given classification performance. A
lower FP r

r is indicative of a reduced target decision space, and the model in
question is thus less likely to accept a randomly distributed example from ωr.

In the lower plots, the top-right characteristics/curves correspond to the
case in which td = 0.0, with curves corresponding to increasing td shown to the
left of this. A general observation that can be made is that for low values of td,
the classification performance decreases rapidly for increasing td, and the FPrr

decreases (improving rejection performance). This was expected, showing once
again that the classification and rejection performances should be traded off,
but also that for large td, both classification and rejection performances de-
crease rapidly. It is also clear that only some (typically low) values of td make
practical sense, since a large value leads to a very poor recovery of ωt examples.

In Table 5.2, the V UC is computed for the synthetic problem for each
fold. This performance measure indicates that the MOGC classifier is superior,
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Figure 5.10: Operating characteristics for the three classifiers. The left col-
umn consists of LDC results, followed by QDC results in the centre column,
and MOGC results in the right column. The top row depicts the full ROC,
i.e. all possible operating points. The bottom row shows the mean classifica-
tion performance versus FP r

r , clearly showing the interplay between the two
measures.

significantly better than the QDC and LDC model. This is an expected result,
since the decision boundary fits the class distribution well, providing both a
high classification performance, and a lower decision space volume for high
rejection performance. The QDC model is superior to the LDC model. Thus
the V UC measure proved to be a useful performance criterion, sensitive to
both classification and rejection capabilities of the classifier. Note that in this
example, computing the error rate only (on known data) results in competitive
performance between QDC and MOGC, however the new V UC criterion and
the evaluation methodology showed that MOGC is in fact the better choice
since it is better at rejection. Table 5.2 also shows the results of two other
experiments. The εrej measure shows the performance of the three reject-option
classifiers for a chosen set of thresholds (θ = minimumerror point, td = 0.05)
based on 10 independent sets of data (drawn from the same distribution, with
1600 ωt examples, 800 ωo examples, and 3200 uniform ωr examples), in which
the classifiers were trained on the original set. This performance measure is a
simple error rate measure that averages the ωt and other errors:

εrej =
1

3
((1 − TPr) + FP o

r + FP r
r ) (5.16)

These tests confirm the results of the VUC model selection i.e. that the MOGC
is the most appropriate choice. In order to demonstrate the advantage of using
a reject option, this same test is repeated on the three same models without
reject option, resulting in εnorej . In each case it is clear that performance is
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V UC εrej εnorej

LDC 0.846 ± 0.005 0.197 ± 0.009 0.353 ± 0.007
QDC 0.907 ± 0.003 0.116 ± 0.006 0.420 ± 0.004

MOGC 0.928 ± 0.005 0.087 ± 0.004 0.404 ± 0.003

Table 5.2: Comparing the 3 classifiers in the case study. V UC is computed
for each classifier (high scores are favourable), serving as the model selection
criterion. The score εrej is the classification error obtained on the independent
tests with fixed thresholds for the classifiers with reject option, and εnorej is
the error on the same models without reject protection.

significantly worse compared to the classifiers with reject-option. Interestingly,
the MOGC classifier without reject-option fared worse than the QDC model
since it optimised by surrounding the ωo class, resulting in a very large decision
space i.e. poor rejection performance.

Choosing an operating point

Based on the VUC measure, the most appropriate model (on average) was
selected. In the example, the MOGC classifier was found to be superior, and
this was demonstrated further by computing error-rates on independent data
at a specific operating point. Subsequent to the model selection, the next step
is to choose classification and rejection thresholds best suited to the problem.
In the standard cost-sensitive approach [16], this would involve minimising
the overall system loss L, given costs and priors. Assume ct is the cost of
misclassifying a ωt example, co the cost of misclassifying a ωo example, and cr

the cost of misclassifying an ωr example (ignoring to which class an error is
assigned). The loss can then be computed as:

L = θp(ωt)ct(1 − TPr) + (1 − θ)p(ωo)coFP o
r + tdp(ωr)FP r

r (5.17)

Minimising L involves computing L for all combinations of θ and td until the
optimal thresholds are found (or geometrically, intersecting an iso-performance
surface on the ROC surface). However in this problem, since the distribution of
ωr is unknown, the concept of optimality becomes undefined (true FP r

r values
cannot be obtained). The synthetic experiments have, however, shown how to
analyse the impact of a varying td on classification performance, and decision
space volume. Thus a practical step that can be taken in aiding optimisation is
to attempt to choose a td such that the ωt decision space is minimised, without
sacrificing too much classification performance. Given this premise, we propose
that the classification threshold should be optimised first. This is because we
have sampled these classes properly, allowing for a cost-sensitive design. Once
θ has been chosen, a td should be selected that encloses ωt. The operating
characteristics can also be helpful in inspecting the sensitivity over a range of
td, where a less sensitive choice is to be preferred.
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Summary

In summary, the following steps are involved in generating the full operating
characteristics, given a model D, a target class ωt, and an outlier class ωo:

• Assume a distribution for ωr, for example uniformly distributed around
ωt, and generate data accordingly.

• Train D using ωt and ωo.

• Define a range of classification and rejection thresholds θ and td. For
each threshold, compute the respective TPr, FP o

r , and FP r
r , using inde-

pendent sets of ωt and ωo, and the ωr data.

The performance criterion V UC can then be used to perform model selection,
and the thresholds can be chosen using the operating characteristics.

5.3.4 Experiments

In this section a number of real-world examples are conducted, demonstrat-
ing practical application of the proposed ROC analysis methodology. Model
selection criteria are compared for a number of competing models, and the
performance of a classifier with reject-option is compared to the same model,
without reject-option. In each case, an independent test set is applied, in which
the ωr class is unseen in training, simulating the effect an unseen class may
have on each classifier. These validation tests are performed to demonstrate the
applicability of the V UC measure in these ill-defined classification problems.

The following datasets have been used for these experiments, in which the
objective is to detect target examples as well as possible, without accepting too
many examples from ωo or ωr:

1. Phoneme: This dataset is sourced from the ELENA project [6], in which
the task is to distinguish between oral and nasal sounds, based on five co-
efficients (representing harmonics) of cochlear spectra. In this problem,
the “nasal” class is chosen as ωt. A k−means clustering is performed on
the “oral” class, requesting three clusters. The first two clusters are are
regarded as ωo (used in training), and the third cluster is treated as ωr

(not used in training).

2. Mfeat : This is a dataset consisting of examples of ten handwritten digits,
originating from Dutch utility maps6. In this dataset, Fourier compo-
nents have been extracted from the original images, resulting in a 76-
dimensional representation of each digit. 200 examples of each digit are
available. In these experiments, digits 2 and 6 are used as the target

class, digits 4, 5, 6 and 8 as ωo, and digits 1, 2 and 9 as ωr (not used in
training).

6Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
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3. Satellite: This dataset consists of 6435 multi-spectral values of a satellite
image [12], with 36 dimensions (4 spectral bands in a 9 pixel neighbour-
hood). Six classes have been identified to characterise the topography,
labelling the dataset accordingly. In experiments the fifth class is consid-
ered ωt , classes 1, 4, and 6 are considered known ωo classes, and classes
2 and 3 are unseen in training (ωr).

