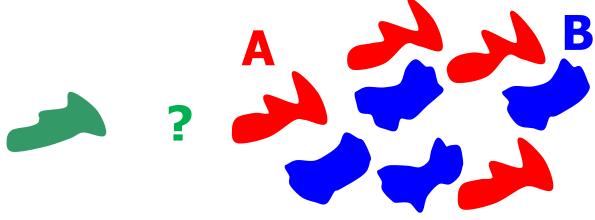
The dissimilarity representation for structural pattern recognition

CIARP, Pucón, Chile, 15-18 November 2011

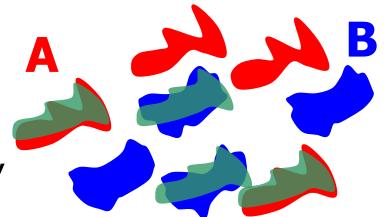
Robert P.W. Duin, Delft University of Technology (In cooperation with Elżbieta Pękalska, Univ. of Manchester)

Pattern Recognition Lab

Delft University of Technology, The Netherlands


PRLab.TUDelft.nl

16 November 2011 CIARP 2011


Introduction

Preview

How to classify structures given examples?

By the dissimilarity representation: An extension of template matching, based on generalized of kernels

16 November 2011 CIARP 2011

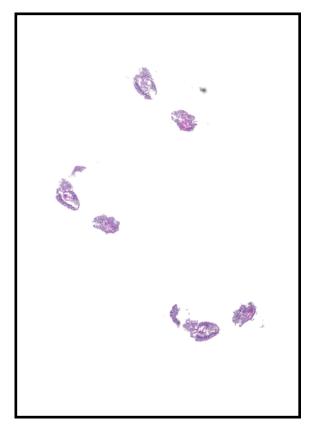
Real world objects and events

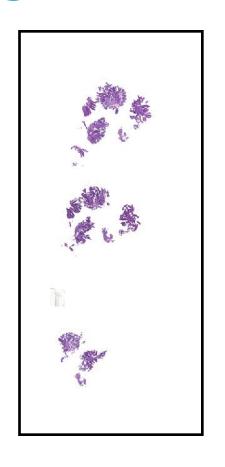
Images
Spectra → shapes
Time signals
Gestures

How to build a representation? Features ←→ Structure

Blob Recognition

446 binary images, varying size, e.g.: 100 x 130

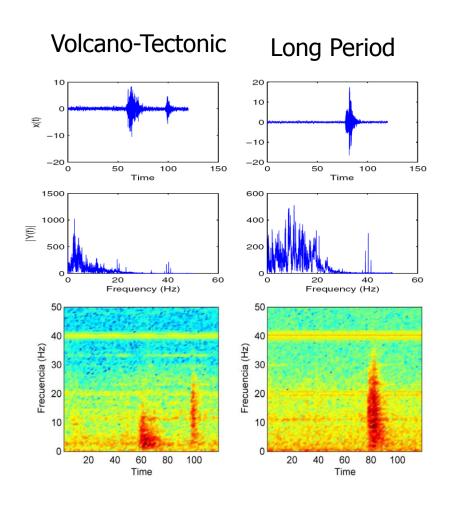

Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.


Shape classification by weighted-edit distances (Bunke)


Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern recognition **26** (1993) 1797–1812

TUDelft

Colon Tissue Recognition

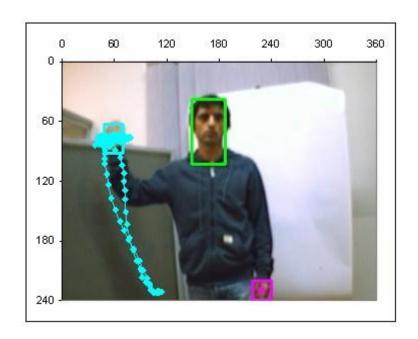

???

normal

pathological

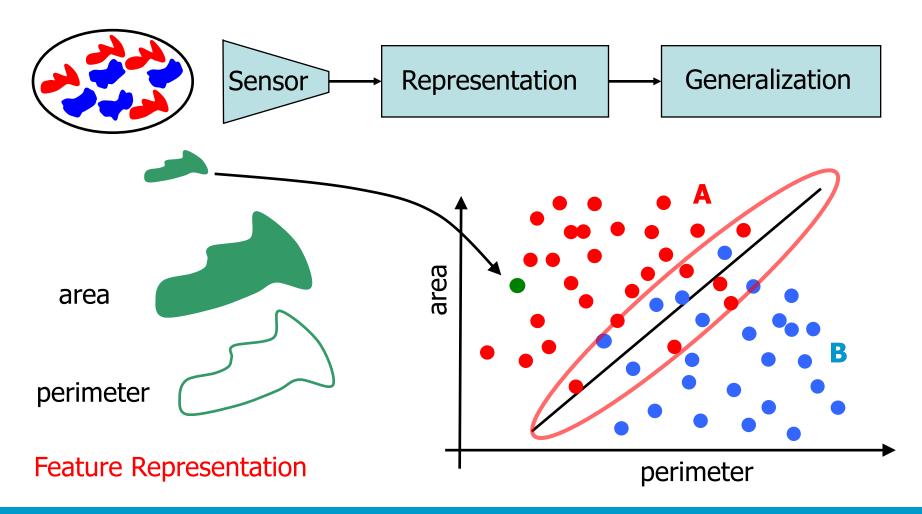
Volcano / Seismic Signal Classification

150 000 events (1994 – 2008) 5 volcanos 40 stations


- 15 classes
- J. Makario, INGEOMINAS, Manizales, Colombia
- M. Orozco-Alzate, Nat. Univ. Colombia, Manizales
- R. Duin, TUDelft
- M. Bicego, Univ. of Verona, Italy

Cenatav, Havana, Cuba

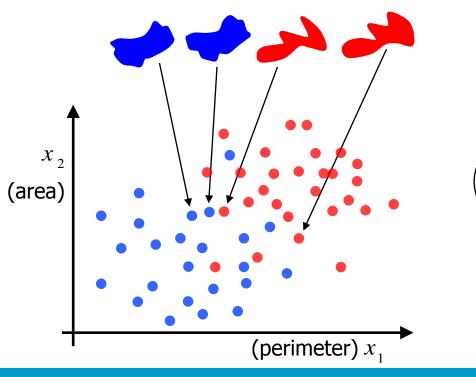
16 November 2011 CIARP 2011


Gesture Recognition

Is this gesture in the database?

