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This tutorial presents an introduction to the studies undertaken by the authors and
their collaborators between 1997 and 2011 on the topic of dissimilarity representations
for pattern recognition. It emphasizes the significance of integrating non-Euclidean
distance measures in representing structured objects.



Introduction

The dissimilarity representation is an alternative for the use of features in the recogni-
tion of real world objects like images, spectra and time-signal. Instead of an absolute
characterization of objects by a set of features, the expert is asked to define a measure
that estimates the dissimilarity between pairs of objects. As such a measure may also
be defined for structural representations such as strings and graphs, the dissimilarity
representation is potentially able to bridge structural and statistical pattern recogni-
tion.

The tutorial aims to give an introduction of the dissimilarity representation to
students and researchers that need pattern recognition techniques in their applications.
It will consist of three main parts and a discussion. The main parts are:

• Vectorial representations: features, pixels, dissimilarities. We will explain the
problems of features: class overlap, the problems of pixels: overtraining and the
potentials of dissimilarities.

• Handling dissimilarity data: the traditional nearest neighbor rule (or template
matching) is compared to two alternatives: embedding and the dissimilarity
space. This results into two entirely different vector spaces in which classifiers
may be trained that may perform much better than the nearest neighbor ap-
proach.

• Problems with and significance of non-Euclidean data (related to indefinite ker-
nels): in practice many dissimilarity measures used by application experts appear
to be non-Euclidean. It will be explained why this is an essential pattern recog-
nition problem. Possible solutions will be discussed.

In this tutorial many references are given for the sake of completeness. This may
however confuse the starting student in this area. We recommend therefor to start
with two recent papers that aim to give introductory reviews. Possibilities of the
dissimilarity space are discussed in [13]. The significance of the use of non-Euclidean
dissimilarity measures is discussed in [10].
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1 Vector Representations

Automatic systems for the recognition of objects like images, videos, time signals,
spectra, etcetera, can be designed by learning from a set of object examples labelled
with the desired pattern class. Two main steps can be distinguished in this procedure:

Representation: In this step the individual objects are characterized by a simple
mathematical entity such as a vector, string of symbols or a graph. A condition
for this representation is that objects can easily be related in order to facilitate
the following step.

Generalization: The representations of the object examples should enable the math-
ematical construction of models for object classes or class discriminants such that
a good class estimate can be found for the representation of new, unseen and,
thereby, unlabelled objects.

The topic of generalization has been intensively studied within the research areas such
as statistical learning theory [45] statistical pattern recognition [21, 9, 27, 20], artificial
neural networks [41] and machine learning [6, 2]. The most popular representations
are based on Euclidean vector spaces, next to strings and graphs. More recently it has
also been studied how to use vector sets for representing single objects; see e.g. [29].
Representations like strings of symbols and attributed graphs are sometimes preferred
over vectors as they model the objects more accurately and offer more possibilities to
include domain expert knowledge [4].

Representations in Euclidean vector spaces are well suited for generalization. Many
tools are available to build (learn) models and discriminants from sets of object ex-
amples (training sets) that may be used to classify new objects into the right class.
Traditionally, the Euclidean vector space is defined by a set of features. These should
ideally characterize the patterns well and also be relevant for class differences at the
same time. Such features have to be defined by experts exploiting their knowledge of
the application.

A drawback of the use of features is that different objects may have the same
representation as they differ by properties that were not expressed in the chosen feature
set. This results in class overlap: in some areas in the feature space objects of different
classes are represented by the same feature vectors. Consequently, they cannot be
distinguished, which leads to an intrinsic classification error, usually called the Bayes
error.

A more complete representation than features is just by sampling the objects. For
images this is the pixel representation. It assumes that objects are sampled by the
same number of pixels and that these pixels are aligned: the same pixel in different
images have to describe objects on the same position. Pixels are less informative than
features but are useful if no good features can be defined and training set sizes can
be large so that still generalization is possible in the high dimensional spaces resulting
from pixel representations. A vector representation based on pixels tears the objects in
parts as information about the way the pixels constitute an image is lost: the spatial
connectivity of the image is not represented in the pixel vector representation.

An alternative to the use of features and pixels is the dissimilarity representation
based on direct pairwise object comparisons. If the entire objects are taken into ac-
count in the comparison, then only identical objects will have a dissimilarity zero (if
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the dissimilarity measure has the property of ’identity of indiscernibles’). For such a
representation class overlap does not exist if the objects can be unambiguously labelled:
there are no real world objects in the application that belong to more than one class.
Only identical objects have a zero-distance and they should have the same label as
they are identical.

Another advantage of the dissimilarity representation is that it uses the expert
knowledge in a different way. Instead of features, a dissimilarity measure has to be
supplied. Of course, when the features are available, a distance measure between fea-
ture vectors may be used as a dissimilarity measure. But instead, also other measures,
comparing the entire objects may be considered and are even preferred. In some ap-
plications, e.g. shape recognition, good features are much more difficult to define than
a dissimilarity measure. Even ’bad’ dissimilarity measures may be used (at the cost of
large training sets) as long as only identical objects have a zero dissimilarity.

2 The dissimilarity representation

Dissimilarities have been used in pattern recognition for a long time. The idea of
’template matching’ is based on them: objects are given the same class label if their
difference is sufficiently small [8]. This is identical to the nearest neighbor rule used in
vector spaces [9]. Also many procedures for cluster analysis make use of dissimilarities
instead of feature spaces [44]. To some extent, the concept of dissimilarities is analogous
to the use of kernels (and the potential functions as studied in the sixties [1]). The
main difference is that kernels were originally defined in vector spaces to preferably
fulfill Mercer’s conditions [42, 43]. Kernel values can be interpreted as inner products
between feature vectors and are, as such, similarities. Because of their properties they
are very well suited for finding non-linear classifiers in vector spaces using Support
Vector Machines (SVMs) [6].

Inspired by the use of kernels in the machine learning area and the use of dissimilar-
ities in pattern recognition, authors of this tutorial started to experiment with building
other classifiers than the ones based on template matching and the nearest neighbor
rule for the dissimilarity representation [15, 18, 14, 33, 35], which they also discussed
as generalized kernel approaches [40, 37]. Their target was to develop procedures for
any type of dissimilarity matrix generated in pattern recognition applications.

The complete dissimilarity representation yields a square matrix with the dissimi-
larities between all pairs of objects. Traditionally, just the dissimilarities between the
test objects and training objects are used. For every test object the nearest neighbors
in the set of training objects are first found and used by the nearest neighbor classifier.
This procedure does not use the relations between the training objects. The following
two approaches construct a new vector space on the basis of the relations within the
training set. The resulting vector space is used for training classifiers.

2.1 The dissimilarity space

In the first approach the dissimilarity matrix is considered as a set of row vectors,
one for every object. They represent the objects in a vector space constructed by the
dissimilarities to the other objects. Usually, this vector space is treated as a Euclidean
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space and equipped with the standard inner product definition.
Let X = {x1, . . . , xn} be a training set. Given a dissimilarity function and/or

dissimilarity data, we define a data-dependent mapping D(·, R) : X → Rk from X
to the so-called dissimilarity space (DS) [15, 23, 40]. The k-element set R consists of
objects that are representative for the problem. This set is called the representation or
prototype set and it may be a subset of X . In the dissimilarity space each dimension
D(·, pi) describes a dissimilarity to a prototype pi from R. In this paper, we initially
choose R := X . As a result, every object is described by an n-dimensional dissimilarity
vector D(x,X ) = [d(x, x1) . . . d(x, xn)]

T . The resulting vector space is endowed with
the traditional inner product and the Euclidean metric.