The following procedure is used in each experiment (similar to the case
study presented in Section 5.3.3):

• An independent test set (ωt examples only) is extracted from the original
data x (containing examples from ωt and ωo), resulting in xval1, with the
remainder called xtr. In the experiments, 50% of the target examples are
extracted.

• Various clusters/sub-classes of the ωo class in x are extracted, resulting
in xval2, with x′

tr remaining . It is important to note that xval2 now
contains data that will not be used to train the classifier, but will be
applied only in the validation test. Since these extracted classes may
have a very different distribution to that of x′

tr, a classifier with reject-
option is expected to result in better performance.

• xval1 and xval2 are combined into a single validation set, xval.

• The V UC for each model is estimated following a 10-fold randomised
hold-out procedure, utilising the x′

tr dataset, and an assumed uniform
distribution of ωr. Since in these ill-defined problems the ωr class is
absent (by definition), we assume that examples of this class can occur
randomly in feature space (a worst-case scenario). Thus an additional
class is generated artificially such that this new data surrounds the ωt

class uniformly. For efficiency reasons in high-dimensional problems, the
data is generated in a hyper-sphere rather than a hyper-cube [18]. Addi-
tionally the data is generated in a subspace of the target class, within a
PCA (Principal Component Analysis) subspace, retaining 99.9% of vari-
ance. This effectively results in the generation of new objects (the new
examples can be reprojected into the original space using the inverse of
the PCA mapping). The original data is scaled to unit variance, and the
artificial data is then generated within this space with a radius of 1.1 of
the covariance of ωt.

• Following the V UC estimation, the classifier is trained using the full x′
tr

data. The classification threshold is optimised to the equal error point,
and an appropriate reject threshold is chosen for each dataset according
to the operating characteristics (obtained in the previous step). The same
data is then used to train a second classifier, using the same model, but
without reject option. The validation set xval is then applied to each
classifier, and the respective error-rates of each classifier are computed,
denoted εrej for the reject-option classifier, and εnorej for the classifier
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without reject-option. The mean percentage difference in classification
error-rates between a classifier with and without reject-option is then
computed (100mean(εrej − εnorej)). It is expected that the reject-option
classifier should result in improved performance if the independent xval2

data distribution varies considerably from the trained distribution.

Thus the objectives of the experiments are to validate the usage of the per-
formance criterion in these realistic scenarios, and show cases in which a good
model choice, and reasonable choice of thresholds results in a performance im-
provement. Note that real data only is used in the validation step, resulting in
a realistic set of experiments.

In Table 5.3, the experimental results are presented. Three groups of results
are shown, corresponding to the Phoneme, Mfeat and Satellite experiments
respectively. The first column describes the classifier used, as well as the re-
spective feature extraction procedure, and the rejection threshold used for the
validation test. The second column gives the VUC results for each model (with
standard deviation shown over 10 folds), in which high scores are favourable.
In the third column, the reject-option classifier error rate is compared to the
same classifier without reject-option. The error rate percentage of the classifier
without reject-option is shown subtracted from the error rate percentage of
the classifier with reject-option. A positive result here indicates the percent-
age improvement (and a negative value indicates the reject-option classifier has
performed worse). Note that the test set here consists of both an independent
test set from ωt, and an unseen class/cluster, and thus this measure gives an
overall impression of the classification-rejection performance improvement.

In the Phoneme results it can be seen that four of the five models result
in a large performance improvement in the independent tests. The PCA-3D
QDC model does not result in improved performance, which is also supported
by a lower VUC. The QDC model performs much better, indicating that di-
mensionality reduction is not appropriate here (the original data only has 5
features). This argument is also strengthened by the higher VUC measure.
In the three Mixture-of-Gaussian tests, it seems apparent that a lower num-
ber of mixtures results in better performance. The Mfeat experiments con-
sider four different models following a Fisher dimensionality reduction. In the
case of the NMC (Nearest Mean Classifier), it should be mentioned that small
values of td results in no rejection at all, and only very large values result
in rejection protection. However, at this point, the impact on classification
performance is severe, and thus the model is unsuitable for this task. This
is also suggested by a lower VUC score. The three other models result in
comparable performance. In the Satellite experiments, the NMC results in a
similar situation to that seen in the Mfeat case. Both the Fisher LDC, and
the PCA-4D LDC models result in a similar performance in the validation
test. However it can be seen that the Fisher LDC has a significantly larger
VUC. This discrepancy may be due to the fact that the VUC averages per-
formance over all possible operating points, and is thus not locally sensitive.
In this case it may make more sense to integrate over a smaller range (given
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that some prior knowledge about the problem exists). In these two cases, a
more local VUC was performed, denoted V UC2, in which the integration was
applied over the full range of θ, and over a restricted td range, 0.0 < td ≤ 0.2.
These experiments resulted in V UC2(Fisher, LDC) = 0.591 ± 0.0111, and
V UC2(PCA 4D,LDC) = 0.554 ± 0.012. It is clear that the performance mea-
sures are now more similar, which is an expected result7.

On the whole, the experiments show that the derived VUC measure is use-
ful in identifying more appropriate models. An important observation that
can be made is that a reject-option classifier does not always result in ad-
equate/beneficial protection against unseen classes. The ROC analysis ap-
proach presented here helps to identify these cases. Another point that should
be raised is that an adequate rejection threshold varies according to the prob-
lem and model. The implication is that a reject-threshold setting that does not
consider the operating characteristics may have little or a detrimental effect on
performance. This is an important consideration that is highlighted and dealt
with in this paper.

5.3.5 Conclusion

Classifiers designed to protect a well-defined target class from ill-defined con-
ditions, such as new unseen classes, are defined by two decision thresholds,
namely a classification and rejection threshold. The classification threshold is
designed to provide an optimal trade-off between known classes, and the rejec-
tion threshold protects the target class against changes in conditions e.g. new
unseen classes.

In this paper, we discussed the fact that classification and rejection per-
formances are not independent, but that there is an interplay between them.
The consequence of the interplay is that independently optimising classification
performance may be at the expense of rejection performance, and the opposite
also holds. Even though this interaction is expected, the fact that the unseen
class is absent makes it difficult to devise a model selection and optimisation
strategy that results in a classifier with both good classification and rejection
performance. This paper tackled this problem by measuring how well the clas-
sifier protects the target class from a uniformly distributed ill-defined class,
effectively resulting in a measure proportional to the volume occupied by the
target class decision space. This measure aids in choosing and optimising a
classifier that reduces the risk of misclassifying an unseen class (without too
much loss of classification performance) since we can now inspect both the
classification performance, and volume of the decision space.

The investigation of this problem involved the extension of classical 2-
dimensional ROC analysis by including the errors associated with the unseen
class as an additional dimension of the ROC. This results in a 3-dimensional
ROC surface, allowing the classification-rejection dynamics to be investigated.