8

16 November 2011 CIARP 2011

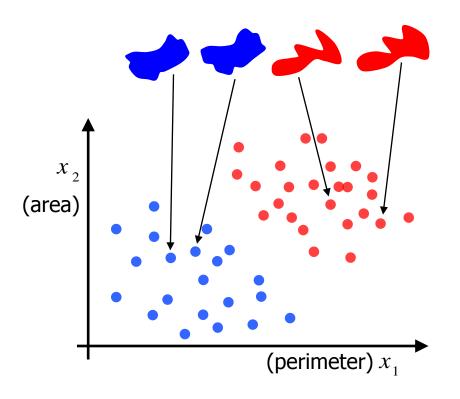


Representation

Compactness

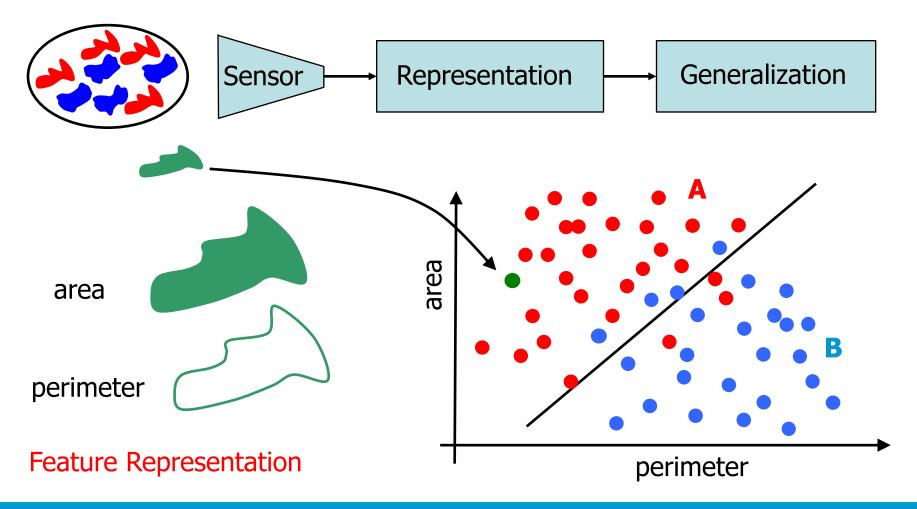
Representations of real world similar objects are close.

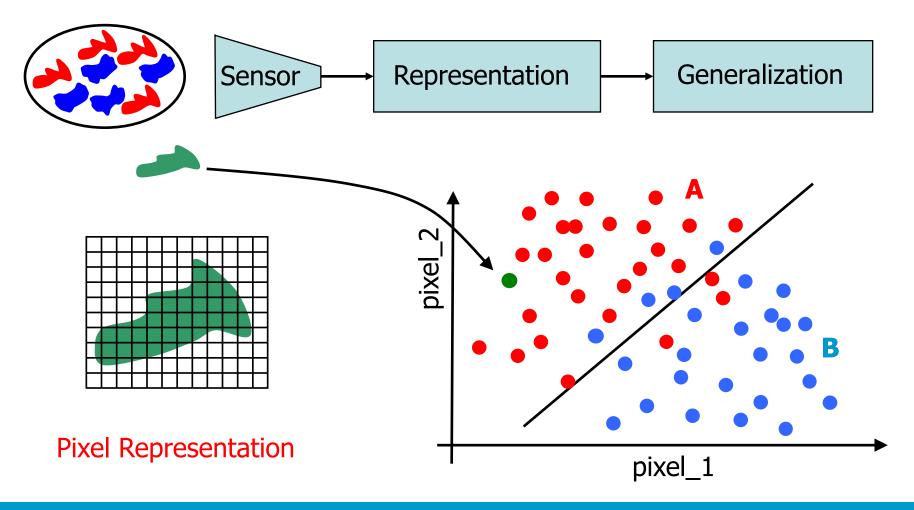
There is no ground for any generalization (induction) on representations that do not obey this demand.



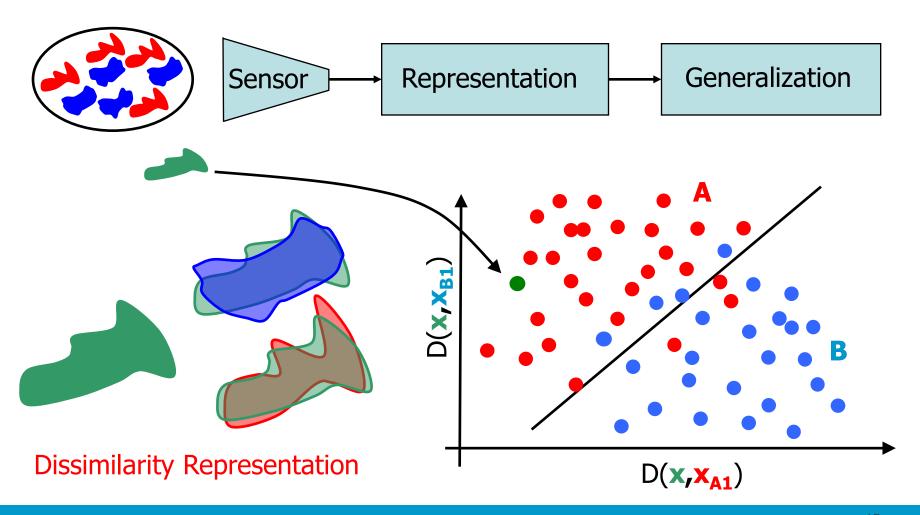
The compactness hypothesis is not sufficient for perfect classification as dissimilar objects may be close.

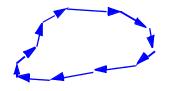
- → class overlap
- → probabilities

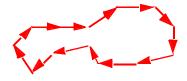

True Representations


Similar objects are close and Dissimilar objects are distant.

→ no probabilities needed, domains are sufficient!

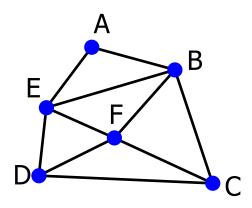


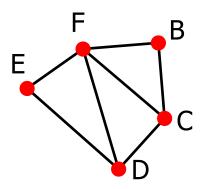




Structural Representation

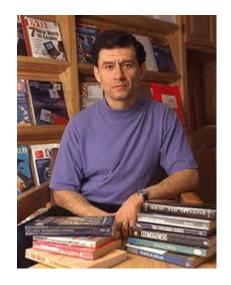
Strings

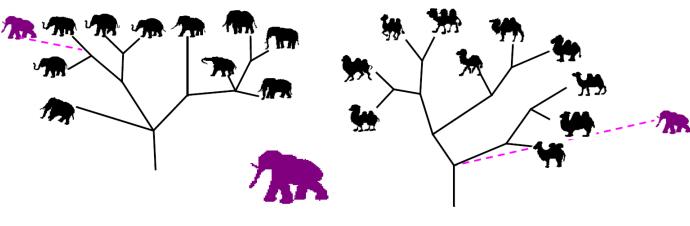



$$X = (x_1, x_2, ..., x_k)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Y = (y_1, y_2,, y_n)$$