Any dissimilarity measure ρ can be defined in the DS. One of them is the Euclidean
distance:

ρDS (x, y) = (
n∑

i=1

[d(x, xi)− d(y, xi)]
2)1/2 (1)

This is the distance computed on vectors defined by original dissimilarities. For a set
of dissimilarity measures ρ it holds asymptotically that the nearest neighbor objects
are unchanged by ρDS. This is however not necessarily true for finite data sets. It will
be shown later that this can be an advantage.

The approaches discussed here are originally intended for dissimilarities directly
computed between objects and not resulting from feature representations. It is, how-
ever, still possible to study dissimilarity representations derived from features and
yields sometimes interesting results [36]. In Fig. 1 an example is presented that com-
pares an optimized radial basis SVM with a Fisher linear discriminant computed in
the dissimilarity space derived from the Euclidean distances in a feature space. The
example shows a large variability of the nearest neighbor distances. As the radial basis
kernel used by SVM is constant it cannot be optimal for all regions of the feature space.
Fisher linear discriminant is computed in the dissimilarity space. Here the classes are
linearly separable. Although the classifier is overtrained (the dissimilarity space is 100-
dimensional and the training set has also 100 objects) it gives here perfect results. It
should be realized that this example is specifically constructed to show the possibilities
of the dissimilarity space.

In [35, 13] many examples are given that show the use of the dissimilarity space.
Many classifiers perform in the dissimilarity space better than the direct use of the near-
est neighbor rule, see also [11]. Even the nearest neighbor rule itself may in dissimilarity
space outperform the nearest neighbor rule applied on the given dissimilarities. This
shows that the total set of distances to the representation set can be informative.

2.2 Embedding the dissimilarity matrix

In the second approach, an attempt is made to embed the dissimilarity matrix in a
Euclidean vector space such that the distances between the objects in this space are
equal to the given dissimilarities. This can only be realized error free, of course, if the
original set of dissimilarities are Euclidean themselves. If this is not the case, either
an approximate procedure has to be followed or the objects should be embedded into
a non-Euclidean vector space. This is a space in which the standard inner product
definition and the related distance measure are changed, resulting in indefinite kernels.
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Figure 1: A spiral example with 100 objects per class. Left column shows the complete
data sets, while the right column presents the zoom of the spiral center. 50 objects per
class are used for training, systematically sampled. The middle row shows the training
set and SVM with an optimized radial basis function; 17 out of 100 test objects are
erroneously classified. The bottom row shows the Fisher Linear Discriminant (with-
out regularization) computed in the dissimilarity space derived from the Euclidean
distances. All test objects are correctly classified.
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It appears that an exact embedding is possible for every symmetric dissimilarity matrix
with zeros on the diagonal. The resulting space is the so-called pseudo-Euclidean space.

Many of the dissimilarity measures used in the pattern recognition practice appear
to be indefinite: they cannot be understood as distances in a Euclidean vector space,
they are sometimes even not metric and they do not satisfy the Mercer conditions.

We will give some definitions.
A Pseudo-Euclidean Space (PES) E = R(p,q) = Rp ⊕ Rq is a vector space with a

non-degenerate indefinite inner product ⟨·, ·⟩E such that ⟨·, ·⟩E is positive definite on
Rp and negative definite on Rq [22, 35]. The inner product in R(p,q) is defined (wrt an
orthonormal basis) as ⟨x,y⟩E = xTJpqy, where Jpq = [Ip×p 0; 0 − Iq×q] and I is the
identity matrix. As a result, d2E(x,y) = (x − y)TJpq(x − y). Obviously, a Euclidean
space Rp is a special case of a pseudo-Euclidean space R(p,0). An infinite-dimensional
extension of a PES is a Krĕın space. It is a vector space K equipped with an indefinite
inner product ⟨·, ·⟩K : K×K → R such that K admits an orthogonal decomposition as a
direct sum, K = K+ ⊕K−, where (K+, ⟨·, ·⟩+) and (K−,−⟨·, ·⟩−) are separable Hilbert
spaces with their corresponding positive and negative definite inner products.

A positive definite kernel function can be interpreted as a generalized inner prod-
uct in some Hilbert space. This space becomes Euclidean when a kernel matrix is
considered. In analogy, an arbitrary symmetric kernel matrix can be interpreted as
a generalized inner product in a pseudo-Euclidean space. Such a PES is obviously
data dependent and can be retrieved via an embedding procedure. Similarly, an ar-
bitrary symmetric dissimilarity matrix with zero self-dissimilarities can be interpreted
as a pseudo-Euclidean distance in a proper pseudo-Euclidean space. Since in practice
we deal with finite data, dissimilarity matrices or kernel matrices can be seen as de-
scribing relations between vectors in the underlying pseudo-Euclidean spaces. These
pseudo-Euclidean spaces can be either determined via an embedding procedure and di-
rectly used for generalization, or approached indirectly by the operations on the given
indefinite kernel. Below it is explained how to find the embedded PES.

A symmetric dissimilarity matrix D := D(X ,X ) can be embedded in a Pseudo-
Euclidean Space (PES) E by an isometric mapping [22, 35].

The embedding relies on the indefinite Gram matrix G, derived as G := −1
2
HD⋆2H,

where D⋆2 = (d2ij) and H = I− 1
n
11T is the centering matrix. H projects the data such

that X has a zero mean vector. The eigendecomposition of G leads to G = QΛQT =
Q|Λ| 12 [Jpq; 0]|Λ|

1
2QT , where Λ is a diagonal matrix of eigenvalues, first decreasing p

positive ones, then increasing q negative ones, followed by zeros. Q is the matrix of
eigenvectors. Since G = XJpqX

T by definition of a Gram matrix, X ∈ Rn is found as

X = Qn |Λn|
1
2 , whereQn consists of n eigenvectors ranked according to their eigenvalues

Λn. Note that X has a zero mean and is uncorrelated, because the estimated pseudo-
Euclidean covariance matrix C = 1

n−1
XTX Jpq =

1
n−1

Λr is diagonal. The eigenvalues

λi encode variances of the extracted features in R(p,q).
Let x,y ∈ Rn. If this space is a PES R(p,q), p+q = n, the pseudo-Euclidean distance
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is computed as:

ρPES (x,y) = (

p∑
i=1

[xi − yi]
2 −

p+q∑
i=p+1

[xi − yi]
2)1/2

= (
n∑

i=1

δ(i, p)[xi − yi]
2)1/2,

where δ(i, p) = sign(p − i + 0.5). Since the complete pseudo-Euclidean embedding is
perfect, D(x, y) = ρPES (x, y) holds.