7Note that since a limited range is used, this performance measure is not bound between
0 and 1, but is instead bound by the volume over which the integration is performed in the
unit cube.
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Experiment V UC Percentage gain
Phoneme

QDC td = 0.01 0.742 ± 0.011 21.67 ± 0.40
PCA-3D QDC td = 0.01 0.553 ± 0.009 −0.19 ± 0.05
MOGC 1 4 td = 0.01 0.667 ± 0.036 19.80 ± 5.60
MOGC 1 3 td = 0.01 0.678 ± 0.022 19.26 ± 6.21
MOGC 1 2 td = 0.01 0.708 ± 0.021 22.10 ± 4.03
Mfeat

Fisher NMC td = 0.70 0.341 ± 0.027 −1.81 ± 0.72
Fisher LDC td = 0.05 0.503 ± 0.034 28.49 ± 1.20
Fisher QDC td = 0.05 0.504 ± 0.032 29.22 ± 1.01
Fisher MOGC 2 3 td = 0.05 0.504 ± 0.027 29.95 ± 0.73
Satellite

Fisher NMC td = 0.70 0.374 ± 0.0188 −1.58 ± 0.25
Fisher LDC td = 0.10 0.612 ± 0.009 10.27 ± 0.26
PCA-4D LDC td = 0.10 0.489 ± 0.015 12.10 ± 0.34

Table 5.3: Summary of experimental results on the Phoneme, Mfeat, and Satel-
lite datasets, comparing models for the VUC performance criterion (high scores
are favourable), and comparing the mean absolute percentage difference in clas-
sification error-rates between a classifier with and without reject-option on in-
dependent test sets. The standard deviations are also shown over the 10-fold
experiments. PCA is a principal-component analysis representation, followed
by the number of retained components, and Fisher is a Fisher-projection to
1-dimension. NMC is a nearest-mean classifier, LDC is a Bayes linear classi-
fier, QDC is a Bayes quadratic classifier, and MOGC is a Mixture of Gaussians
classifier followed by the numbers of mixtures used per class.

This was demonstrated via a simple analytic example, and subsequently used
to devise a performance measure involving integrating the volume of the ROC
plot, resulting in the Volume under the ROC (VUC), which is analogous to the
Area under the ROC measure. Experiments were performed which showed the
effectiveness of this measure in selecting the most appropriate model for the
problem. Real experiments validated the measure by including a test involving
real unseen classes/clusters, in which there was a consistency between good
VUC scores and classifier performance with respect to the unseen data. The
experiments made it clear that careful attention should be paid in the choice
of the reject threshold, showing how the proposed ROC analysis can lead to
a solution involving minimal impact on classification performance, but large
impact on reducing the risk of accepting unseen class examples.
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Chapter 6

Multi-stage classification
systems
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6.1 Overview

This chapter investigates the use of operating characteristics for multi-stage
classifier system design. These classifier systems comprise a number of stages
that can be connected in series or parallel1. Operating characteristics can be
useful in this application because there may be interactions between the various
stages that can be accounted for. The operating characteristics can thus be
used to holistically design the system, and set thresholds that account for both
inter-class and inter-stage interactions.

Only a special case is considered in this chapter, consisting of a typical
topology used in recognition systems. Two stages are combined in series, with
the first stage performing the task of detection, recovering ’target’ class objects
from a typically widely distributed ’non-target’ class. For example, in road-sign
recognition [1], road-sign images are detected in images in the first stage. The
second stage then consists of a supervised classifier that distinguishes between
the various ’target’ classes.

There is scope for much further research in this area, generalising the
operating-characteristic approach to other multi-stage systems. Larger sys-
tems would have similar computational restrictions to those raised in chapter
4. One interesting opportunity would be to make use of the decomposition
approach in the second part of chapter 4 to simplify the multi-stage operating
characteristics.

1Classifiers such as boosting algorithms [2] are also multi-stage systems, but would not
be considered here because they are lower-level components of a single classifier. Of interest
in this chapter are combinations of independent trained classification systems.
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6.2 Optimising two-stage recognition systems

This section has been published as ’Optimising two-stage recognition systems’,
by T.C.W. Landgrebe, P. Pacĺık, D.M.J. Tax, and R.P.W. Duin, in Interna-
tional workshop on multiple classifier systems, Monterey California, USA, June
2005.
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Abstract

A typical recognition system consists of a sequential combination of two ex-
perts, called a detector and classifier respectively. The two stages are usually
designed independently, but we show that this may be suboptimal due to inter-
action between the stages. In this paper we consider the two stages holistically,
as components of a multiple classifier system. This allows for an optimal design
that accounts for such interaction. An ROC-based analysis is developed that
facilitates the study of the inter-stage interaction, and an analytic example
is then used to compare independently designing each stage to a holistically
optimised system, based on cost. The benefit of the proposed analysis is demon-
strated practically via a number of experiments. The extension to any number
of classes is discussed, highlighting the computational challenges, as well as its
application in an imprecise environment.

6.2.1 Introduction

In this paper we view the sequential combination of two classifiers as a Multiple
Classifier System (MCS). We illustrate that the independent design of individ-
ual classifiers in such sequential systems results in sub-optimal performance,
since it ignores the interaction between stages. In this paper we demonstrate
that optimality can be obtained by viewing such an MCS in a holistic manner.
This research is targeted specifically at two-stage recognition systems, in which
the first stage classifier attempts to detect target object distributed among a
typically poorly sampled, or widely distributed outlier class. The second clas-
sifier then operates on objects selected by the first, and discriminates between
sub-target classes. An example is image-based road-sign recognition [9], in
which the first stage involves detecting road-signs that are distributed among
an arbitrary background, and the second stage consists of a classifier to dis-
tinguish between different sign classes. Another application is fault diagnosis,
such as [7], in which the first stage classifier is designed to detect a fault from
normal operation, and the second stage to characterise the type of fault.

Considering the detector, since the outlier class is poorly defined, a two-class
discrimination scheme is inappropriate, and other methods that are trained
/ designed only on the target class are typically used, such as correlation.
Recently One Class Classification (OCC) was introduced [12], consisting of a
formal framework to train models in situations in which data from only a single
class is available. This allows a statistical pattern recognition methodology to
be taken in designing the detector2. Thus we consider these recognition systems
as a mixture of one-class and multi-class classifiers.

2Note that the MCS view on such a multi-stage system also holds for two-stage recognition
systems that are constructed for computational reasons. In this case the first stage is typically
designed for fast rejection of very abundant outlier objects, with a more complex second stage
to discriminate between target classes.
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Evaluating the recognition system involves analysing the classification accu-
racy, and the rate of outlier false acceptances. Importantly, a poor detector
that does not detect a large fraction of target objects results in poor classifica-
tion performance. In the opposite case, a very sensitive detector may pass an
unacceptably large fraction of outlier objects to the classifier, which may for
example result in high manual processing costs or computational overload.