Graphs

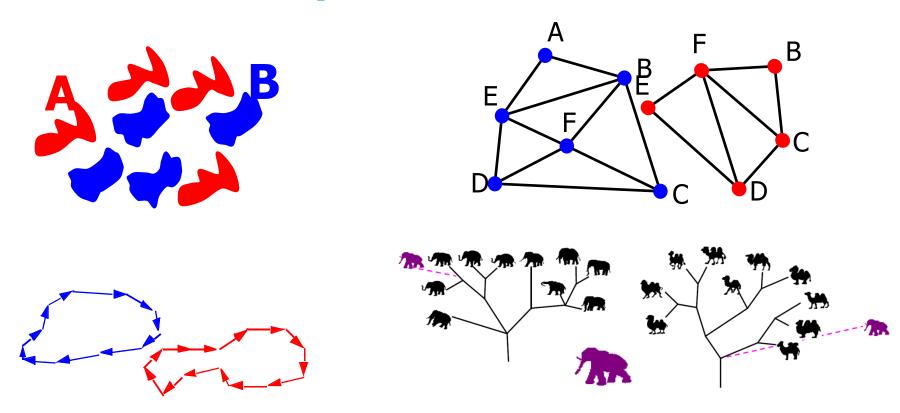

16 16 November 2011 **CIARP 2011**


Goldfarb's Evolving Transformation System (ETS)

Lev Goldfarb 1984: features \rightarrow dissimilarities \rightarrow PE spaces

1995: vector spaces are not good for representing concepts

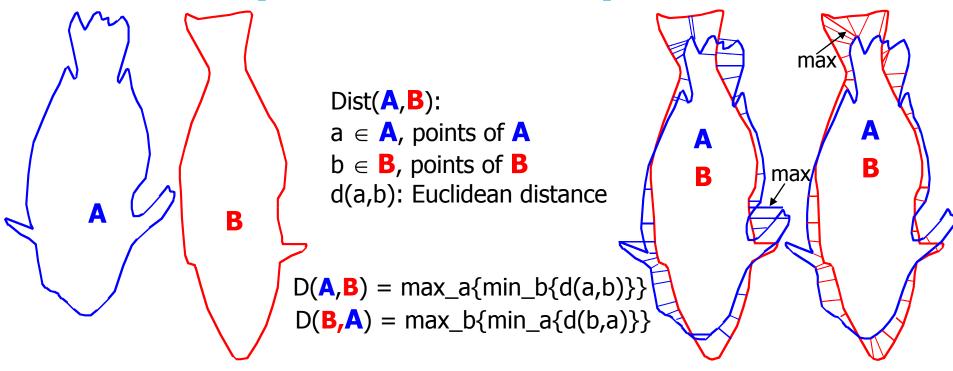
concepts need a structural representation


- Generate for each class how the objects could evolve from common primitive objects.

ETS

- Test how new objects could most easily evolve from the generated trees.

Structural Representation



How to generalize? Distances!

TUDelft

Dissimilarities

Examples Dissimilarity Measures

Hausdorff Distance (metric):

 $DH = max\{max_a\{min_b\{d(a,b)\}\}\ , max_b\{min_a\{d(b,a)\}\}\}\$

 $D(\mathbf{A},\mathbf{B}) \neq D(\mathbf{B},\mathbf{A})$

Modified Hausdorff Distance (non-metric):

 $DM = \max\{mean_a\{min_b\{d(a,b)\}\}, mean_b\{min_a\{d(b,a)\}\}\}\$

16 November 2011 CIARP 2011 20

Dubuisoon & Jain, Modified Hausdorff distance for object matching, ICPR12, 2004,, voll 1, 566-568.

Dissimilarities – Possible Assumptions

1. Positivity:

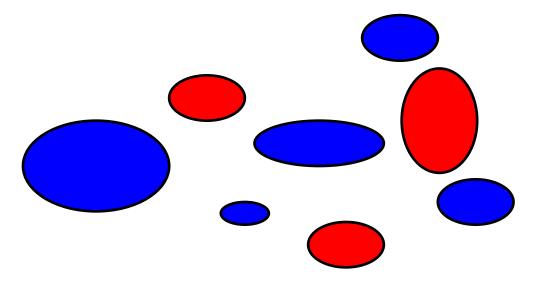
 $d_{ii} \ge 0$

2. Reflexivity:

 $d_{ii} = 0$

3. Definiteness:

 $d_{ii} = 0$ iff objects i and j are identical

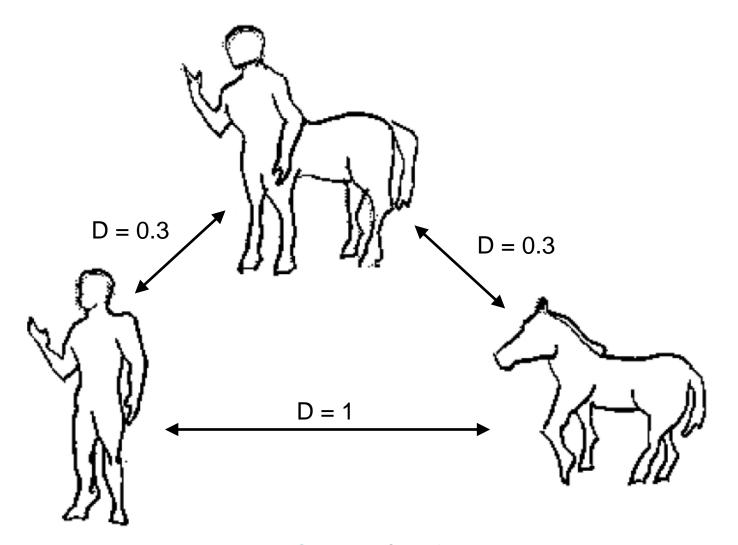

4. Symmetry:

$$d_{ij} = d_{ji}$$

- 5. Triangle inequality: $d_{ij} < d_{ik} + d_{kj}$
- 6. Compactness: if the objects i and j are very similar then $d_{ij} < \delta$.
- 7. True representation: if $d_{ij} < \delta$ then the objects i and j are very similar.
- 8. Continuity of d.

The class of problems

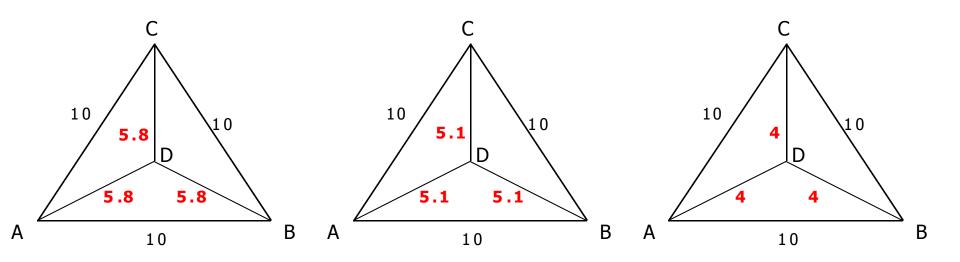
- Compact
- Uniquely labelled



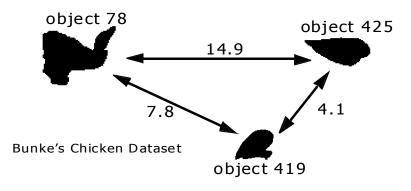
In a dissimilarity representation such classes are separable by any positive definite distance measure

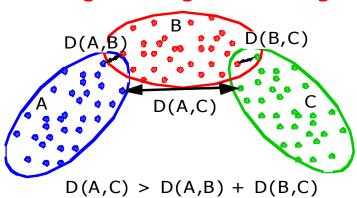
CIARP 2011

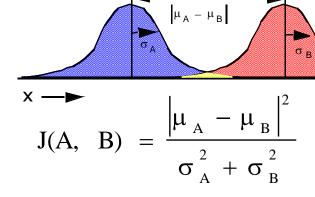
T Dalfa


22

<u>David W. Jacobs</u>, <u>Daphna Weinshall</u> and <u>Yoram Gdalyahu</u>, Classification with Nonmetric Distances: Image Retrieval and Class Representation, *IEEE Trans. Pattern Anal. Mach. Intell*, 22(6), pp. 583-600, 2000.