Other distance measures may also be defined between vectors in a PES, depending
on how this space is interpreted. Two obvious choices are:

ρPES+ (x,y) = (

p∑
i=1

[xi − yi]
2)1/2, (2)

which neglects the axes corresponding to the negative dimensions (derived from nega-
tive eigenvalues in the embedding), and

ρAES (x,y) = (
n∑

i=1

[xi − yi]
2)1/2, (3)

which treats the vector space Rn as Euclidean Rp+q. This means that the negative
subspace of PES is interpreted as a Euclidean subspace (i.e. the negative signs of
eigenvalues are neglected in the embedding procedure).

To inspect the amount of non-Euclidean influence in the derived PES, we define
the Negative Eigen-Fraction (NEF) as:

NEF =

p+q∑
j=p+1

|λj|/
p+q∑
i=1

|λi| ∈ [0, 1] (4)

Fig. 2 shows how NEF varies as a function of p of the Minkowski-p dissimilarity measure
(k-dimensional spaces) for a two-dimensional example:

ρMinp (x,y) = (
k∑

i=1

[xi − yi]
p)1/p (5)

This dissimilarity measure is Euclidean for p = 2 and metric for p > 1. The measure is
non-Euclidean for all p ̸= 2. The value of NEF may vary considerably with a changing
dimensionality. This phenomenon is illustrated in Fig. 3 for 100 points generated by
a standard Gaussian distribution for various values of p. The one-dimensional dissim-
ilarities obviously fit perfectly to a Euclidean space. For a vary high dimensionality,
the sets of dissimilarities become again better embeddable in a Euclidean space.

2.3 Discussion on dissimilarity-based vector spaces

Here we make some remarks on the two procedures for deriving vector spaces from
dissimilarity matrices, as discussed in previous subsection. On some aspects we will
return at the end of this reports in relation to examples and experiments.
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Figure 2: A two-dimensional data set (left) and the NEF as a function of p for various
Minkowski-p dissimilarity measures.

The dissimilarity space in fact interprets the dissimilarities to particular prototypes
(the representation set) as features. Their characteristics of dissimilarities is not used
when a general classifier is applied. Special classifiers are needed to make use of that
information. The good side of this ’disadvantage’ is that the dissimilarity space can
be used for any dissimilarity representation, including ones that are negative or asym-
metric.

The embedding procedure is more restrictive. The dissimilarities are assumed to
be symmetric and zero for the comparison with identical objects. Something like
the pseudo-Euclidean embedding is needed in case of non-Euclidean data sets. The
requirements of a proper metric or well-defined distances obeying the triangle inequality
are not of use as they do not guarantee a Euclidean embedding. As we want to study
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Figure 3: The Negative Eigen-Fraction for various Minkowski-p dissimilarity measures
as a function of the dimensionality of a set of 100 points generated by a standard
Gaussian distribution.

more general data sets we use the name of dissimilarities instead of distances.
A severe drawback of both procedures is that they initially result in vector spaces

that have as many objects as dimensions. Specific classifiers or dimension reduction
procedures are thereby needed. For the dissimilarity representation this is somewhat
more feasible than for the feature representation: features can be very different, some
might be very good, others might be useless, or only useful in relation with particular
other features. This is not true for dissimilarities. The initial representation is just
based on objects. They have similar characteristics. It is not useful to use two objects
that are much alike. Systematic, or even random procedures that reduce the initial
representation set (in fact prototype selection) can be very effective [34] for this reason.

3 Non-Euclidean dissimilarities

The work on the general dissimilarity matrices touches the gradually raising interest
of the machine learning community in indefinite kernels: [24, 25, 26, 32, 31]. There
is however some doubt whether the non-Euclidean aspects of the relations between
pairwise comparison of objects are informative [39, 19, 30].

In this section preparations are discussed to study further the handling and possible
informativeness of non-Euclidean dissimilarity matrices. From the observation that
they arise often in the pattern recognition practice, it can be concluded that this is a
significant issue [10]. We will therefore discuss the various circumstances under which
such dissimilarity matrices arise and will try to characterize them, see also [12]. Next,
we will discuss three ways to approach this problem:

1. Avoiding the non-Euclidean dissimilarities by adapting the measure.

2. Correcting dissimilarity matrices such that they become Euclidean and by this
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traditional generalization procedures can be applied.

3. Leaving the data as they are and developing generalization procedures that can
handle non-Euclidean dissimilarity data.

The purpose of our study is to find good generalization procedures for dissimilarity
data that arise in practical pattern recognition applications. In between is the step of
representation. In the previous section two procedures for deriving vector spaces are
presented. One is general, but neglects the dissimilarity characteristic of the data. The
other is specific but suffers from the possible non-Euclidean relations that are present
in the data. In order to analyze possible transformations of the derived vector spaces,
especially of the pseudo-Euclidean space, we will first summarize and categorize the
ways in which non-Euclidean dissimilarity data can arise.

Before becoming more specific, we like to emphasize how common non-Euclidean
measures are. In [35] we already presented an extensive overview of such measures,
but we encountered in many occasions that this fact is not sufficiently recognized.

Almost all probabilistic distance measures are non-Euclidean, including the Kol-
mogorov Variational Distance which is directly related to the classification error. This
implies that when we want to build a classification system for a set of objects and each
individual object is represented by a probability density function resulting from its
invariants, the dissimilarity matrix resulting from the overlap between the object pdfs
is non-Euclidean. Also the Mahalanobis class distance as well as the related Fisher
criterion are non-Euclidean.

As a direct consequence of the above, many non-Euclidean distance measures are
used in cluster analysis and in the analysis of spectra in chemometrics and hyper-
spectral image analysis. An energy spectrum can be considered as a pdf of energy
contributions for different wavelengths. The popular absolute difference between two
spectra is identical with the Minkowski-1 distance (related to the l1-norm) between
vector representations of the spectra.

In shape recognition, various dissimilarity measures are used based on the weighted
edit distance as well as on variants of the Hausdorff distance. Usual parameters are
optimized within an application w.r.t. the performance based on template matching
and other nearest neighbor classifiers [5]. Most of them are still metric, some of them
however are non-metric [7].

In the design and optimization of the dissimilarity measures it was in the past
not an issue whether they were Euclidean. Just more recently, with the popularity of
SVMs, it has became important to design kernels (similarity measures) which fulfill the
Mercer conditions. This is equivalent to the possibility of Euclidean embedding. Next
subsection discusses a number of reasons that give rise to violations of these conditions
in applications, which lead to a set of non-Euclidean dissimilarities or indefinite kernels.

3.1 Non-intrinsic non-Euclidean dissimilarities

3.1.1 Numeric inaccuracies

A very simple reason why non-Euclidean dissimilarities arise is the numeric inaccuracies
resulting from the use of computers with a finite word length. E.g., when we generate
at random four points in an n-dimensional vector space and we follow the embedding
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procedure discussed in section ?? the projected vectors will fit in a 3-dimensional
Euclidean space. In the procedure three eigenvalues larger than zero are expected to
be found. In case n = 2 one of these eigenvalues will be zero. In a numeric procedure,
however, there is a probability of almost 50% that the smallest eigenvalue has a very
small negative value due to numeric inaccuracies (resulting from iterative procedures
of determining the eigenvalues).