The paper is structured as follows: Section 6.2.2 presents an analytic ex-
ample to demonstrate how the two classifiers interact. A cost-based approach
using ROC analysis demonstrates how system optimisation can be performed
in evaluating the entire system. In Section 6.2.3 the multiple-class extension is
discussed briefly, highlighting some problems that exist in extending the anal-
ysis to a large number of target classes. In Section 6.2.4, some experiments on
real data are performed, consisting of a simple problem with 2 target classes,
and a 4-class problem involving hand-written digit recognition. In Section 6.2.5
we briefly consider the case in which priors or costs cannot be defined precisely,
discussing how different system configurations can be chosen in these situations.
Conclusions are given in Section 6.2.6.
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Figure 6.1: Illustrating a typical recognition system on a synthetic example.
The scatter plots show a 2-dimensional synthetic example with two target

classes, illustrating the detector in the left plot, and the classifier in the right.
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6.2.2 The dependence between classifiers
Two-stage recognition systems

Consider a recognition task in which there are a number (n) target classes
ωt1, ωt2, . . . , ωtn, and an outlier class ωo. A recognition system, as illustrated
in Figure 6.1, has to classify these objects. A detector DDET classifies incoming
objects as either target (ωt), or outlier via a detection threshold θd:

DDET (x) :

{

target if fDET (x) > θd

outlier otherwise
(6.1)

The detector selects objects from x such that the input to DCLF is x̃.

x̃ = {x|fDET (x) > θd} (6.2)

The classifier DCLF then classifies incoming objects (according to x̃) to any of
the n target classes via the classification thresholds3 θt1

c , θt2
c , . . . , θtn

c . The clas-
sifier outputs are weighted by classification thresholds. The classifier outputs
fCLF (x̃) can then be written as:

[θt1
c fCLF (ωt1|x̃), θt2

c (ωt2|x̃), . . . , θtn
c fCLF (ωtn|x̃)] (6.3)

Here
∑n

i=1 θti
c = 1. The final decision rule is then:

DCLF (x̃) = argmaxn
i=1 θti

c fCLF (ωti|x̃) (6.4)

The primary distinction between this two-stage system and a multi-class single-
stage recognition system is that the input to the classification stage in the
two-stage case is a subset of the system input, whereas in the single-stage case
all data is processed. We are considering the dependence (in terms of overall
system performance) of the 2 stages, and how the system should be optimised.

One-dimensional example

In this section a simple 1-dimensional analytical example is studied in order to
illustrate how the detection and classification stages are related. Two Gaussian-
distributed target classes ωt1 and ωt2 are to be detected from a uniformly-
distributed outlier class ωo, and subsequently discriminated. The target classes
have means of −1.50 and 1.50 respectively, and variances of 1.50. The ωo class
has a density of 0.05 across the domain x. The class conditional densities for
ωt1, ωt2 and ωo are denoted p(x|ωt1), p(x|ωt2), and p(x|ωo) respectively, with
priors p(ωt1), p(ωt2), and p(ωo), which are assumed equal here. For the total
probability distribution of x therefore holds:

p(x) = p(ωt1)p(x|ωt1) + p(ωt2)p(x|ωt2) + p(ωo)p(x|ωo) (6.5)

3In an n-class situation, the classification thresholds can be considered to be the weighting
applied to the output posterior density estimates together with priors.
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For this 1-dimensional data, the classifier is defined consisting of only a
single threshold, denoted θc. The position of θc determines the classification
performance, and can be used to set an operating point to achieve a specified
false-negative rate FNr (with respect to ωt1) or false-positive rate (FPr). These
two errors are known as the Error of Type I and II respectively (εI and εII).
As θc varies, so do the respective εI and εII , resulting in the ROC (receiver-
operator curve [8]) between ωt1 and ωt2. In a typical discrimination problem
(ignoring the detector) across domain x, we can define εI and εII in terms of
θc as:

εI = 1 −
∫ ∞
−∞ p(x|ωt1)I1(x|θc)dx, εII = 1 −

∫ ∞
−∞ p(x|ωt2)I2(x|θc)dx

(6.6)
The indicator functions I1(x|θ) and I2(x|θ) specify the relevant domain:

I1(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) < θc, 0 otherwise
I2(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) ≥ θc, 0 otherwise

(6.7)

A two-stage recognition system consists of two sets of thresholds, namely a
classification threshold θc (of which there are a number of thresholds according
to the number of classes), and a detection threshold θd. Evaluating the recog-
nition system involves estimating both classification performance (εI and εII),
and the fraction of outlier objects incorrectly classified as target, denoted FP o

r .
Thus one axis of the evaluation is concerned with how well the system performs
at detecting and discriminating target classes, and the other is concerned with
the amount of false alarms that the system must deal with. Therefore the
system must be evaluated with respect to εI , εII , and FP o

r . In this simple
example, we can write these as:

εI = 1 −
∫ ∞
−∞ p(x|ωt1)I1(x|θc)IR(x|θd, ωt1)dx

εII = 1 −
∫ ∞
−∞ p(x|ωt2)I2(x|θc)IR(x|θd, ωt2)dx

FP o
r =

∫ ∞
−∞ p(x|ωo)I1(x|θc)IR(x|θd, ωt1) + p(x|ωo)I2(x|θc)IR(x|θd, ωt2)dx

(6.8)
IR(x|θd, ω) = 1 if p(x|ω) > θd, 0 otherwise (6.9)

Equation 6.8 yields the full operating characteristics of the system, shown in
Figures 6.2 and 6.3 for the example. Referring first to Figure 6.2, this shows
how the system operating characteristics vary for a number of fixed detection
thresholds. The top row illustrates the position of the detection threshold, and
the bottom row shows εI , εII , and FP o

r for all classification thresholds (similar
to standard ROC analysis, except an additional dimension is introduced to
account for the detection threshold). In these plots, it is desirable for εI , εII ,
and FP o

r to be minimal, indicating good classification and detection.

In Figure 6.2, as θd is increased, the plots show how FP o
r progressively

decreases. In the left-column, a very sensitive detector is used, with θd placed in
the tails of the target distribution. It is clear that the classification performance
is almost maximal for this threshold, but FP o

r is very high i.e. the system will
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θd = 0.01
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Figure 6.2: Operating characteristics for a fixed θd, and varying θc. The left
column is where θd = 0.01, followed by θd = 0.05 in the middle column, and
θd = 0.13 in the right column. The top row plots illustrate the distribution,
with two Gaussian target classes, and a uniformly distributed outlier class.
The position of the detection threshold is shown via the dotted line. The full
operating characteristics for all possible θc are shown in the bottom row.

accept a very high percentage of outlier objects. The centre column plots show
the case for which a higher detection threshold has been used (θd = 0.05),
resulting in a substantially lower FP o

r , for a small sacrifice in classification
performance. The third column shows a situation in which θd is again increased,
resulting in a further decrease in classification performance. In this case the
detector only accepts very probable target objects, reducing the volume of
the target class decision space, at the expense of all target objects appearing
outside the decision boundary. The left plot of Figure 6.3 shows the operating
characteristics for all combinations of θc and θd. Next we show how using the
full operating characteristic can be advantageous in system design.