Euclidean - Non Euclidean - Non Metric




Non-metric distances

Weighted-edit distance for strings

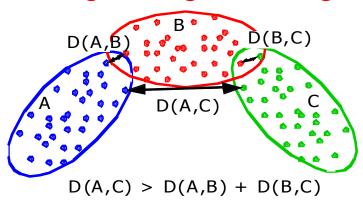
Single-linkage clustering


$$J(A, C) = 0$$
 $J(A, B) = large$
 $J(C, B) = small \neq J(A, B)$

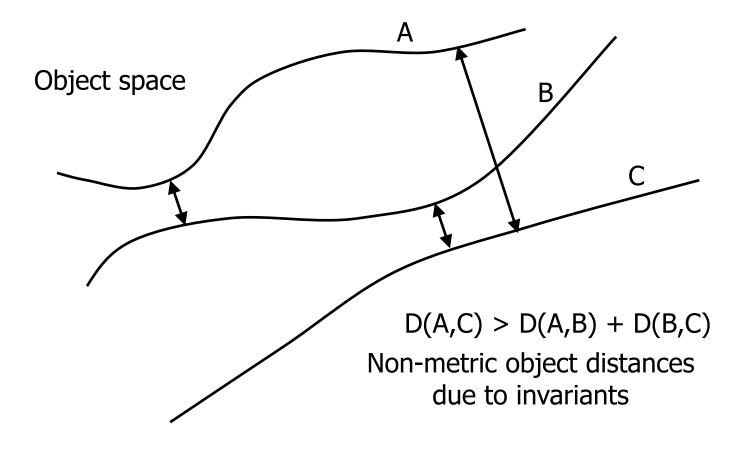
16 November 2011 CIARP 2011 25

Fisher criterion

Intrinsicly Non-Euclidean Dissimilarity Measures Single Linkage



Distance(Table,Book) = 0

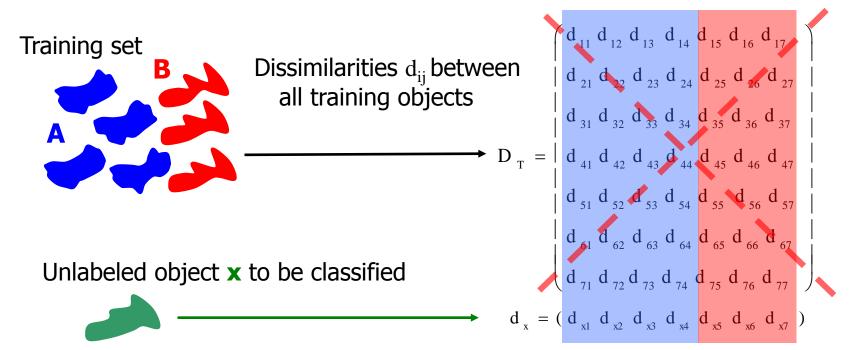

Distance(Table,Cup) = 0

Distance(Book, Cup) = 1

Single-linkage clustering

Intrinsicly Non-Euclidean Dissimilarity Measures Invariants

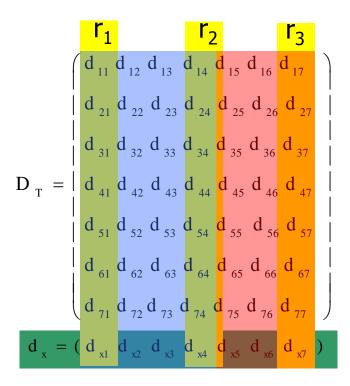
Indefinite Metric and the 1NN rule

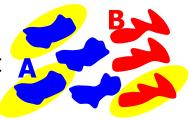

Indefinite metric: $\mathbf{d}_{ij} = \mathbf{0}$ for objects i and j that are not identical

- → Possibly different labels
- → Template matching and 1-NN rule may fail!

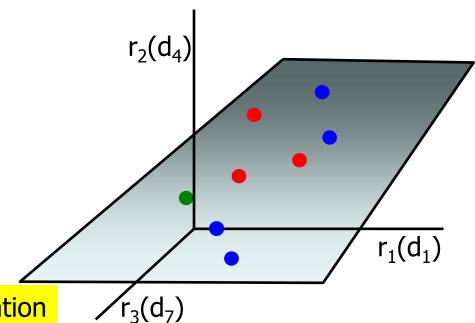
Dissimilarity Representation

Alternatives for the Nearest Neighbor Rule


- 1. Dissimilarity Space
- 2. Embedding

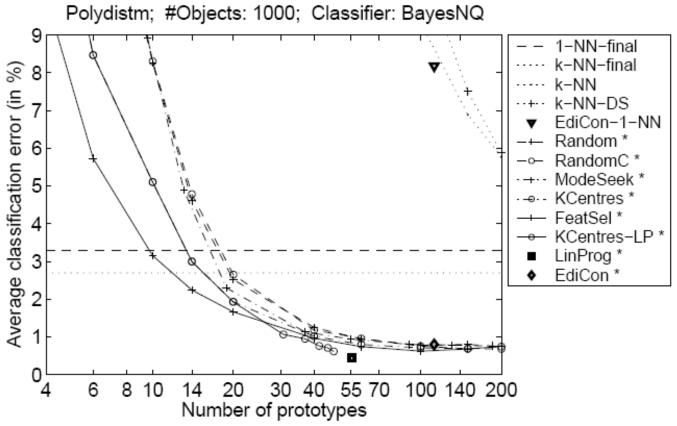

Pekalska, The dissimilarity representation for PR. World Scientific, 2005.

Alternative 1: Dissimilarity Space


Dissimilarities

Given labeled training set

Unlabeled object to be classified


Selection of 3 objects for representation

K

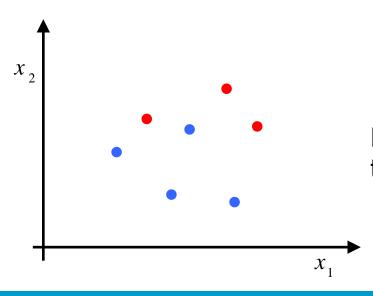
31

Prototype Selection: Polygon Dataset

The classification error as a function of the number of selected prototypes. For 10-20 prototypes results are already better than by using 1000 objects in the NN rules.

