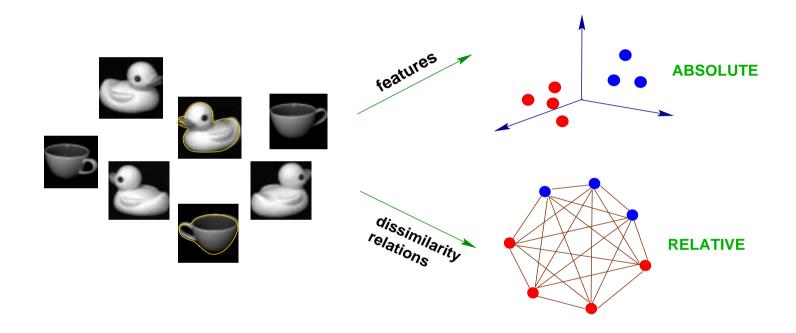
Spanish Pattern Recognition Network

Dissimilarity **representations** for pattern recognition



Robert P.W. Duin, Elzbieta Pękalska and Pavel Paclik

Delft University of Technology

Madrid, 5 September 2003

Contents

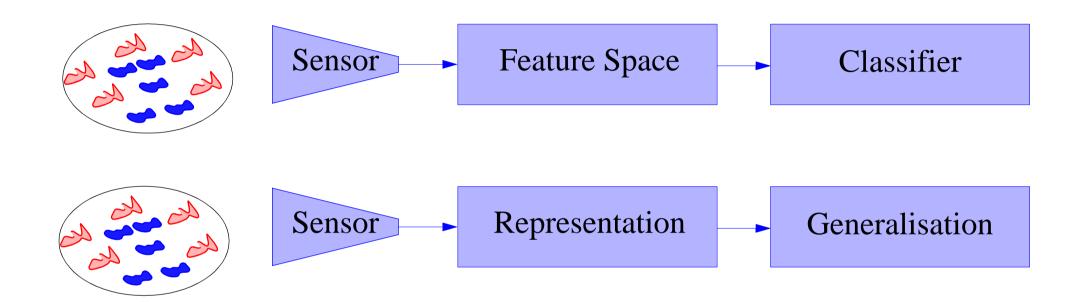
⇒ Representations

Dissimilarity Representations

Approaches

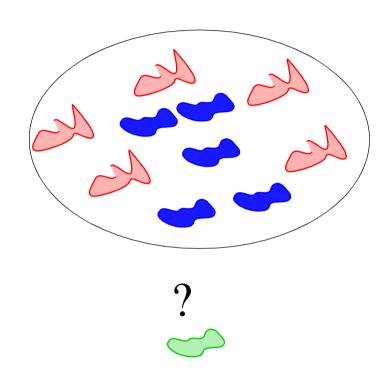
Examples

What is Pattern Recognition?



Other representations and generalisations?

What is Generalisation?



Generalisation is the ability to make statements on unknown properties of new objects (e.g. their class) on the basis of a set of examples.

This can be done on the basis of:

- (dis)similarities
- probabilities
- domains, decision functions

Demands for a Representation

The representation should enable generalisation:

Computation of:

dissimilarities, probabilities, domains, decision functions

Measure objects \Rightarrow numbers

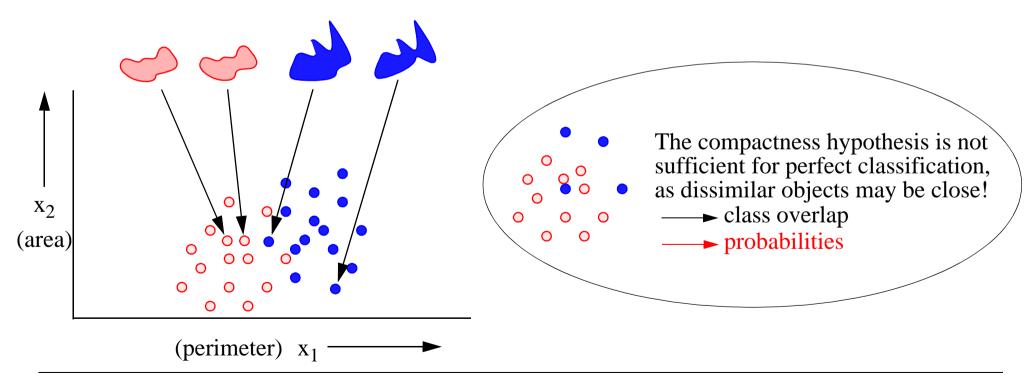
Compactness needed

The Compactness Hypothesis

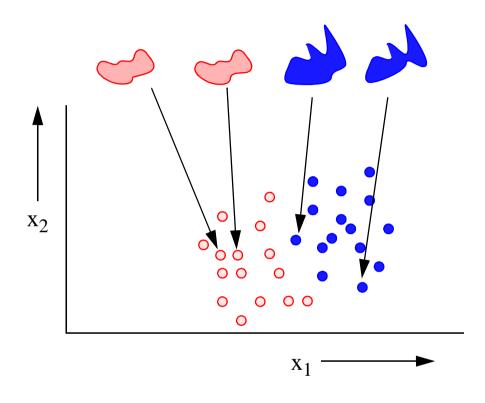
Representations of real world similar objects are close.