Cost-based analysis

From the system perspective, the cost of misclassifying a ωt object (as outlier)
is ct, and the cost of misclassifying a ωo object (as target) is co. The individual
target class misclassification costs can be written as ct1, ct2, . . . ctn

, which must
sum to ct together with the priors (note that we do not consider the entire loss
matrix as defined in [2], but only consider the loss incurred due to misclassifi-
cation, irrespective of the class to which it is assigned). The expected overall
system loss L can be written as:

L = ctp(ωt)FNr+cop(ωo)FP o
r , =

n
∑

i=1

cti
p(ωti

)FN ti
r +cop(ωo)FP o

r ,

n
∑

i=1

cti
= ct

(6.10)
The priors are denoted p(ωt) and p(ωo), and the false negative rate of ωt is
denoted FNr. The target class misclassification costs are denoted cti

for target
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Figure 6.3: Results of analytic experiment. The left plot shows the full operat-
ing characteristics, with εI plotted against εII , and FP o

r . The right plot shows
the loss difference between an independent and holistic design approach for all
combinations of ct2, and co over a {0, 1} range, where ct1 is fixed to 0.55.

class ωti
. Cost-based classifier design involves minimising of L for the given

costs, resulting in the optimal threshold values. The ROC is a tool that can
be used to facilitate this minimisation, since it consists of performances for all
possible threshold values (all FNr and FPr results). In a 2-class problem, the
costs (and priors) specify the gradient of the cost line (also known as an iso-
performance line as defined in [10]), and the intersection of the normal of this
line with the ROC (plotting FNr against FPr) results in the optimal operating
point4.

We now demonstrate a cost-analysis for the example in order to empha-
sise the importance of designing the entire system holistically. Two different
design approaches are compared, the first of which we refer to as the inde-
pendent approach, and the second as the holistic approach. In the first case,
we optimise the recognition and classification stages independently, and com-
pare the expected system loss to the second case, in which the entire sys-
tem is optimised holistically. We assume that the cost specification for the
recognition system is such that misclassifying a ωt object has a cost of 5,
and the cost of classifying a ωo object as target is 10. Among the two tar-

get classes ωt1 and ωt2, these have misclassification costs of 2 and 3 respec-
tively (summing to 5), i.e. ωt2 is favoured. From Equation 6.10, we can
write the system loss (assuming equal priors) for the chosen θc and θd as
L(θc, θd) = 2εI(θc, θd) + 3εII(θc, θd) + 10FP o

r (θc, θd). In the independent ap-
proach, the detector is optimised using ωt and ωo data only (with operating
characteristics generated for these classes only). The classifier is then opti-
mised on ωt1 and ωt2. The corresponding thresholds are indicated by the point
marked N in the left plot of Figure 6.3. In the holistic approach, ωt1, ωt2,

4We deal with multi-dimensional ROC plots in this paper. Cost-based optimisation in-
volves intersecting a plane (the gradient based on the cost associated with misclassifying each
class) with the multi-dimensional ROC surface, resulting in optimised thresholds.
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and ωo are analysed simultaneously in the optimisation, resulting in the point
marked H. The two points N and H are significantly apart on the operating
characteristic. In the independent approach, the overall expected loss is thus
4.18, and in the holistic approach, the loss is 4.02. Thus independent approach
is sub-optimal here. Depending on the problem and the costs, the independent
approach may vary in the degree of sub-optimality. To assess how the holistic
approach will improve performance in general, refer to the right plot of Figure
6.3. This plot shows the difference between the independent and holistic loss
performances (where a positive score indicates superiority of the holistic ap-
proach) for all combinations of costs over a range. The cost ct1 is fixed to 0.55,
and ct2 and co are varied for all combinations over the {0, 1} range. It can be
seen that for this artificial example, only imbalanced costs result in significant
improvements. In the experiments, it will be shown models that do not fit the
data well in real problems can benefit even more from this approach, including
balanced cases.

6.2.3 Multiple class extension
The analytic example involved a recognition system with 2 target classes, result-
ing in a 3-dimensional ROC surface. As the number of target classes increase,
the dimensionality of the ROC increases. The analysis extends to any number
of classes [11]. However, as the number of dimensions increase, the computa-
tional burden becomes infeasible [5]. In this paper, experiments involved up to
3 target classes. In this case, the processing costs were already very high. and
only a very sparsely sampled ROC could be generated. Extending this analysis
to N classes would be infeasible. This is the topic of future work, exploring
approaches that can be used to either approximate the full ROC, or to use
search techniques in optimising the thresholds. Attention is drawn to [6], in
which an initial set of thresholds is used, and a hill-climbing greedy-search is
used.

6.2.4 Experiments
In this section a number of experiments are conducted on real data in order
to demonstrate the holistic system design approach practically, and how model
(or system configuration) selection can be performed. Two datasets are used,
described as follows:

• Banana: A simple 2 dimensional problem with 2 target classes distributed
non-linearly (the banana distribution [4]), in which there are 600 examples
each of ωt1 and ωt2, and 2400 outlier examples. The distribution is shown
in Figure 6.1.

• Mfeat : This is a dataset consisting of examples of ten handwritten digits,
originating from Dutch utility maps5. In this dataset, Fourier compo-
nents have been extracted from the original images, resulting in a 76-
dimensional representation of each digit. 200 examples of each digit are

5Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
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available. In these experiments, digits 3, 4 and 8 are to be distinguished
(i.e. 3 target classes ωt1, ωt2, and ωt3), distributed among all other digit
classes, which are considered to be outlier.

We follow the same analysis approach as in Section 6.2.2. Classification and
detection thresholds are generated across the full range. In the Banana case,
200 evenly sampled classification thresholds are used, and similarly 100 detec-
tion thresholds are used. For computational reasons, the Mfeat experiments
only uses 10 detection thresholds, and 12 samples per classification threshold.
Each experiment involves a 10-fold randomised hold-out procedure, with 80%
of the data used in training, and the remainder for testing. The evaluation
consists of evaluating the loss incurred for a number of chosen misclassification
costs, using the ROC to find an optimal set of thresholds. In this evaluation it
is assumed that the costs (and priors) are known beforehand, and as in Section
6.2.2, we only consider misclassification costs, applying Equation 6.10.

In the Banana experiments, 3 different system configurations are imple-
mented, comparing the independent and holistic approaches for each case. The
same detector is used for all 3 configurations, consisting of a Gaussian one class
classifier (OCC) [12]. Three different classifier models are used, consisting of
a Bayes linear, quadratic, and mixture of Gaussians classifier (with two mix-
tures per class), denoted LDC, QDC, and MOG respectively. In Table 6.1 the
Banana experimental results are shown for 4 different system costs. These are
shown in the four right-most columns, with the costs denoted [ct1, ct2, co]. For
all 3 system configurations, the holistic design approach results in a lower over-
all expected loss than the independent approach. In some cases the difference
in performance is not significant (see the MOG results for the case in which
ct1 = 3.0, ct2 = 1.0, and co = 4.0). These experiments show that the benefit of
an overall design approach can in many cases result in significant improvements
in performance.