For this reason it is advisable to neglect all very small positive as well as negative
eigenvalues. As a consequence, the dimensionality of the embedded space will be
smaller than its maximum value of n-1.

3.1.2 Overestimation of large distances

When dissimilarities are not directly computed in a vector space but derived on raw
data such as images or objects detected in images instead, more complicated measures
may be used. They may still rely on the concept that the distance between two objects
is the length or cost of the shortest path that has to be followed to transform one
object into the other. Examples of such transformations are the weighted edit distance
[3] and deformable templates [28]. In the optimization procedure that minimizes the
length of the path, a minimization procedure may be used based on approximating the
costs from above. As a consequence, too large distances are found.

The detection of too large distances is not easy, except when they are so large that
the triangle inequality has been violated. In that case d(A,C) > d(A,B) + d(B,C),
indicating that a lower cost is possible in the transformation of A to C via a detour
over B. This violates the result of the cost minimization. See [16] for an example.
Such violations can easily be detected and corrected. The result is however just the
replacement of a non-metric measure by a metric one. A possible non-Euclidean set of
dissimilarities resulting from relations between more than three objects may still exist.

3.1.3 Underestimation of small distances

The underestimation of small distances has the same result as the above discussed
overestimation of large distances. Similar correction procedures may be applied and
again they only correct the metric property but not the Euclidean one.

There may be different causes of underestimated small distances. They may arise as
the consequence of neglecting different particular object properties in different pairwise
comparisons. For instance, in consumer preference data, the ranking of the most
interesting books by every reader individually yields (dis)similarities based on different
books by different pairwise comparisons of books or readers. Unread books by both
readers in a comparison are thereby not taken into account, resulting in a too small
estimate, especially for the small dissimilarities. E.g., it is possible to estimate a
dissimilarity of zero if the ranking of the books read by both readers is identical, while
it may be larger if additional books are taken into account.

Phrased in more abstract terms, the underestimation of small distances occurs
when object pairs have to be compared from different points of view, or suffering from
different partial (information) occlusions.
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Figure 4: Vector space with the invariant trajectories for three objects O1, O2 and O3.
If the chosen dissimilarity measure is the minimal distance between these trajectories,
triangle inequality can easily be violated, i.e. d(O1, O2) + d(O1, O3) < d(O1, O3).

3.2 Intrinsic non-Euclidean dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observations
were available, they would disappear. Now we will focuss on dissimilarity measures
for which this will not happen. We will discuss three possibilities, without claiming
completeness.

3.2.1 Non-Euclidean dissimilarities

As already indicated at the start of this section, there can be arguments from the
application side to use another metric than the Euclidean one. An example is the
Kolmogorov variational distance between pdfs as it is related to the classification error,
or the l1-distance between energy spectra as it is related to energy differences. Although
the l2-norm is very convenient for computational reasons or because it is rotation
invariant in a Euclidean space, the l1-norm may naturally arise from the demands in
applications.

3.2.2 Invariants

A very fundamental reason is related to the occurrence of invariants. Frequently, one
is not interested in the dissimilarity between two objects A and B, but between two
families of objects A(θ) and B(θ) in which θ controls an invariant, e.g. rotation in case
of shape recognition. One may define the dissimilarity between two objects A and B
as the minimum difference between the two sets defined by all their invariants.

d∗(A,B) = min
θA

min
θB

(d(A(θA), B(θB))) (6)

In general, this measure is non-metric: the triangle inequality may be violated as for
different pairs of objects different values of θ may be found that minimize (6). An
example is given in figure 3.2.2, which is taken from [37].
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3.2.3 Sets of vectors

Finding relations between sets of vectors is an important issue in cluster analysis.
Individual objects may be represented by single vectors, but in a
hierarchical clustering procedure the (dis)similarities between already grouped vectors
are used to establish a new cluster level. Dissimilarity measures as used in the complete
linkage and single linkage procedures are very common. The second, which is defined
as the distance between the two most neighboring points of the two clusters being
compared, is non-metric. It even holds for this distance measure that if d(A,B) = 0,
then it does not follow that A ≡ B, because different clusters may just be touching.

For the single linkage dissimilarity measure it can be understood why the dissimi-
larity space may be useful. Given a set of such dissimilarities between clouds of vectors,
it can be concluded that two clouds are similar if the entire sets of dissimilarities with
all other clouds are about equal. If just their mutual dissimilarity is (close to) zero,
they may still be very different. Fig. 5 illustrates this point.

Figure 5: Single-linkage distance may be small for clusters which differ in position and
shape.

The problem with the single linkage dissimilarity measure between two sets of vec-
tors points to a more general problem in relating sets and even objects. In [29] an
attempt has been made to define a proper Mercer kernel between two sets of vectors.
Such sets are in this paper compared by the Hellinger distance derived from the Bhat-
tacharyya’s affinity between two pdfs pA(x) and pB(x) found for the two vector sets A
and B:

d(A,B) =

[∫
(
√
pA(x)−

√
pB(x))

2

]1/2
. (7)

The authors state that by expressing p(x) in any orthogonal basis of functions, the
resulting kernel K is automatically positive definite. This is correct, but it should be
realized that it has to be the same basis for all vector sets A,B, ... to which the kernel
is applied. If in a pairwise comparison of sets different bases are derived, the kernel will
become indefinite. This may happen if the numbers of vectors per set are smaller than
the dimensionality of the vector space. It will happen most likely if this vector space is
already a Hilbert space, e.g. when the vectors are already derived from a kernelization
step.

This also makes it clear that indefinite relations may arise in any pairwise com-
parison of real world objects if they are first represented in some joint space for the
two objects, followed by a dissimilarity measure. These joint spaces may be different
for different pairs! Consequently, the total set of dissimilarities can be non-Euclidean,
even if a single comparison is defined as Euclidean, as in (7).
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3.3 Other non-Euclidean measures

There may be other factors leading to non-Euclidean dissimilarity measures. After
further inspection, they may simplify to one or both of the above. We now mention
two possibilities:

• Dis/similarity judgements by human experts. In some applications, e.g. psycho-
metrical experiments, subjects are asked to judge the similarity between various
sets of observations. It is not clear on which ground such judgements are made,
as also in the consumer preference data.

• Weighted combinations of different dis/similarity measures that focus on different
aspects of objects, e.g.

d(x, y) =
∑
i

αidi(x, y)

where αi is a constant and di(x, y) is a dissimilarity w.r.t. particular i-th charac-
teristics. An example is to derive the dissimilarity between images as a weighted
average of dissimilarities computed w.r.t. texture, color and response to partic-
ular shape detectors.

3.4 Example classifiers in pseudo-Euclidean spaces

In our recent studies on analyzing dissimilarity data [35, 37, 38, 26, 19, 17], we have
given many examples for classifiers that can be trained in indefinite (pseudo-Euclidean)
spaces, e.g.

• The nearest mean rule as means and distances to points are well defined.

• The nearest neighbor rule for the same reason.

• The Parzen classifier, as it can be expressed in distances to points.

• The linear and quadratic classifiers based on class covariances. In Euclidean
spaces they are related to normal distributions. In the pseudo-Euclidean spaces
they can still be computed, but the relation with densities is unclear.

