ASCI 2000

Learned from Neural Networks

R.P.W. Duin

Pattern Recognition Group Delft University of Technology The Netherlands

duin@tn.tudelft.nl

Lommel, June 2000

The Pattern Recognition Problem

Dennett: There is no scientific need to take into account the concept of consciousness. Its existance can be denyied.

Where to Attack the Pattern Recognition Problem?

	Matter	Mind		
			Plato	
	Model the Brain	Generalize the Rules	Descartes	
Searle	Model the Dram		Grenander	
Penrose			Pavlidis	
Dennett	Neuro-Biology	Artificial Intelligence	Goldfarb	
LeCun	Perception	Statistical Pattern Recognition	Kanal	
Grossberg			Breiman	
Koenderink	Model the Senses	Generalize from Examples (Given the Sensors)	Bacon	
			Aristotle	

Shared Weight Network

			# Cells		
				# Connec	ctions
	L1	Input layer			# Weights
		16 x 16	256		
		$12 \times (8 \times 8) \times (5 \times 5 + 1)$		19968	
		$12 \times (8 \times 8) \times (1) + 12 \times (5 \times 5)$			1068
		_			
	1.2	Feature maps			
		$12 \times (8 \times 8)$ $12 \times (4 \times 4) \times (8 \times (5 \times 5) \times 1)$	768	20503	
		$12 \times (4 \times 4) \times (6 \times (5 \times 3) + 1)$ $12 \times (4 \times 4) \times (1) + 12 \times (8 \times (5 \times 5))$		36392	2592
	7.0				
	1.3	Subsamping maps	10.3		
		$30 \times (12 \times (4 \times 4) + 1)$	192	5790	5790
	1.4	Hidden laver			
		30	30		
		10 x (30 + 1)		310	310
\\	L.5	Output laver			
0 / 2] 4] 6 7 8 9		10	10		
		_			
		Total	1256	64660	9760

Figure 5.2: An example 2D shared weights ANN.

The Neocognitron Network

Fisher:
$$S(x) = (\hat{\mu}_A - \hat{\mu}_B)^T \hat{G}^{-1} x + constant$$

 $\begin{aligned} \mathbf{x} &= (\mathbf{x}^{1}, \mathbf{x}^{2}, ..., \mathbf{x}^{k}) \text{-} \text{k dimensional feature space} \\ &\{\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{m}\} \text{-} \text{training set} \\ &\{\lambda_{1}, \lambda_{2}, ..., \lambda_{m}\} \text{-} \text{class labels} \end{aligned} \right\} D(\mathbf{x}) \text{-} \text{classifier}, \ \mathbf{\epsilon} = \text{Prob} (D(\mathbf{x}) \neq \lambda(\mathbf{x})) \\ &\epsilon(\mathbf{m}) \text{: monotonically decreasing}, \ \epsilon(\mathbf{k}) \text{: peaks !} \end{aligned}$

Neural Networks

Backpropagation Training Rule

Network:	$f(\mathbf{x}_{p}, \mathbf{W})$
Training set:	$\{(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots, (\mathbf{x}_n, \mathbf{t}_n)\}$
Target values (labels):	t _p
Network error:	$\mathbf{E} = \sum_{\mathbf{p}} \{ \mathbf{t}_{\mathbf{p}} - \mathbf{f} (\mathbf{x}_{\mathbf{p}}, \mathbf{W}) \}^2$
Gradient descent:	$\mathbf{W} < -\mathbf{W} + \Delta \mathbf{W} = \mathbf{W} + \sum_{p} \Delta_{p} \mathbf{W}$
Generalized delta rule	$: \Delta_{p} W: \Delta_{p} w_{ji} = \eta \delta_{pj} o_{pi}, \forall i, j$
Fixed stepsize:	η
output units (layer k)	: $\delta_{pk} = (t_{pk} - o_{pk})o_{pk}(1 - o_{pk})$
hidden units (layer j)	$: \delta_{pj} = o_{pj}(1 - o_{pj})\sum_{k} \delta_{pk} w_{kj}$

The 'errors' in the lower layers (j) are computed using the corrections of the layers above (k): backpropagation.

Using a neural network classifier is not straightforward all:

- Architecture (numbers of hidden layers and hidden units)
- input representation
- output representation
- target values
- reject values
- initialization procedure
- batches, partitioned learning set (size?) or individual training
- adding noise (amount?) to input or weights?
- step size η
- momentum term α

"The backpropagation training procedure can be a user's nightmare"

(Weiss & Kulikowski)

application	#weights	#samples	error	ref.
text -> speech	25000	5000	0.20	Sejnowski
sonar target rec	1105	192	0.15	Gorman
car control	>36000	1200	car drives on winding road	Pomerleau
back-gammon	>11000	3000	computer champion	Tesauro
sex rec from faces	>36000	90	0.09	Golomb
char rec	9900	5000	0.055	Sato
remote sensing	1800	50	0.05-0.10	Kamata
signature verif.	480	280	0.05	Sabourin

T.J. Sejnowski and C.R. Rosenberg, *NETtalk: a parallel network that learns to read aloud*, The John Hopkins University Electrical Eng. and Comp. Science, 1986. P. Gorman and T.J. Sejnowski, *Learned Classification of Sonar Targets Using Massively Parallel Network*, IEEE Transactions on ASSP, vol. 36, no. 7, July 1988.