A similar set of experiments are conducted for the Mfeat problem, with costs
denoted [ct1, ct2, ct3, co]. Results are shown for four different cost specifications
in the right-most columns of Table 6.1. Three different system configurations
are considered, and in each case the independent and holistic design approaches
are compared. The first configuration consists of a principal component anal-
ysis (PCA) mapping with 3 components and a Gaussian OCC as the detector,
followed by a Fisher mapping and LDC as the classifier. The second configu-
ration uses a 3-component PCA mapping Gaussian OCC for the detector, and
a 3-component PCA LDC for the classifier. Finally the third system consists
of a 5-component PCA with Gaussian OCC detector, and a 2-component PCA
MOG classifier with 2 mixtures for the classifier. As before, the holistic ap-
proach consistently results in either a similar or lower overall loss compared to
the independent approach. Once again, the improvement is dependent on the
cost specification. For costs [1, 8, 1, 10] (favouring ωt2) and [1, 1, 1, 12] (favour-
ing ωo), there is no significant improvement in using the holistic approach for all
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Detector Classifier Cost 1 Cost 2 Cost 3 Cost 4
Banana [5, 5, 10] [3, 1, 4] [1, 3, 4] [1, 1, 4]
Gauss LDC I 0.081 ± 0.009 0.370 ± 0.049 0.233 ± 0.056 0.244 ± 0.046
Gauss LDC H 0.067 ± 0.008 0.326 ± 0.039 0.171 ± 0.015 0.189 ± 0.027
Gauss QDC I 0.089 ± 0.017 0.418 ± 0.051 0.260 ± 0.060 0.265 ± 0.053
Gauss QDC H 0.072 ± 0.010 0.354 ± 0.036 0.179 ± 0.025 0.182 ± 0.030
Gauss MOG I 0.059 ± 0.008 0.252 ± 0.033 0.206 ± 0.032 0.205 ± 0.030
Gauss MOG H 0.049 ± 0.007 0.230 ± 0.035 0.170 ± 0.019 0.169 ± 0.021
Mfeat [1, 1, 1, 3] [8, 1, 1, 10] [1, 8, 1, 10] [1, 1, 1, 12]
PCA3 Gauss Fisher LDC I 0.648 ± 0.050 0.212 ± 0.018 0.225 ± 0.017 1.385 ± 0.316
PCA3 Gauss Fisher LDC H 0.547 ± 0.110 0.146 ± 0.014 0.223 ± 0.017 1.317 ± 0.435
PCA3 Gauss PCA3 LDC I 0.654 ± 0.053 0.214 ± 0.018 0.225 ± 0.017 1.389 ± 0.316
PCA3 Gauss PCA3 LDC H 0.551 ± 0.110 0.146 ± 0.015 0.224 ± 0.017 1.305 ± 0.432
PCA5 Gauss PCA2 MOG2 I 0.442 ± 0.029 0.146 ± 0.011 0.154 ± 0.011 0.929 ± 0.202
PCA5 Gauss PCA2 MOG2 H 0.380 ± 0.079 0.112 ± 0.024 0.148 ± 0.018 0.847 ± 0.124

Table 6.1: Results of cost-based analysis for the Banana and Mfeat datasets,
comparing an independent (I) and holistic (H) design approach for a number of
different system configurations (low scores are favourable). Standard deviations
are shown.

3 systems. However, when the costs are in favour of ωt1, the holistic approach
leads to a significantly lower system loss. This suggests that the ωt1 threshold
has more effect over the detection performance. In this case θd should be ad-
justed accordingly for optimal performance. The same observation is made for
balanced costs [1, 1, 1, 3]. An interesting observation made in these experiments
is models that do not fit the data well (e.g. the LDC in the Banana experi-
ments, compared to MOG), tend to benefit more from the holistic optimisation,
suggesting that the interaction is more prominent for all costs.

6.2.5 Imprecise environments
The approach taken thus far showed that, given both misclassification costs
and priors, the optimal set of thresholds can be found. In many practical
situations the costs or priors cannot be obtained or specified precisely [10]. In
these situations we may still wish to choose the best system configuration, and
have some idea of a good set of system thresholds that may, for example, be
suitable for a range of operating conditions or costs (see [1] and [3]). We do not
go into more detail here due to space constraints, but emphasise the fact that
real problems are often within an imprecise setting, requiring an alternative
evaluation to the cost-based approach. One strategy for this situation is to
compute the AUC (Area Under the ROC curve) for a range operating points.
An integrated error results that is useful for model selection. The next step
is to choose thresholds, which may for example be specified by considering
operating regions that are relatively insensitive to changes in cost or priors.

6.2.6 Conclusion
A two-stage recognition system was considered as an MCS, consisting of a de-
tection and classification stage, with the objective of optimising the overall
system. An analysis of a simple analytic problem was performed, in which the
full operating characteristics were computed for all combinations of detection
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and classification thresholds. The holistic design approach was compared to
the case in which the two stages are designed independently, showing that the
holistic approach may result in a lower expected loss. The N-class extension
was discussed, highlighting the computational difficulties in scaling the anal-
ysis to any number of classes. Some experiments with real data were then
undertaken for a number of system configurations to demonstrate practical
application of the analysis, consistently demonstrating the advantage of the
holistic design approach. It was observed that the performance improvements
vary according to the cost specification, and the respective degree of interfer-
ence a class may impose on the detection stage. Models that fit the data well
only seem to benefit for imbalanced costs/priors, whereas ill-fitting models can
result in improvements for any costs. Finally, a short discussion on application
of the methodology to imprecise environments was given. Future work includes
exploring efficient multi-class ROC analysis, and application to an imprecise
environment.

Acknowledgements: This research is/was supported by the Technology
Foundation STW, applied science division of NWO and the technology pro-
gramme of the Ministry of Economic Affairs.
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Summary

Operating characteristics for the design and op-
timisation of classification systems

This thesis has consisted of a number of published conference and journal pa-
pers in the area of classifier operating characteristics. As a whole, the thesis
shows how powerful and versatile operating characteristics are at aiding in the
design of classification systems. New areas have also been tackled, with strate-
gies and algorithms proposed that broaden the scope of pattern recognition to
new problems. A conclusion that can be made from this body of work is that
it is not only important to focus on a good design of the classifier model, but
it can also be very beneficial to evaluate and optimise the system to suit op-
erating conditions and circumstances. The strategies and algorithms proposed
may form the basis for further research in this area.

In the second chapter, well-known 2-class operating characteristics were
discussed, popularly known as Receiver Operator Characteristics (ROC). The
first part considered the use of the popular Area Under the ROC (AUC) mea-
sure in the case that prior probabilities vary (as opposed to being fixed). The
research showed that even though it is important to consider the integrated
performance over the expected range of conditions, it is also important to con-
sider the sensitivity to the changes in conditions. Experiments demonstrated
that in some cases, classifiers that are competitive in terms of AUC, have sig-
nificantly different sensitivities. The second part of the chapter considered
extending ROC analysis to problems involving evaluation using precision-recall
analysis. This is commonly used in applications such as retrieval and rare event
detection, where performance measurement using standard error-rate does not
suffice. The research showed that Precision-Recall Operating Characteristics
(P-ROC) form a 3-dimensional surface, between the Precision, Recall, and de-
gree of class skewing between class abundances. An analysis was presented
that allows these problems to be evaluated in imprecise conditions, resulting in
performance measures similar in concept to the AUC.