• A kernelized version of the Fisher discriminant for indefinite kernels.

Problematic classifiers are the ones based on general probability density estimates, as
they are not (yet) properly defined for pseudo-Euclidean spaces and classifiers that rely
on a distance to a linear or nonlinear classification boundary, such as SVM. The SVM
classifier may still be computed but convergence and uniqueness are not guaranteed
[24].

In [26] two artificial examples are presented that illustrate the work and perfor-
mance of classifiers built in pseudo-Euclidean spaces. In these examples the embedded
PES has not been explicitly determined, but classifiers are considered that work on
indefinite kernels instead: the indefinite kernel Fisher discriminant (IKFD), indefinite
SVM (ISVM) and indefinite kernel nearest mean classifier (IKNMC).

In [19] a study on Euclidean corrections has been presented. Various transforma-
tions are studied that map data from the pseudo-Euclidean space to the Euclidean
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space. Many examples have been found for which such corrections are counterproduc-
tive, suggesting that indefinite spaces can be informative. More subtle corrections have
to be investigated further.

The above mentioned transformations are topology preserving. This does not hold
for the construction of the dissimilarity space out of a dissimilarity representation. In
that case, a new Euclidean space is postulated based on the relations of objects with
all other objects. This may remove or diminish noise, or defects that arose in the
construction of the original dissimilarities. Possible information of original indefinite
relations will thereby only be maintained if it can be expressed in the totality of the
relation of objects to all other objects in a Euclidean way.

4 Discussion

Two main causes of non-Euclidean behavior have been identified: non-intrinsic and
intrinsic ones. The former are related to computational and computational problems.
In case there are no other effects Euclidean representations can be expected asymptoti-
cally for increasing computational and observational resources. The latter, the intrinsic
causes will remain to yield non-Euclidean dissimilarity matrices.

The question raises whether the correction and classification procedures should be
different for these two cases. It may be argued that if it is to be expected that for
some circumstances an Euclidean space is appropriate, that then an approximation
of this space by some correction of the originally non-Euclidean dataset may approx-
imate the desired representation well. In case of intrinsicly non-Euclidean problems
approximative Euclidean spaces might be less effective.

Experiments reported in [19] and in [17] study correction procedures uing inter-
polations between the PES and several Euclidean spaces. Some of these change the
dissimilarities in a monotonous way, by which the NN classification results don’t change
and thereby also don’t improve. Such transformations are nevertheless important they
show that for every classifier in the PES, so on the original representation, there exist
an equivalent classifier in an Euclidean space. Nevertheless, from all experiments it
can be concluded that for many cases the pseudo-Euclidean space can be transformed
in a non-topology-preserving way into an Euclidean space in which better classifiers
can be computed.

In case there exist an Euclidean space in which several classifiers obtain there best
results, we may conclude that the corresponding problem is not intrinsic non-Euclidean.
If this space has been found by a correction or transformation of a pseudo-Euclidean
space this just suggests that sufficient knowledge lacks to construct such a representa-
tion directly from an appropriate set of features or Euclidean (dis)similarity measure.
Non-Euclidean measures are thereby still of significant importance.
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Blob Recognition

Which group?

A

B

C
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Object Recognition 

Airplane

Bicycle

Bus

Car

Train
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Pattern Recognition: Speech
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Pattern Recognition: Seismics

Earthquakes
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Pattern Recognition Problems

To which class
belongs an image

To which class (segment)
belongs every pixel?

Where is an object of
interest (detection);

What is it (classification)?
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Pattern Recognition: Shape Recognition

Pattern Recognition is very often Shape Recognition:
• Images: B/W, grey value, color, 2D, 3D, 4D
• Time Signals
• Spectra
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Pattern Recognition: Shapes

Examples of objects for different classes

Object of unknown class to be classified

A B?

Vector Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

perimeter

ar
ea

perimeter

area

Feature Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

pixel_1

pi
xe

l_
2

Pixel Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

D(x,xA1)

D
(x

,x
B

1)

Dissimilarity Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

Classifier_1

B

A

B

A

B

A

B

A

Combining Classifiers

Cl
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Good Representations
• Class specific

Different classes should be 
represented in different positions 
in the representation space.

• Compact
Every class should be represented 
in a small set of finite domains.
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Compactness

The compactness hypothesis is not
sufficient for perfect classification
as dissimilar objects may be close.

class overlap
probabilities

Representations of real world similar objects are close. 
There is no ground for any generalization (induction) on representations
that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

1x

2x

(perimeter)

(area)
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True Representations

no probabilities needed, domains are sufficient!

1x

2x

(perimeter)

(area)

Similar objects are close 
and

Dissimilar objects are distant.
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Distances and Densities

? to be classified as

B – because it is most
close to an object B

A – because the local
density of A is larger.

1x

2x

(perimeter)

(area)

A

B
?
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Features Reduce

1x

2x

B

A

B

A

(perimeter)

objects

Due to reduction essentially different objects are represented identically.

The feature space representation needs a statistical, probabilistic generalization
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Probabilistic Generalization

What is the gender of a person with this height?

x = height measured

p(x|F) p(x|M)

x1 = height

Best guess is to choose the most ’probable’ class (→ small error).

⇒ Good for overlapping classes. 

⇒ Assumes the existence of a probabilistic class
distribution and a representative set of examples.
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Bayes decision rule, formal

p(A|x)            >    p(B|x)             A else B

p(x|A) p(A)     >   p(x|B) p(B)      A else B

Bayes: p(x|A) p(A)           p(x|B) p(B) 
p(x)                    p(x)> A else B

2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) > 0  A else B

n-class problems: Class(x) = argmaxω(p(x|ω) p(ω))
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Density estimation

• The density is defined on the whole feature space.
• Around object x, the density is defined as:

• Given n measured objects, e.g. person’s height (m) 
how can we estimate p(x)?

⎟
⎠
⎞

⎜
⎝
⎛==

volume
objectsoffraction)()(

dx
xdPxp
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The Gaussian distribution (3)

• 1-dimensional density:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2

2

)(
2
1exp

2
1)(

σ
μ

πσ
xxp

• Normal distribution =
Gaussian distribution

• Standard normal 
distribution:
μ = 0, σ 2 = 1

• 95% of data between
[ μ - 2σ, μ + 2σ ] (in 1D!)

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

μ

σ
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Multivariate Gaussians

• k - dimensional density:

⎟
⎠
⎞

⎜
⎝
⎛ −−−
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Quadratic discriminant functions

(nearly) linear ellipse parabole hyperbole

QDC assumes that classes are normally 
distributed. Wrong decision boundaries are 
estimated if this does not hold.