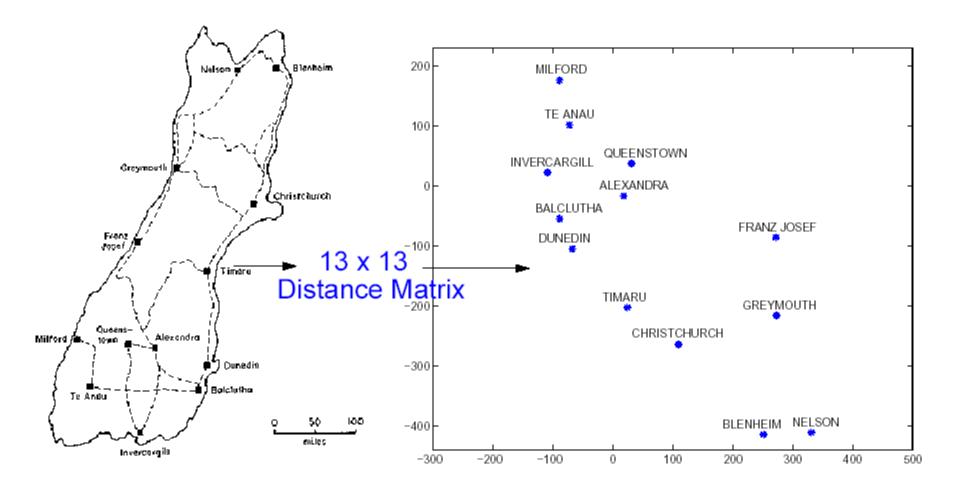
Dissimilarity space properties

- Euclidean by postulation
- Dissimilarity character not used
- Any classifier may be used
- May be filled by additional training objects
- (just a limited set of objects needed for representation)
- Control of computational complexity


Alternative 2: Embedding

 \rightarrow Dissimilarity matrix D \rightarrow X

Training set


Is there a feature space for which Dist(X,X) = D?

Position points in a vector space such that their Euclidean distances \rightarrow D

Embedding

(Pseudo-)Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.

Construct inner-product matrix: $B = -\frac{1}{2} JD^{(2)} J$ $J = I - \frac{1}{m} 11$

Eigenvalue Decomposition , $B = Q \Lambda Q^T$

Select k eigenvectors: $X = Q_k \Lambda_k^{\frac{1}{2}}$ (problem: $\Lambda_k < 0$)

Let \mathfrak{I}_k be a k x k diag. matrix, $\mathfrak{I}_k(i,i) = \text{sign}(\Lambda_k(i,i))$

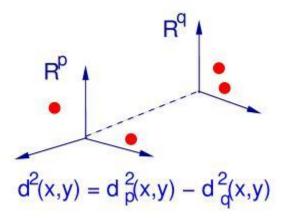
 $\Lambda_{\textbf{k}}(i,\!i) < 0 \rightarrow \text{Pseudo-Euclidean}$

 $n \times m D_z$ is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: $B_z = -\frac{1}{2}(D_z^{(2)}J - \frac{1}{n}\mathbf{1}\mathbf{1}^TD_z^{(2)}J)$

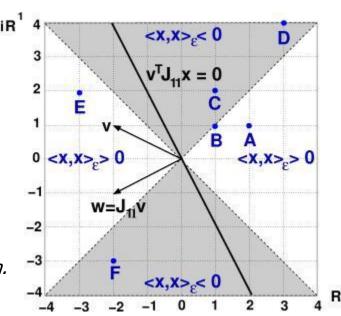
The embedded objects: $Z = B_z Q_k |\Lambda_k|^{-\frac{1}{2}} \Im_k$

PES: Pseudo-Euclidean Space (Krein Space)


If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space $\boldsymbol{\mathcal{E}}$ with signature (p,q), k=p+q, is a non-degenerate inner product space $\Re_k=\Re_p\oplus\Re_q$ such that:

$$\left\langle x, y \right\rangle_{\varepsilon} = x^{T} \mathfrak{I}_{pq} y = \sum_{i=1}^{p} x_{i} y_{i} - \sum_{j=p+1}^{q} x_{j} y_{j}$$


$$\mathfrak{I}_{pq} = \begin{bmatrix} I_{p \times p} & 0 \\ 0 & -I_{q \times q} \end{bmatrix}$$

$$d_{\varepsilon}^{2}(x, y) = \left\langle x - y, x - y \right\rangle_{\varepsilon} = d_{p}^{2}(x, y) - d_{q}^{2}(x, y)$$

16 November 2011 CIARP 2011

Pekalska, The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore, 2005

Pseudo Euclidean Space

Euclidean embedding $D \rightarrow X$

$$d_{ij}^2 = \left\| \mathbf{x}_i - \mathbf{x}_j \right\|^2$$

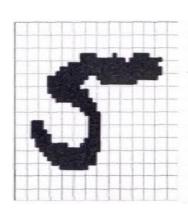
Pseudo Euclidean embedding D \rightarrow {Xp,Xq}

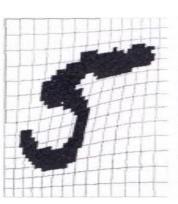
$$d_{ij}^{2} = \left\| \mathbf{x}_{i}^{p} - \mathbf{x}_{j}^{p} \right\|^{2} - \left\| \mathbf{x}_{i}^{q} - \mathbf{x}_{j}^{q} \right\|^{2}$$

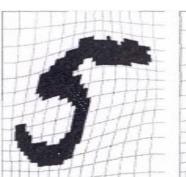
'Positive' and 'negative' space, Compare Minkowsky space in relativity theory

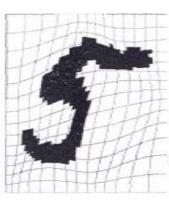
PE-space embedding properties

- A square matrix with dissimilarities is needed
 (all training (+ test objects) needed for representation)
- Projection of new objects is difficult
- Densities are not (yet) well defined
- Distance to a classifier is inappropriate for classification

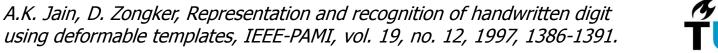

39

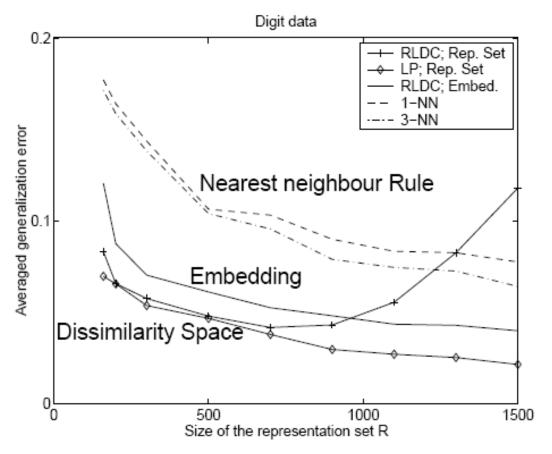

PE-Space classifiers


- kNN, Parzen, Nearest Mean
 As object distances can be computed (are known)
- LDA, QDA
 As PE inner possibly product definitions cancel they can be computed, interpretation ... ?
- SVM
 May get a result (indefinite kernel), possibly not optimal
- Others ??