D. Pomerleau, ALVINN: Ann Autonomous Land Vehicle in a Neural Network, in: David S. Touretzky, Advances in Neural Information Processing Systems I, 1989

G. Tesauro, Neurogammon wins computer olympiad, Neural Computation, vol. 1, pp 312-323, 1990

B.A. Golomb, D.T. Lawrence, T.J. Sejnowski, Sexnet: A neural network identifies sex from human faces, Adv. in Neural Inf. Proc. Sys. I, 1989

A. Sato, K. Yamada, J. Tsukumo, and T. Temma, Neural network models for incremental learning, ICNN, Helsinki, 1991.

S.-I. Kamata, R.O. Eason, A. Perez, and E. Kawaguchi, *A Neural Network Classifier for LANDSAT Image Data*, Proc. 11th ICPR, The Hague, Vol 2, 573-576, 1992 R. Sabourin and J-P. Drouhard, *Off-Line Signature Verification Using Directional PDF and Neural Networks*, Proc. 11th ICPR, The Hague, Vol 2, 321-325, 1992

"Artificial Intelligence and Neural Networks have deceived and spoiled two generations of computer scientists just by these names" (Rosenfeld, Oulu 1989)

"Neural Networks has brought new enthusiasm and spirit to the next generation of young researchers." (Kanal, Jerusalem 1994)

"Just a short look at the architecture of a Neural Network is sufficient to see that the thing simply doesn't have the moral right to show any reasonable performance" (Breiman, Edinburgh, 1995) "Your problem, Dr. Duin, is that you want to understand the neural network. You will have to accept that the interesting aspect of neural networks is that their behavior cannot be understood. " (NN, Delft, 1991)

So, it is just magic!

A sufficiently large neural network can solve almost any problem.

A neural network can solve a problem in many different ways

Training versus Implementing

Any function can be implemented on a neural networkConsequently, it can be trained by any rule.The architecture is general, and thereby not special.What is special, is the original training rule.

Gradient Descent Training Characteristics

Overtraining Example - 5 Hidden Units

Overtraining Example - 10 Hidden Units

7/11/2002

Overtraining Example - 20 Hidden Units

Neural Networks usually have more layers and neurons than necessary.

Training a more simple network, that is able to implement the same function, however, appear to be difficult.

Many neurons may be given random weights (and not trained) without causing problems.

--> Redundancy helps, but demands more time.

Training and testing may be very slow and memory demanding. Special hardware helps, as it does for other procedures.

Neural networks usu	ally are not better
in simple problems	

They don't offer fixed procedures.

They offer a complicated toolbox and not a single off-the-shelf tool.

Application demands a skilled analyst.

dataset	NMea	norm	k-NNR	1-NNR	DTree	ΔΝΝ
Gataset	n	norm		1-11111	Direc	7 11 11 1
IRIS	0.077	<u>0.025</u>	0.048	0.053	0.071	0.052
	0.019	0.010	0.019	0.017	0.031	0.026
IMOX	0.115	0.102	0.086	<u>0.071</u>	0.092	0.088
	0.027	0.026	0.018	0.023	0.045	0.031
80X	0.114	0.123	0.077	0.082	0.255	0.118
	0.054	0.074	0.083	0.088	0.099	0.078
BLOOD	0.163	0.125	0.131	0.153	0.158	0.123
	0.034	0.035	0.035	0.041	0.048	0.033
GLASS	0.569	0.431	0.303	0.286	0.334	0.380
	0.049	0.098	0.040	0.045	0.052	0.075
SONAR	0.352	0.315	0.194	0.188	0.307	0.236
	0.072	0.061	0.050	0.044	0.043	0.034
DNORM	0.334	0.151	0.185	0.212	0.344	0.121
	0.045	0.041	0.045	0.038	0.045	0.017

Averaged error rates and standard deviations over 10 runs

Neural Networks are oversized, general function approximators that work because of the training rule:

- start from linearity.
- stop in one of the first moderately nonlinear local minima.
- have many (built-in) regularization possibilities, including a slow optimization rule (back-propagation).
- do not reproduce.
- are computational intensive.

Matter	Mind
Model the Brain	Generalize the Rules
Neuro-Biology	Artificial Intelligence
Perception	Statistical Pattern Recognition
Model the Senses	Generalize from Examples (Given the Sensors)

Pattern Recognition is looking for general procedures for learning from examples.

Neural Networks offer a toolbox to find specific solutions for specific problems.

Nonlinear Mapping

Interpretation:

- 1. Find a (non)linear subspace.
- 2. Classify.

Combining Classifiers

Understanding the use of redundancy, oversized systems and regularization.
The use of controlled moderate nonlinearities: Nonlinear mapping techniques.
Better classifiers: support vector machines
Soft outputs: confidences and fuzzy memberships
The construction and use of complicated systems: combined classifiers.