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

Parzen classifier
QDC

const)μ̂(xΣ̂)μ̂(x
2
1)μ̂(xΣ̂)μ̂(x

2
1R(x) B

1
B

T
BA

1
A

T
A +−−+−−−= −−

6 November 2011 27The Dissimilarity Representation for Non-Euclidean Pattern Recognition

Linear discriminant function 
(summary) [G]

Normal distributions with equal 
covariance matrices Σ are optimally 
separated by a linear classifier

Optimal classifier for normal distributions 
with unequal covariance matrices ΣA and 
ΣB can be approximated by:

constxΣ)μ(μR(x) 1T
BA +−= − constx)p(B)Σ(p(A)Σ)μ(μR(x) 1

BA
T

BA ++−= −
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Parzen density estimation (1)

•Fix volume of bin, vary positions of bins, add contribution of each bin
•Define ‘bin’-shape (kernel): 

•For test object z sum all bins
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Parzen density estimation (2)

)(xp̂

x

Parzen:

• With Gaussian kernel: ( )2

2

h2
x

π2h
1 exp)x(K −=
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Parzen: density estimates vs the smoothing parameter

Small h Large hOptimal h

Small h Optimal h Large h

2D

1D

Increasing smoothing parameter h
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Nearest neighbor rule (1-NN rule)

1-NN rule:

• Often relies on the Euclidean distance. 
Other distance measures can be used.

• Insensitive to prior probabilities!

• Scaling dependent. Features should be 
scaled properly.

There are no errors on the training set. The classifier is overtrained.

Assign a new object to the class of the nearest neighbor in the training set.

x1

x 2

6 November 2011 32The Dissimilarity Representation for Non-Euclidean Pattern Recognition

Support vector machine (SVM) 
For linearly-separable classes find 
the few objects that determine the 
classifier. These are support vectors.

They have the same distance to the 
classifier: the margin.

Identical to
“maximum-margin classifier”

1995-2005

Pixel Representation
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Measuring Human Relevant Information

A

B

AAA AAA BB B B
Nearest neighbours sorted:
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Pixel Representation

Features
Shapes
Moments
Fourier descriptors
Faces
Morphology

Pixels
1x

2x

16 x 16
R256

Pixels are more general, initially complete representation
Large datasets are available good results for OCR
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Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox

feature set size (dimensionality)
classifier complexity

training set size

∞

Classification 
error

Pattern Recognition Paradox
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The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

x3x2x1

Image

X1

X2

X3

Images in pixel space
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The Connectivity Problem in the Pixel Representation

Spatial connectivity is lost

Training set

Test object

Reshuffle 
pixels

Feature space

Reshuffling pixels 
will not change the classification
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The Connectivity Problem in the Pixel Representation

Feature Space

image_1 image_3
image_2

class subspace

Interpolation does not yield valid objects 6 November 2011 40The Dissimilarity Representation for Non-Euclidean Pattern Recognition

The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

x3x2x1

Image

X1

X2

X3

Images in pixel space
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Reasons for selecting a pixel (sample) representation

• No good features can be found 

• Sufficient training samples are available

• Direct, fast classification of the image 
(linear classifier == convolution)
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Domains instead of Densities

No well sampled training sets are needed.

Statistical classifiers have still to be developed.

Class structure Object invariants
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Domain-based Classification

• Do not trust class densities.

• Estimate for each class a domain.

• Outlier sensitive.

• Distances instead of densities

How to construct domain based classifiers?
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Wrong Intuition of High Dimensional Spaces

2D-intuition does not work for high dimensional spaces

All points are boundary points
1000 normally distr. points in R20: 95% on the convex hull.

Points tend to have equal distances
Squared Euclidean distances of points in R1024 are distributed as  
N(1024,32√2), so distances are all equal within 10%.

Class overlap is not visible
1000 points of  two 5% overlapping  classes in R50 can be
linearly separable

Moreover:
do real world measurements with n > 100 really exist?
⇒ Subspace approaches

1x

2x
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Reasons for selecting a pixel (sample) representation

• No good features can be found 

• Sufficient training samples are available

• Direct, fast classification of the image 
(linear classifier == convolution)
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Vector Representations

• Features: reduce class overlap
• Pixels: dimensionality problems
• Dissimilarities?
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Dissimilarity Representation
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D

The traditional Nearest Neighbor rule (template matching) finds: 
label(argmintrainset{dxi}) , 

without using DT. Can we do any better?

Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

Not used by NN Rule
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Dissimilarities – Possible Assumptions

1. Positivity: dij ≥ 0
2. Reflexivity: dii = 0
3. Definiteness:  dij = 0 objects i and j are identical
4. Symmetry:      dij = dji

5. Triangle inequality: dij < dik + dkj

6. Compactness: if the objects i and j are very similar 
then dij < δ.

7. True representation: if dij < δ then the objects i and j
are very similar.

8. Continuity of d.

M
et

ri
c
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Examples Dissimilarity Measures (1)

The measure should be descriptive. If there is no preference, 
a number of measures can be combined.
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Examples Dissimilarity Measures (2)
Comparison of spectra: some examples

In real applications, the dissimilarity measure should be robust to 
noise and small aberrations in the (raw) measurements.

7 November 2011 52The Dissimilarity Representation forNon-Euclidean  Pattern Recognition

Examples Dissimilarity Measures (3)

A B

Dist(A,B):
a ∈ A, points of A
b ∈ B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b)}}
D(B,A) = max_b{min_a{d(b,a)}}

Hausdorff Distance (metric): 
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}}

Modified Hausdorff Distance (non-metric):
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}

maxB
A

max

B
A

D(A,B) ≠ D(B,A) 
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Examples Dissimilarity Measures (4)

b
a

u
v
u

b
u

a u a v v b

Possibly weighted

Triangle inequality  computationally feasible

D(aa,bb) < D(abcdef,bcdd)

X = (x1, x2, .... , xk) Y = (y1, y2, .... , yn)

DE(X,Y) : Σ edit operations X  Y
(insertions, deletions, substitutions)

DE(snert ,meer ) = 3:
snert  seert  seer  meer

DE( ner ,meer ) = 2:
ner  mer  meer
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Examples Dissimilarity Measures 
(5)

Matching new objects to various templates:
class(x) = class(argminy(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using 
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Prospect of Dissimilarity based  Representations: Zero

Let us assume that we deal with true representations:
dab < δ if and only if the objects a and b are very similar.

If δ is sufficiently small then a and b belong to the same class, as b 
is just a minor distortion of a (assuming true representations).

However, as Prob(b) > 0, there will be such an object for sufficiently 
large training sets  zero classification error possible!

 Dissimilarity representation can be a true representation

δ
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Why a Dissimilarity Representation?

Many (exotic) dissimilarity measures are used in pattern recognition
- they may solve the connectivity problem (e.g. pixel based features)
- they may offer a way to integrate structural and statistical approaches
e.g. by graph distances.

Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbor classifier appear possible
(more accurate, faster) 

Classification of Dissimilarity Data
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Alternatives for the Nearest Neighbor Rule
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Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

1. Dissimilarity Space
2. Embedding

Pekalska, The dissimilarity 
representation for PR.
World Scientific, 2005.



The Dissimilarity Space
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Alternative 1: Dissimilarity Space
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r1 r2 r3

Dissimilarities

Selection of 3 objects for representation

B

A

r1(d1)

r2(d4)

r3(d7)

Given labeled training set

Unlabeled object to be classified
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Example Dissimilarity Space: NIST Digits 3 and 8

Example of raw data

7 November 2011 62The Dissimilarity Representation forNon-Euclidean  Pattern Recognition

Example Dissimilarity Space: NIST Digits 3 and 8

NIST digits: Hamming distances of 2 x 200 digits

d10

d30
0
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Dissimilarity Space Classification  Nearest Neighbor Rule

Modified Haussdorff distance on contours of digits

Dissimilarity based classification outperforms the nearest neighbor rule.