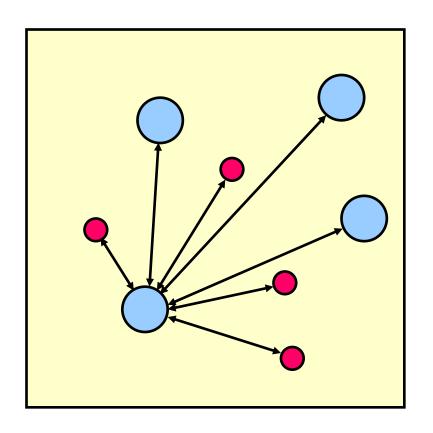
Examples Dissimilarity Measures





Matching new objects to various templates: $class(x) = class(argmin_y(D(x,y)))$

Dissimilarity measure appears to be non-metric.


Three Approaches Compared for the Zongker Data

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule

Ball Distances

16 November 2011

SSSPR 2010, 324-333.

- Generate sets of balls (classes) uniformly, in a (hyper)cube; not intersecting.
- Balls of the same class have the same size.
- Compute all distances between the ball surfaces.
- -> Dissimilarity matrix D

43

CIARP 2011

Balls3D

Classifier	PE Sp	Ass Sp	Pos Sp	Neg Sp	Cor Sp
1-NN	47.4 (2.0)	47.4 (2.0)	47.4 (2.0)	44.2 (1.5)	47.4 (2.0)
Parzen	45.7 (1.7)	45.5(1.6)	45.6 (1.7)	35.5(1.7)	45.7(1.7)
NM	47.5(2.0)	47.7(2.0)	47.6 (1.9)	49.6(0.2)	48.1 (1.8)
SVM-1	50.7 (2.2)	50.0 (2.7)	50.0(2.5)	62.1 (1.7)	50.1 (2.0)

Classifier	PE Dis Sp	Ass Dis Sp	Pos Dis Sp	Neg Dis Sp	Cor Dis Sp
1-NN	49.8 (2.2)	49.8 (2.2)	49.8 (2.2)	5.1 (0.8)	49.7 (2.2)
Parzen	47.9(2.2)	47.9 (2.2)	47.9 (2.2)	4.6(0.5)	47.9 (2.2)
NM	49.8 (2.2)	49.8 (2.2)	49.8 (2.2)	5.0 (0.8)	49.9 (2.2)
SVM-1	50.2 (1.6)	50.8 (1.7)	50.7 (1.7)	1.9 (0.5)	49.8 (1.5)

10 x (2-fold crossvalidation of 50 objects per class)

TUDelft

Representation Strategies

Avoiding the PE space

Dissimilarity Space: X = D

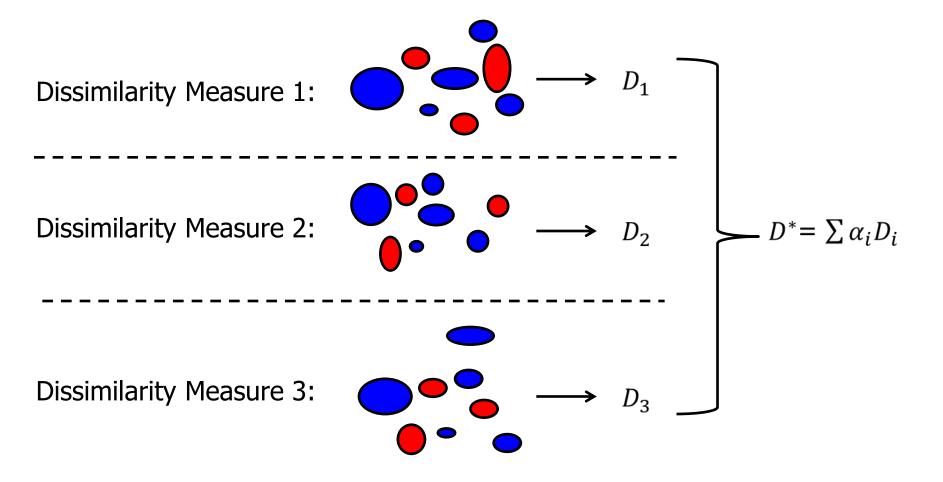
Correcting

Associated space
$$X = \{ [Xp, Xq], \emptyset \}$$
 $d_{ij}^2 = d_p^2(x_i, x_j) + d_q^2(x_i, x_j)$

Positive space
$$X = X_p$$
 $\tilde{d}_{ij}^2 = d_p^2(x_i, x_j)$

Negative space
$$X = X_q$$
 $\tilde{d}_{ij}^2 = d_q^2(x_i, x_j)$

Additive Correction
$$\tilde{d}_{ij}^2 = d_{ij}^2 + c, i \neq j$$
 $X = \text{Embedding}(\tilde{D})$


As it is

Pseudo Euclidean Space
$$X = \{X_p, X_q\}$$
 $d_{ij}^2 = d_p^2(x_i, x_j) - d_q^2(x_i, x_j)$