The multiclass generalisation of 2-class operating characteristics has thus
far received very little attention, even though it has wide application. The third
chapter investigated some theoretical extensions of popular 2-class operating
characteristics to the multi-class case. The first contribution in this area was a
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generalised Neyman-Pearson classifier optimisation approach. This optimisa-
tion is frequently used in the 2-class case where the classification error is fixed
for one class, and minimised for the other. An algorithm was proposed that can
be applied to the multiclass case subsequent to the computation of the multi-
class ROC. The approach allows one or more classifier outputs to be specified,
followed by minimisation of the remaining respective classification errors. How-
ever, a solution is not guaranteed if more that one output is specified, because
it may not exist. The second part of this chapter considered the extension of
the AUC measure to the multiclass case. A simplified approach was proposed
that considers overall inter-class performance only (ignoring intra-class errors).
For this study, it was important to consider the bounds of the measurement
between a random and perfect classifier, since they vary as a function of the
number of classes. These were calculated, and a numerical integration approach
used to measure the volume under the ROC hypersurface. The approach can
be applied to any trained classifier. Even though the bounds for the full gen-
eralised case have been calculated, a practical methodology for computing the
volumes is still an open area.

The fourth chapter of the thesis dealt with the fact that generalising ROC
analysis to large numbers of classes is computationally restrictive. In fact, it was
shown that the computational demands grow exponentially with the number
of classes. A number of algorithms were presented that perform cost-sensitive
optimisation using efficient search approaches, circumventing the necessity to
construct the ROC. In these cost-sensitive problems, the objective is to choose
a new operating point for the classifier to suit a new cost/risk scenario. The
search approaches are, however, susceptible to local minima. An approach was
then proposed that involves constructing 2-class ROC’s between all class pairs.
The ROC pairs that result in the most optimal performance for the scenario
are selected, implicitly considering the most important pairs of interactions
(between classes). The algorithm was found to work well, but is sub-optimal
if there are many interactions, which is compensated for to an extent by us-
ing a post-processing search step. The second part of this chapter presented
one of the primary thesis contributions. This involves a classifier perturbation-
analysis approach that can be used to efficiently approximate the full multi-
class operating characteristic using a decomposition approach. The perturba-
tion analysis considers the classifier performance over many different operating
points in order to discover which classifier outputs tend to interact strongly,
and which are more independent. A considerable amount of experimentation
with multiclass problems was carried out, considering performance at different
operating points. This revealed that many ROC dimensions (each confusion
matrix output becomes an ROC dimension) are often (approximately) indepen-
dent, or interact in independent groups. The consequence of this is that the
ROC can be decomposed into a number of lower-dimensional groups of dimen-
sions that are far more efficient to compute (essentially computing a number of
sub-ROC’s). An algorithm was presented that efficiently discovers the decom-
position, and a number of studies investigated the impact of ignoring smaller
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interactions, which is important to obtain approximate decompositions to limit
computational complexity. Experiments demonstrated just how powerful this
approach can be at simplifying some problems down to their intrinsic complex-
ities. This type of approach could form the basis for much further multiclass
ROC research.

In the fifth chapter, the topic of ill-defined conditions was studied in the
context of classification systems. The first part proposed a 2-stage approach to
designing classifier systems that can both discriminate between known classes,
and reject objects from new/unseen classes. This methodology is an alternative
to the standard approach that uses a single model to perform both tasks. It was
found that optimising different models for the tasks of classification and rejec-
tion respectively can be beneficial. The second part of the chapter consisted of
a study into the operating characteristics that exist as a consequence of having
both classification and reject thresholds. This is an important topic because
increasing the rejection performance decreases classification performance (and
vice-versa). Operating characteristics can be used to select the most appropri-
ate set of thresholds for a given system, accounting for the inherent interaction.

In the sixth chapter, the thesis showed that operating characteristics can
also be applied to multi-stage classification systems, modeling both the in-
teraction between classes and stages. In particular, a two-stage recognition
system was studied, consisting of a detection and classification stage. A multi-
dimensional operating characteristic showed that this holistic approach to op-
timising the entire system yields superior performance to a more traditional
independent approach. Generalising this methodology to other multistage sys-
tems remains an open challenge.

This thesis has thus considered and contributed to a number of areas in
pattern recognition pertaining to operating characteristics. It is clear that
research into operating characteristics is gaining momentum, and will become
one of the most useful tools for evaluating and optimising classification systems
as pattern recognition extends to new exciting areas.

Summary of the thesis: “Operating characteristics for the design and optimi-
sation of classification systems”.

T.C.W. Landgrebe, Delft, October 2007.
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Samenvatting

Operating karakterisieken voor het ontwerp en
de optimalisatie van classificatie systemen

Dit proefschrift omvat een aantal conferentie- en tijdschrift-publicaties op het
gebied van classificator keurings (operating) karakteristieken. Het proefschift
laat zien hoe krachtig en veelzijdig operating karakteristieken zijn bij het on-
twerp van classificatie systemen. Ook nieuwe onderwerpen zijn aangepakt,
strategieen en algoritmes zijn voorgesteld die het toepassingsgebied van de pa-
troonherkenning verder uitbreiden. Eén conclusie die uit dit werk getrokken
kan worden is dat het niet alleen belangrijk is om zich te concentreren op
het ontwerp van de classificator, maar dat het ook erg nuttig kan zijn om het
systeem te optimaliseren voor de gebruikssituaties en -omstandigheden. De
voorgestelde strategieën en algoritmes kunnen de basis vormen voor verder
onderzoek in dit gebied.

In het tweede hoofdstuk worden bekende twee-klasse karakteristieken be-
sproken, die algemeen bekend zijn als Receiver Operating Characteristics (ROC),
of Operating karakeristieken. Het eerste deel beschouwt het gebruik van het
populaire ’Area Under the ROC’ maat voor het geval dat de a priori kansen
varieren (in tegenstelling tot vastgelegde prior kansen). Het onderzoek laat
zien dat, hoewel het belangrijk is om de prestaties over het hele verwachte
toepassings condities te integreren, het erg belangrijk is om de gevoeligheid
voor veranderingen in die condities te bekijken. Experimenten laten zien dat
in sommige gevallen de klassificatoren die vergelijkbare AUC hebben, geheel
verschillende gevoeligheden bezitten. Het tweede gedeelte van het hoofdstuk
bekijkt de uitbreiding van de ROC analyse naar problemen die met behulp van
precision-recall worden geanalyseerd. Dit wordt veel gebruikt in terugzoeksys-
temen of in de detectie van zeldzame gebeurtenissen, waar de standaard fout
schatting met behulp van de klassificatie fout niet voldoet. Het onderzoek
laat zien dat de Precision-Recall operating karakteristieken (P-ROC) een drie-
dimensionale oppervlak definieert opgespannen door de Precision, Recall en
de mate van onevenwichtigheid in de klassengroottes. Er wordt een analyse
getoond waarin een evaluatie mogelijk is voor situaties met onbekende klasseg-
roottes. Dit resulteert in een maat die op de AUC lijkt.