Embedding of (non-Euclidean) Dissimilarities
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Alternative 2: Embedding

Training set 

B

A  Dissimilarity matrix D    X

Is there a feature space for which Dist(X,X) = D ?

1x

2x

Position points in a vector space such 
that their Euclidean distances  D
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Embedding
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Embedding of non-metric measurements

If the dissimilarity matrix cannot be explained from a vector space,
(e.g. for Hausdorff and Hamming distance of images)
or if dij > dik + dkj (triangle inequality not satisfied)
embedding in Euclidean space not possible 
→ Pseudo-Euclidean embedding

B

A

 Dissimilarity matrix D    X

dkjdik

dij
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Euclidean  - Non Euclidean  - Non Metric

B

C

A

D
10

10

10

5.1

5.1

5.1

B

C

A

D
10

10

10

5.8

5.8

5.8

B

C

A

D
10

10

10

4

4

4

7 November 2011 69The Dissimilarity Representation forNon-Euclidean  Pattern Recognition

Non-metric distances

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

μA μB–

x

σA σB

A B
C

Weighted-edit distance for strings Single-linkage clustering

2
B

2
A

2
BAB)J(A,

σ+σ
μ−μ

= 0C)J(A, = largeB)J(A, =
B)J(A,smallB)J(C, ≠=

Fisher criterion
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(Pseudo-)Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.  

Construct inner-product matrix:

Eigenvalue Decomposition , 

Select k eigenvectors:                        (problem:  Λk< 0)

Let ℑk be a k x k diag. matrix, ℑk(i,i) = sign(Λk(i,i))

Λk(i,i) < 0 → Pseudo-Euclidean

n×m Dz is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: 

The embedded objects: 

JJDB (2)
2
1−= 11m

1IJ −=
TQQB Λ=

2
1

kkQX Λ=

)JD-J(DB )2(T
n
1(2)

z2
1

z 11−=

kkkz
2
1

QBZ ℑΛ= −
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PES: Pseudo-Euclidean Space (Krein Space)
If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-
degenerate inner product space ℜk = ℜp ⊕ ℜq such that:
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Distances in PES

O

0)A,O(d2 >
0)E,O(d2 >
0)B,O(d2 =
0)D,O(d2 <

All points in the grey area 
are closer to O than O itself !?

Any point has a negative square
distance to some points on the 
line vTJx=0. 
Can it be used as a classifier?
Can we define a margin as in 
the SVM?
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PE Space  Kernels

may by considered as a kernel. If

Jy)JD(x,)y,x(K (2)
2
1−= 11m

1IJ −=

><= )y(L),x(L)y,x(K

• The kernel trick may be used: operations defined on inner products 
in kernel space can be operated directly on K(x,y) without embedding! 

• True for Mercer kernels (all eigenvalues ≥ 0).
• Difficult for indefinite kernels.
• Studying classifiers in PE space is studying the indefinite kernel space.
• Dissimilarities are more informative than kernels (due to normalization).

Classifiers in Pseudo-Euclidean Space
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Distance based classifiers in PE Space

Nearest Neighbour and
Nearest Mean can be properly defined.
SVM ? What is the distance to a line?

p

q

A

B

X
0),x(d >•

0),x(d <•

Metric in PE Space.
Equidistant points to the origin.

X assigned to B
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SVM in PE Space

SVM on indefinite kernels may not converge as Mercer’s 
conditions are not fulfilled.

However, if it converges the solution is proper: 

is minimized.

 See also: B. Haasdonk, Feature Space Interpretation of SVMs with 
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005.

|ww| Tℑ
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Densities in PE Space

 Densities can be defined in a vector space on de basis of 
volumes, without the need of a metric.
 Density estimates however, often need a metric.

E.g. the Parzen estimator:

needs a distance definition d(x,y).
 There is no problem, however, in case for all objects d(x,y) > 0.
 How can Gaussian densities be defined?
 Note that QDA in PES is identical to the QDA in AES as the 

signature cancels. The relation with a Gaussian distribution, 
however, is lost.

)
h2

)y,x(dexp(c)x(f̂
iy

2

2
i

n
1  −= Dissimilarity based classifiers compared
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Dissimilarity based classification procedured compared

1. Nearest Neighbour Rule
2. Reduce training set to representation set 
 dissimilarity space
3. Embedding:Select large Λii > 0  Euclidean space
Select large |Λii| > 0  → pseudo-Euclidean space }

B

A
Training set

Test object x

 Dissimilarity matrix D

 Dissimilarities dx with training set

discriminant function
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Three Approaches Compared for the Zongker Data

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule
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Polygon Data
Convex
Pentagons

Heptagons

Minimum edge length: 0.1 of maximum edge lengthno class overlap
zero error

Find the largest of the 
smallest vertex distances

Distance measures:  Hausdorff  D = max { maxi(minj(dij)) ,  maxj(mini(dij)) }.
Modified Hausdorff  D = max {meani(minj(dij)), meanj(mini(dij)) }. (no metric!)

dij = distance between vertex i of polygon_1 and vertex j of polygon_2.
Polygons are scaled and centered. 
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Dissimilarity Based Classification of Polygons

Zero error difficult to reach!
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Prototype Selection

Assume D(T,R) are the distances between a training set T and a 
representation set R.
A classifier can be trained:
 on the distances directly
 in dissimilarity spaces
 in embedded spaces defined by D(R,R)
Selection of prototypes R ⊂ T:
 Random
 k-centres, mode seeking or some clustering procedure
 Feature selection methods
 Editting and condensing methods
 Sparse linear programming methods (L1-norm SVM)
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Prototype Selection: Polygon Dataset

The classification performance of the quadratic Bayes Normal classifier and 
the k-NN in dissimilarity spaces and the direct k-NN, as a function of the 
number of selected prototypes. Note that for 10-20 prototypes already 
better results are obtained than by using 1000 objects in the NN rules.
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Dissimilarity Representation

 Based on a pairwise comparison of objects
 Alternative to features for using expert knowledge
 Various ways of construction vector spaces, useful for 

traditional classifiers.
 May show good performances compared to nearest 

neigbour rule 



Non-Euclidean Representations

Causes, Corrections, Informativeness

Non-Euclidean Representations: Causes
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Computational Noise

Even for Euclidean distance matrices zero eigenvalues 
may show negative, e.g:

- X = N(50,20) : 50 points in 20 dimensions
- D = Dist(X):     50 x 50 distance matrix
- Expected: 49-20 = 29 zero eigenvalues
- Found: 15 negative eigenvalues
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Lack of information

1800: 
Crossing the Jostedalsbreen was impossible.
Travelling around (200 km) lasted 5 days.
Untill the shared point X was found.
People could visit each other in 8 hours.