Classifiers to be developed further

Chickenpieces45		s the PE Sp nformative	2	Non-Metric		Rand Err	inal, $D_{\blacksquare}^{\blacksquare}$	ositive, D_p^{+}	ative, D_q	
Chickenpieces60 446 5 0 0.162 0.791 0.020 0.067 0.173 Chickenpieces120 446 5 0 0.152 0.791 0.022 0.052 0.148 Chickenpieces120 446 5 0 0.130 0.791 0.034 0.108 0.148 FlowCyto 612 3 1e-5 0.244 0.598 0.103 0.498 0.148 FlowCyto 612 3 1e-5 0.244 0.598 0.103 0.498 0.327 WoodyPlants50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442 CatCortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Protein 213 4 0 0.001 0.718 0.01 Extremely Information Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 GaussM02			size	Non-	NEF	Rand	Origina	osit In	formati	ve
Chickenpieces 90 446 5 0 0.152 0.79 0.022 0.052 0.148 Chickenpieces 120 446 5 0 0.130 0.791 0.034 0.108 0.148 Flow Cyto 612 3 1e-5 0.244 0.598 0.103 9.100 0.327 Woody Plants 50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442 Cat Cortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Protein 213 4 0 0.001 0.718 0.06 Extremely Information Balls 3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 Gauss M1 500 2 0 0.262 0.500 0.202 0.202 0.228 Gauss M02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 Coil York	AND SECTION ASSESSMENT	Chickenpieces45	446 5	0	0.156	0.791	0.022	0.132	0.175	****
Chickenpieces 120 446 5 0 0.130 0.791 0.034 0.108 0.148 Flow Cyto 612 3 1e-5 0.244 0.598 0.103 9.490 0.327 Woody Plants 50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442 Cat Cortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Protein 213 4 0.001 0.718 0.06 Extremely Information Balls 3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 Gauss M02 500 2 0 0.262 0.500 0.202 0.202 0.228 Coil York 288 4 8e-8 0.258 0.750 0.413 0.417 0.597 Coil Delft Diff 288 4 8e-8 0.128 0.750 0.413 0.417 0.597 Coil Delft Diff 288 <		Chickenpieces60	446 5	0	0.162	0.791	0.020	0.067	0.173	
FlowCyto 612 3 1e-5 0.244 0.598 0.103 0.109 0.327 WoodyPlants50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442 CatCortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Protein 213 4 0 0.001 0.718 0.00 Extremely Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.108 0.109 0.327		Chickenpieces90	446 5	0	0.152	0.791	0.022	0.052	0.148	<i> </i>
WoodyPlants50 791 14 5e-4 0.229 0.928 0.075 0.076 0.442 CatCortex 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Protein 213 4 0 0.001 0.718 0.00 Extremely Information Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228 GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 CoilYork 288 4 8e-8 0.258 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.3 Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.313 0.435	***************************************	Chickenpieces 120	446 5	0	0.130	0.791	0.034	0.108	0.148	and the same of th
CatCortex Protein 65 4 2e-3 0.208 0.738 0.046 0.077 0.662 Information Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228 GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 CoilYork 288 4 8e-8 0.258 0.750 0.413 0.417 0.597 CoilDelftSame 288 4 8e-8 0.128 0.750 0.34 Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.435		FlowCyto	612 3	le-5	0.244	0.598	0.103	0.100	0.327	
Protein 213 4 0 0.001 0.718 0.00 Extremely Informative		WoodyPlants50					0.075	0.076	0.442	
Balls3D 200 2 3e-4 0.001 0.500 0.470 0.495 0.000 GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228 GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618 CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34 Not Informative NewsCroups 600 4 4e-5 0.202 0.732 0.198 0.213 0.435		CatCortex						0.077	0.662	
GaussM1 500 2 0 0.262 0.500 0.202 0.262 0.228 GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618 CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34 Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.213 0.435		Protein	213 4	0	0.001	0.718	0.00Ex	tremely	Inform	ative
GaussM02 500 2 5e-4 0.393 0.500 0.204 0.174 0.252 CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618 CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34 Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.102 0.243 0.435		Balls3D	200 2	2 3e-4	0.001	0.500	0.470	0.495	0.000	
CoilYork 288 4 8e-8 0.258 0.750 0.267 0.313 0.618 CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.943 0.435	***	Gaussivi I	500 2	2 0	0.262	0.500	0.202	0.202	0.228	
CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597 CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.108 0.943 0.435		GaussM02					0.204	0.174	0.252	
CoilDelftDiff 288 4 8e-8 0.128 0.750 0.34Not Informative NewsGroups 600 4 4e-5 0.202 0.733 0.198 0.943 0.435		CoilYork					0.267	0.313	0.618	
NewsGroups 600 4 4e-5 0 202 0 733 0 108 0 943 0 435		CoilDelftSame					0.413	0.417	0.597	
NewsGroups 600 4 4e-5 0.202 0.733 0.198 0.943 0.435		CoilDelftDiff					0.34Nc	t Inforr	native	
BrainMRI 124 2 56-5 0.112 0.400 0.226 0.218 0.556		NewsGroups	600 4	4e-5	0.202	0.733				
Diaminititi 124 2 00-0 0.112 0.433 0.220 0.218 0.550		BrainMRI	124 2	2 5e-5	0.112	0.499	0.226	0.218	0.556	
Pedestrians 689 3 4e-8 0.111 0.348 0.010 0.015 0.030	****	Pedestrians	689 3	3 4e-8	0.111	0.348	0.010	0.015	0.030	

Multiple Dissimilarity Matrices

TUDelft

Averaging of dissimilarity matrices

Dissimilarity space

Data	NEF	1-NN	1-NND	SVM-1
CoilDelftDiff	0.13	0.48	0.44	0.40
CoilDelftSame	0.03	0.65	0.41	0.39
CoilYork	0.26	0.25	0.37	0.33
Averaged		0.37	0.22	0.24

- Three procedures for graph matching compared on the Coil dataset:
 4 classes (objects), 72 images per class.
- Classification errors for 25 times 10-fold crossvalidation.

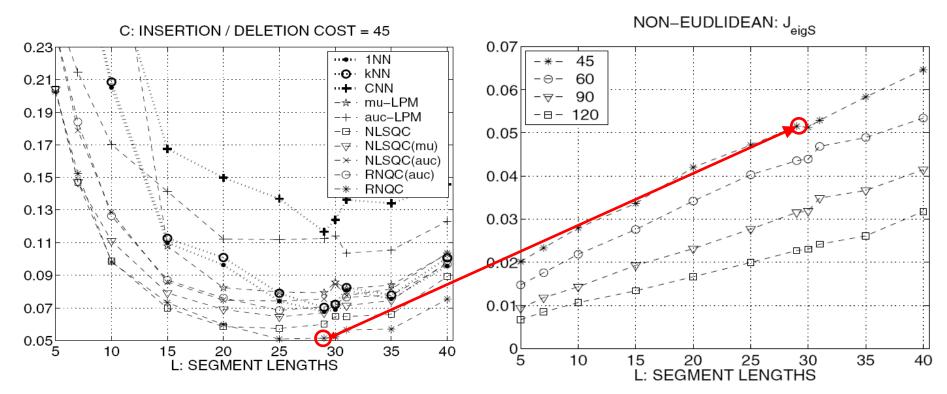
CoilDelftDiff Graphs are compared in the eigenspace with a dimensionality determined by the smallest graph in every pairwise comparison by the JoEig Approach [1].

CoilDelftSame Dissimilarities in 5D eigenspace derived from the two graphs by the JoEig approach [1]. **CoilYork** Dissimilarities are found by graph matching, using the algorithm of Gold and Ranguranjan [2]

Examples

Example: Chickenpieces (H. Bunke, Bern)

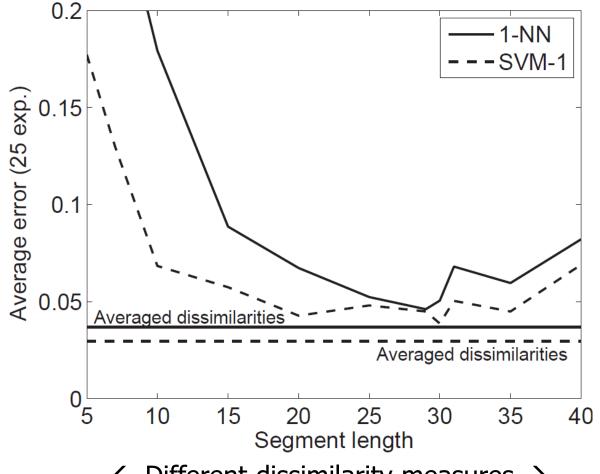
446 binary images, varying size, e.g.: 100 x 130


Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.