De generalisatie van de twee-klasse karakeristieken naar meerdere klassen
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heeft tot op heden weinig aandacht gekregen, hoewel het erg relevant is in
praktijk. Het derde hoofdstuk onderzoekt enkele theoretische uitbreidingen
van populaire twee-klasse karakteristieken naar meerdere klassen. De eerste bi-
jdrage is een gegeneraliseerde Neyman-Pearson klassificatie optimalisatie. Deze
optimalisatie wordt vaak in het twee-klasse probleem toegepast waarbij de klas-
sificatie fout van één klasse gefixeerd wordt en de klassificatie fout van de andere
klasse geminimaliseerd wordt. Een algoritme is voorgesteld dat kan worden
toegepast op het multi-klasse geval na de berekening van de multi-klasse ROC.
Deze aanpak maakt het mogelijk om één of meerdere klasse-fouten te specifi-
ceren en de overigen te minimaliseren. Een oplossing is niet gegarandeerd wan-
neer er meer dan één fout gespecificeerd is, omdat het niet hoeft te bestaan. Het
tweede gedeelte van dit hoofdstuk bekijkt de uitbreiding van de AUC maat naar
het meer-klasse probleem. Een versimpelde aanpak is voorgesteld dat alleen de
totale fouten tussen twee klassen beschouwd (en daarbij fouten binnen klassen
negeert). Hiervoor is het belangrijk de limieten op het verschil tussen een
willekeurige en een perfecte classificator te beschouwen, en een numerieke in-
tegratie methode is gebruikt om het volume onder de multi-dimensionele ROC
curve te berekenen. Dit kan op elk mogelijke classificator worden toegepast.
Hoewel de limieten voor het volledige algemene geval zijn berekend, is een
praktische methodology om de volumes te berekenen nog steeds een punt van
onderzoek.

Het vierde hoofdstuk van het proefschrift gaat over het feit dat de gegen-
eraliseerde ROC analyse computationeel zeer duur is voor grote hoeveelheden
klassen. Er wordt aangetoond dat de computationele eisen exponentieel toen-
emen met het aantal klassen. Een aantal algoritmes wordt gepresenteerd die
kost-gevoelige optimalisaties doen met behulp van efficiente zoek algorithmes,
waarbij de dure constructie van de ROC wordt vermeden. In deze kost-gevoelige
problemen is het doel om een nieuw operating point voor de classificator te
kiezen dat past bij de nieuwe kosten. De methodes zijn helaas gevoelig voor
locale optima. Eén van de voorgestelde methodes maakt gebruik van twee-
klasse ROC tussen alle paren van klassen. De set van ROC paren die de
kleinste fout geven voor het gegeven scenario wordt geselecteerd, waarbij im-
pliciet de belangrijkste interactie paren (tussen de klassen) wordt meegenomen.
Het algoritme werkt goed, maar is suboptimaal wanneer er veel interacties
zijn, en dit kan gedeeltelijk gecompenseerd worden met behulp van een post-
processing zoek stap. Het tweede gedeelte van het hoofdstuk presenteert een
van de belangrijkste bijdragen van dit proefschrift. Het bevat een classificator
verstorings-analyse benadering die gebruikt kan worden om de volledige multi-
klasse operating characteristic efficient te kunnen schatten met behulp van een
decompositie benadering. De verstorings-analyse beschouwd de classificators
prestaties op veel verschillende operating points om uit te vinden welke clas-
sificator uitvoeren sterk met elkaar interageren, en welke meer onafhankelijk
zijn. Een substantieel aantal experimenten met multi-classe problemen was
gedaan, waarbij de prestaties bij verschillende operating points gemeten is. De
experimenten tonen aan dat veel ROC dimensies (elke element uit de verwar-
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ringsmatrix kan als een ROC dimensie worden gezien) vaak (bij benadering)
onafhankelijk zijn, of in onafhankelijke groepen uiteenvallen. De consequentie
daarvan is dat de ROC kan worden ontbonden in een aantal laag-dimensionale
groepen die veel efficienter zijn om te berekenen (in wezen het berekenen van
een aantal sub-ROC’s). Er is een efficient algoritme gepresenteerd dat een de-
compositie levert, en een aantal studies laat de invloed van het negeren van de
kleinere interacties zien, wat belangrijk is voor het vinden van benaderingen
van de decompositie om de computationele complexiteit te beperken. Experi-
menten tonen aan hoe krachtig deze aanpak kan zijn om sommige problemen
te simplificeren.

In het vijfde hoofdstuk wordt het onderwerp van slecht-gedefinieerde con-
dities bestudeerd in de context van classificatie systemen. Het eerste gedeelte
stelt een twee-stappen procedure voor voor het ontwerp van systemen die zowel
tussen bekende klassen kunnen discrimineren als objecten uit nieuwe/onbekende
klassen kunnen verwerpen. Deze methodologie is een alternatief voor de stan-
daard aanpak waarin een enkel model wordt gebruikt voor beide taken. Het
blijkt dat het erg voordelig kan zijn om verschillende modellen te optimaliseren
voor het classificeren en het verwerpen. Het tweede gedeelte van het hoofdstuk
bevat een studie van de operating karakteristieken die ontstaan wanneer clas-
sificatie en verwerping worden gecombineerd. Dit is een belangrijk onderwerp
omdat bij het vergroten van de verwerpings fractie de klassificatie prestaties
verminderen (en vise versa). De operating karakteristieken kunnen gebruikt
worden om de meest toepasselijke drempelwaardes te kiezen voor het systeem,
waarbij de inherente klasse-interacties worden meegenomen.

In het zesde hoofdstuk wordt getoond dat operating karakteristieken ook
toegepast kunnen worden op meerstaps classificatie systemen, waarbij zowel de
interactie tussen de klassen als de verschillende statia gemodelleerd wordt. In
het bijzonder is een twee-klasse classificatie systeem bestudeerd, dat uit een
detectie en een classificatie stap bestaat. Een multi-dimensionaal operating
karacteristiek laat zien dat deze holistische aanpak om het gehele systeem te
optimaliseren betere prestaties oplevert dan de traditionelere aanpak. Het is
nog een uitdaging deze aanpak te generaliseren naar andere meerstaps syste-
men.

Dit proefschrift heeft het onderwerp van operating karakteristieken in de pa-
troonherkenning onderzocht en uitgebreid. Het is duidelijk dat het onderzoek
op dit gebied momentum wint, en dat het een van de nuttigste gereedschap-
pen zal worden voor het evalueren en optimaliseren van classificatie systemen
wanneer de patroonherkenning zich meer uitbreid naar nieuwe en interessante
gebieden.

Samenvatting van het proefschrift: “Operating characteristics for the design
and optimisation of classification systems”.

T.C.W. Landgrebe, Delft, Oktober 2007.
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