There is no ground for any generalisation (induction) on representations that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)



True Representations



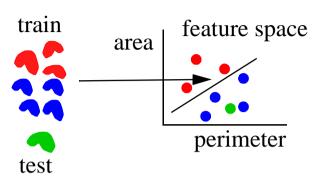
Similar object should be close and dissimilar objects should be distant

→ domains

Representation Principles

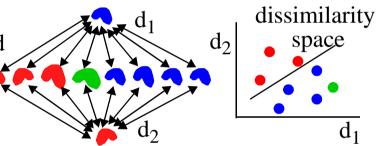
Absolute, by features of objects

distributions, connectivity neglected



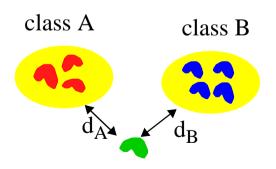
Relative, by dissimilarities between objects

distributions or domains, connectivity possibly included



Conceptual, by dissimilarities between objects and classes

domains, structural, connectivity included



Examples of Relative Representation

Distance between objects

in terms of measurements, in terms of models

Distance between an object and a set of objects

Distance between an object and a class

Distance between an object and a classifier

Related to combining classifiers

Contents

Representations

⇒ Dissimilarity Representations

Approaches

Examples

Dissimilarity Representation

Define dissimilarity measure d_{ij} between raw data of objects i and j



Given labeled training set T

Unlabeled object x to be classified

$$D_{T} = \begin{pmatrix} d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}d_{17} \\ d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}d_{27} \\ d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}d_{37} \\ d_{41}d_{42}d_{43}d_{44}d_{45}d_{46}d_{47} \\ d_{51}d_{52}d_{53}d_{54}d_{55}d_{56}d_{57} \\ d_{61}d_{62}d_{63}d_{64}d_{65}d_{66}d_{67} \\ d_{71}d_{72}d_{73}d_{74}d_{75}d_{76}d_{77} \end{pmatrix}$$

$$d_{x} = (d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7})$$

The traditional Nearest Neighbour rule (template matching) just finds:

label(argmin trainset(d_i)),

without using D_T. Can we do any better?

1. Positivity:
$$d_{ij} \ge 0$$

2. Reflexivity:
$$d_{ii} = 0$$

3. Definiteness:
$$d_{ij} = 0$$
 objects i and j are identical

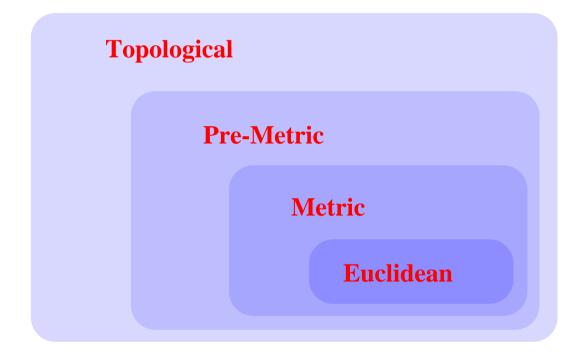
4. Symmetry:
$$d_{ij} = d_{ji}$$

5. Triangle inequality:
$$d_{ij} < d_{ik} + d_{kj}$$

- 6. Compactness: if the objects i and j are very similar then $d_{ij} < \delta$.
- 7. True representation: if $d_{ij} < \delta$ then the objects i and j are very similar.
- 8. Continuity of d

Dissimilarity Spaces - Examples

Pre-Topological

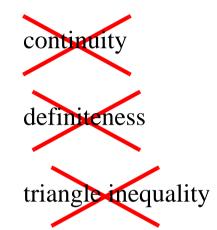


Mahalanobis

Lp, p < 1 weighted edit-distance

L1

L2, RMSE



Compactness always needed

Why Dissimilarity Spaces?

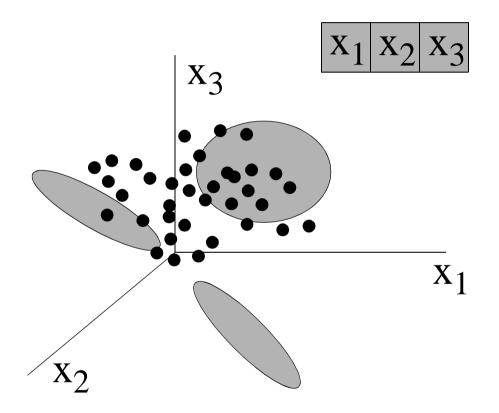
Many (exotic) dissimilarity measures are used in pattern recognition

- they may solve the connectivity problem (e.g. pixel based features)
- they may offer a way to integrate structural and statistical approaches e.g. by graph distances.