Shape classification by weighted-edit distances (Bunke)

Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern recognition **26** (1993) 1797–1812

TUDelft


Chickenpieces: Various Dissimilarity Measures

Best classification result is for a very non-Euclidean dissimilarity measure!

Chickenpieces: classification errors

← Different dissimilarity measures →

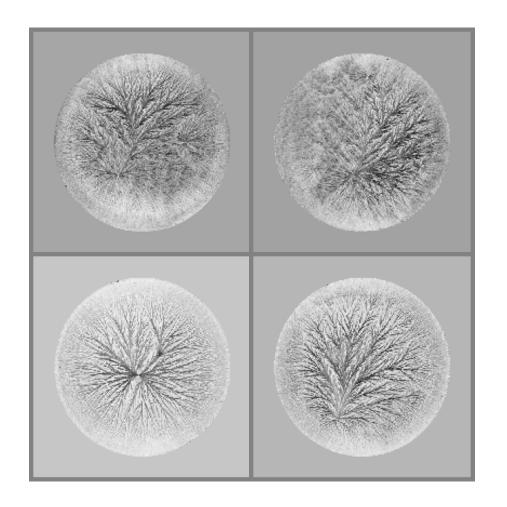
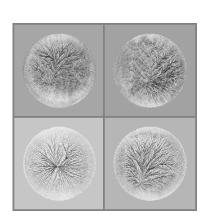
Flow Cytometry: classification errors

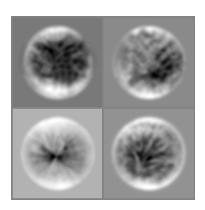
Pairwise, horizontal (intensity calibration): $D(hist1,hist2) = min_{\alpha}L_1(hist1,hist2(\alpha))$

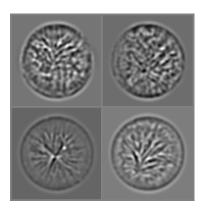
← Dissimilarity space →

Data Source	NEF	1-NN	1-NND	SVM-1
Tube 1	0.27	0.38	0.38	0.30
Tube 2	0.27	0.37	0.37	0.29
Tube 3	0.27	0.38	0.40	0.27
Tube 4	0.27	0.42	0.42	0.30
Averaged	0.24	0.27	0.20	0.11

Bio-crystallization


image size: 2114 x 2114 Different food products / quality 2 classes, 54 examples/class


Bio-crystallization: Dissimilarity Measures

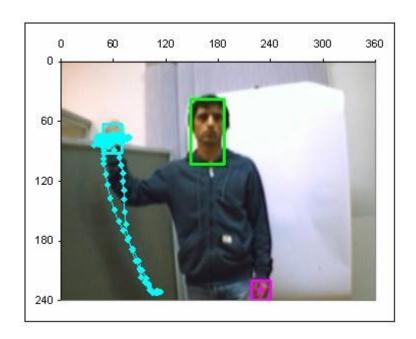
Originals

Gauss \rightarrow L2

Laplace → L2

Laplace → Abs → Histogram → L1

56


Bio-crystallization: classification errors

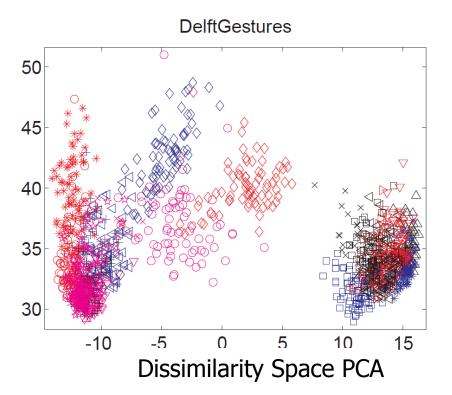
Dissimilarity space

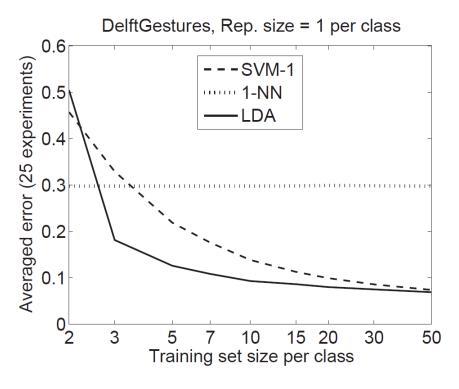
Dissimilarity Measure	NEF	1-NN	1-NND	SVM-1
Gauss	0	0.329	0.266	0.106
Laplace	0	0.229	0.313	0.125
Laplace Histogram	0.067	0.107	0.172	0.072
Averaged	0.004	0.114	0.166	0.057

Gesture Recognition

Is this gesture in the database?

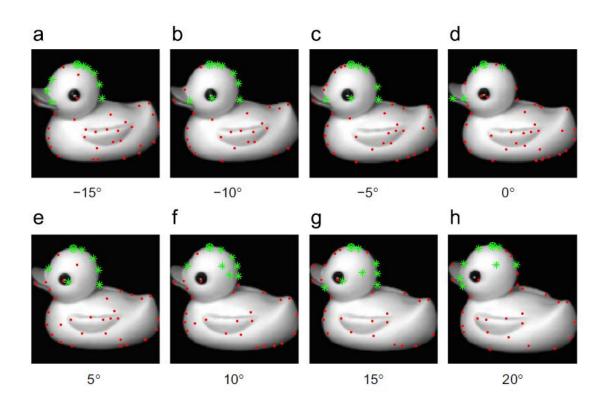
CIARP 2011

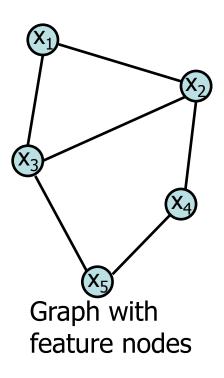

16 November 2011



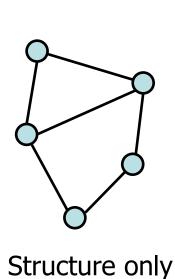
58

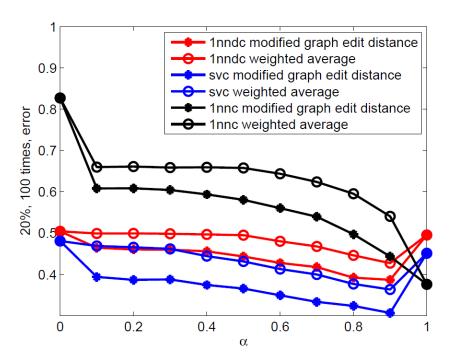
Gesture Recognition





20 signs (classes), 75 examples/sign Distance measure: DTW


Application: Graphs



Interpolating structural and feature space dissimilarities

(no features)

{x₁ x₂ x₃ x₄ x₅} Features only (no structure)

Fig. 5. Results of coil-segment for modified graph edit distance.

Conclusion

The Bridge The Toll Bridge

between **structural** and **statistical** pattern recognition offered by the **dissimilarity** representation

is a **toll bridge**, to be paid by solving the **non-Euclidean** problem

The dissimilarity space may settle the fare

© lostinjersey.com