D(V,J) = 5 days
D(V,X) = 4 hours 
D(X,J) = 4 hours
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Computational Problems

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

Weighted edit distance for strings

Large distances are overestimated
due to computational problems
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Projections - Occlusions
Small distances are underestimated

non-metric data due to
partially observed projections 

?
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Projections - Occlusions

Example: consumer preferences for recommendation systems
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Graph Matching  Dissimilarities

A

D

E
B

F

C

E

D

C

BF

Representation by Connected Graphs

Graph ( Nodes, Edges, Attributes )

Distance (Graph_1, Graph_2 )
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Intrinsicly Non-Euclidean Dissimilarity Measures
Single Linkage

Distance(Table,Book) = 0
Distance(Table,Cup) = 0
Distance(Book,Cup) = 1

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

Single-linkage clustering
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Boundary distances

A set of boundary distances may characterize sets of datapoints:
Distances  features
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Intrinsicly Non-Euclidean Dissimilarity Measures
Mahalanobis

Pairwise comparison between 
differently shaped data distributions

Different pairs  different comparison frameworks
 non-Euclidean
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Intrinsicly Non-Euclidean Dissimilarity Measures
Invariants

Object space

Non-metric object distances
due to invariants

A

B

C

D(A,C) > D(A,B) + D(B,C)
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Intrinsicly Non-Euclidean Dissimilarity Measures

Non-Euclidean human relations
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Objects may have an ‘inner life’

In dissimilarity measures the ‘inner life’ of objects may be 
taken into account (e.g. invariants).

 Objects cannot be represented anymore as points

 Non-Euclidean dissimilarities
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Causes of Non-Euclidean Dissimilarities

 Computational / Observational Limitations

- numerical accuracy problems

- overestimated large distances (too difficult to compute)

- underestimated small distances (one-sided view of objects) 

 Essential non-Euclidean distance definitions

- the human distance concept differs from the mathematical one

- no global framework

- invariants

Euclidean corrections 
for non-Euclidean dissimilarities

SSSPR 2008
R.P.W. Duin,  E. Pekalska, A. Harol, W.J. Lee and H. Bunke 
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Alternative 2: Embedding

Training set 

B

A  Dissimilarity matrix D    X

Is there a feature space for which Dist(X,X) = D ?

1x

2x
Position points in a vector space such 
that their Euclidean distances  D

However, many popular dissimilarity
measures are not Euclidean!!
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(Pseudo-)Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.  

Construct inner-product matrix:

Eigenvalue Decomposition , 

Select k eigenvectors:                        (problem:  Λk< 0)

Let ℑk be a k x k diag. matrix, ℑk(i,i) = sign(Λk(i,i))

Λk(i,i) < 0 → Pseudo-Euclidean

n×m Dz is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: 

The embedded objects: 

JJDB (2)
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PES: Pseudo-Euclidean Space (Krein Space)
If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-
degenerate inner product space ℜk = ℜp ⊕ ℜq such that:
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Distances in PES

O

0)A,O(d2 >
0)E,O(d2 >
0)B,O(d2 =
0)D,O(d2 <

All points in the grey area 
are closer to O than O itself !?

Any point has a negative square
distance to some points on the 
line vTJx=0. 
Can it be used as a classifier?
Can we define a margin as in 
the SVM?
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Pseudo-Euclidean Embedding

Solutions:
 Remove all eigenvectors with small and negative eigenvalues
 or, take absolute values of eigenvalues and proceed
 or, construct a pseudo-Euclidean space

If D is non-Euclidean then B has p positive and q negative eigenvalues
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Correction Procedures PES  ES

 PES: Pseudo Euclidean Space

 PES+: Positive contributions only

 AES: Treat entire space as Euclidean
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Correction Procedures PES  ES (2)

 DEC: Enlarging dissimilarities

use smallest c such that 

 Relax: Relaxing dissimilarity measure

use smallest c such that 

yx,c)y,x(d)y,x(d 22 ≠+⇐ εε

1c,)y,x(d)y,x(d c/1 ≥⇐ εε

0D 

0D 
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Correction Procedures PES  ES (3)

 Laplace:
Adaptation of Laplace correction from 
spectral graph theory: 

 (unpublished result: a ‘minimum’ Laplace 
correction can be obtained by normalizing 
the dissimilarity matrix, followed by the DEC 
correction)

)y,x(d)y,x()y,x(d 22 1 εε +δ−⇐
))y,x(d(Norm)y,x(d 22

εε ⇐

0D yx,c)y,x(d)y,x(d 22 ≠+⇐ εε
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Example: Chickenpieces (H. Bunke, Bern)

446 binary images, varying size, e.g.: 100 x 130
Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature
maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.

Shape classification by weighted-edit distances (Bunke)
Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape
recognition. Pattern recognition 26 (1993) 1797–1812

BACK

BREAST 

DRUMSTICK

THIGH-AND-BACK

WING 
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Classification Results for Various Dissimilarity Measures

Best classification result is for a very 
non-Euclidean dissimilarity measure !
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Eigenspectrum original data (PES)
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Eigenspectra corrected data
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Classifiers:

 1-NN: 1-Nearest Neighbor (local distances)
 Parzen: non-parametric density estimation based on 

given dissimilarities (local densities)
 NM: Nearest Mean Classifier (global distances)
 QDA: Quadratic Discriminant Analysis (global densities)

All four classifiers can be computed in ES as well as in PES
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Results
1-NN Parzen

QDANM

PPES
AES

Laplace

Laplace

PES+
AES

PES
DEC

Relax
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PES PES+

AES
Neglecting or sign-changing ''negative"
directions in the Pseudo-Euclidean Space
deteriorates local classifiers (1-NN and
Parzen) significantly.
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PES DEC

Relax Laplace
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Conclusion w.r.t. Euclidean corrections

 Globally sensitive classifiers are hardly affected by 
corrections.

 1-NN is insensitive to monotonic corrections, but really 
suffers from crisp corrections in the PES.

 Parzen is always disturbed by corrections, so they 
damage the local structure in the data.

 Corrections should be studied in relation with the 
classifier.

Non-Euclidean Representations: Informativeness
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Negative Euclidean Fraction
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

∀
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7 November 2011 121The Dissimilarity Representation for Non-Euclidean  Pattern Recognition

Artificial Example ,Ball Distances

- Generate sets of balls (classes) 
uniformly, in a (hyper)cube; 
not intersecting.

- Balls of the same class have the 
same size.

- Compute all distances between the 
ball surfaces.

-> Dissimilarity matrix D
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Balls3D

10 x ( 2-fold crossvalidation of 50 objects per class )
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Representation Strategies

Avoiding the PE space  

2 2
ij p i jd d (x , x )=

X {[Xp, Xq], }= ∅ 2 2 2
ij p i j q i jd d (x , x ) d (x , x )= +

As it is

Correcting
Associated space

Dissimilarity Space:             X = D

Positive space

Negative space 2 2
ij q i jd d (x , x )=

pX X=

qX X=

2 2 2
ij p i j q i jd d (x , x ) d (x , x )= −Pseudo Euclidean Space X {Xp,Xq}=

Additive Correction 2 2
ij ijd d c, i j= + ≠ X Embedding(D)= 

Classifiers to be developed further
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Informative

Extremely Informative

Not Informative
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Conclusions

 Pseudo Euclidean Space (PES) is sometimes informative 
(corrections are not helpful).

 The corresponding problems may be intrinsic non-Euclidean

 Classifiers for non-Euclidean data have to be studied further