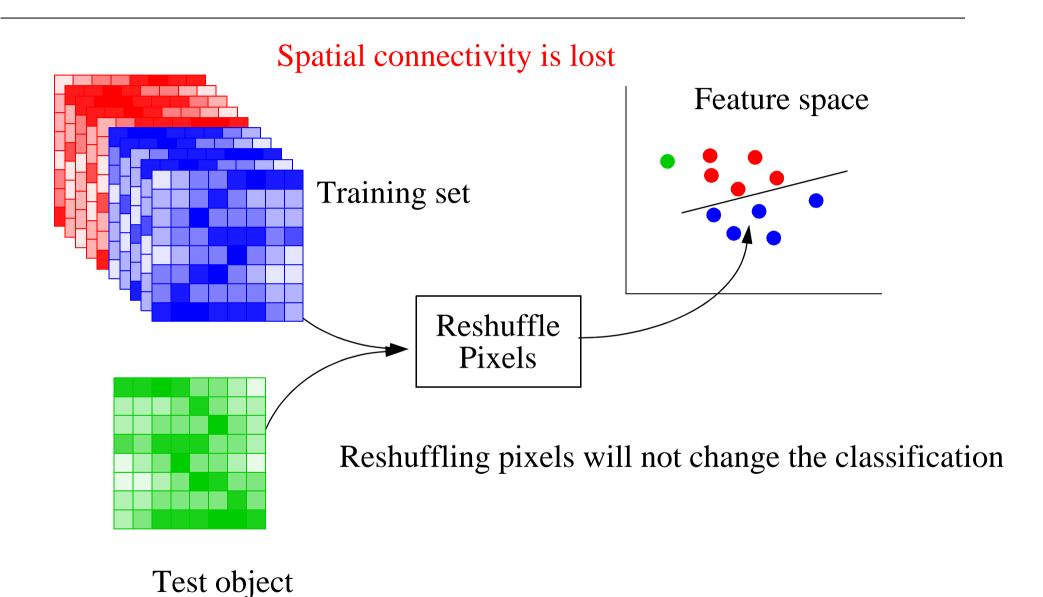
Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbour classifier appear possible (more accurate, faster)

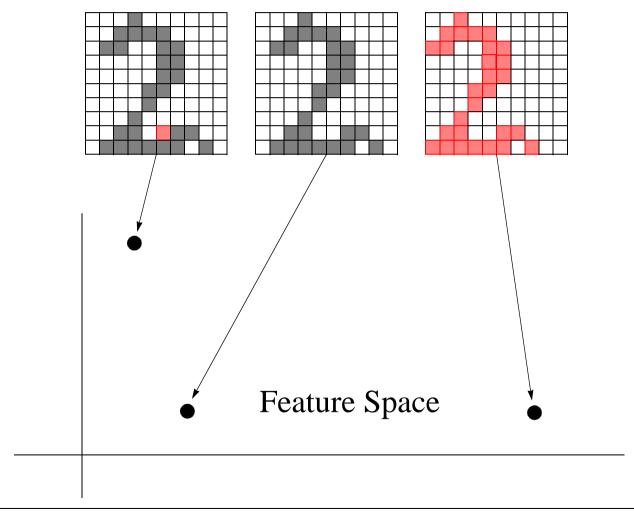
Spatial connectivity is lost



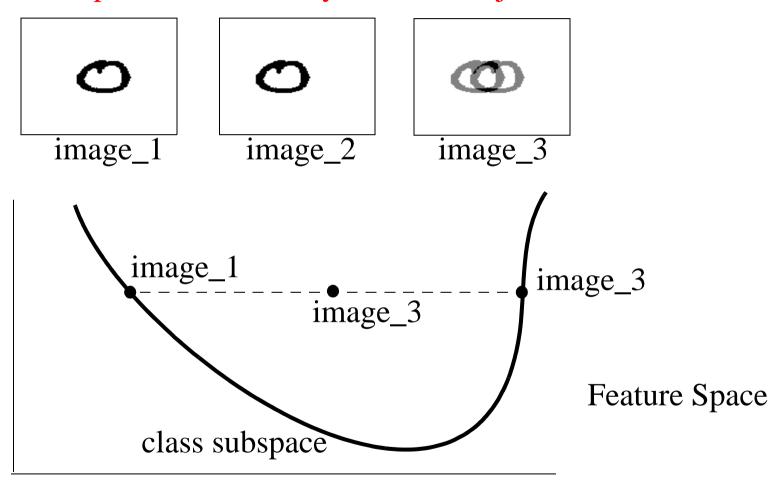
Dependent (connected) measurements are represented independently, The dependency has to be refound from the data



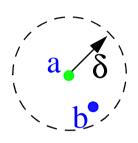
Representation jumps after small disturbances



Interpolation does not yield valid objects



The Prospect of Dissimilarity based Representations: Zero Error

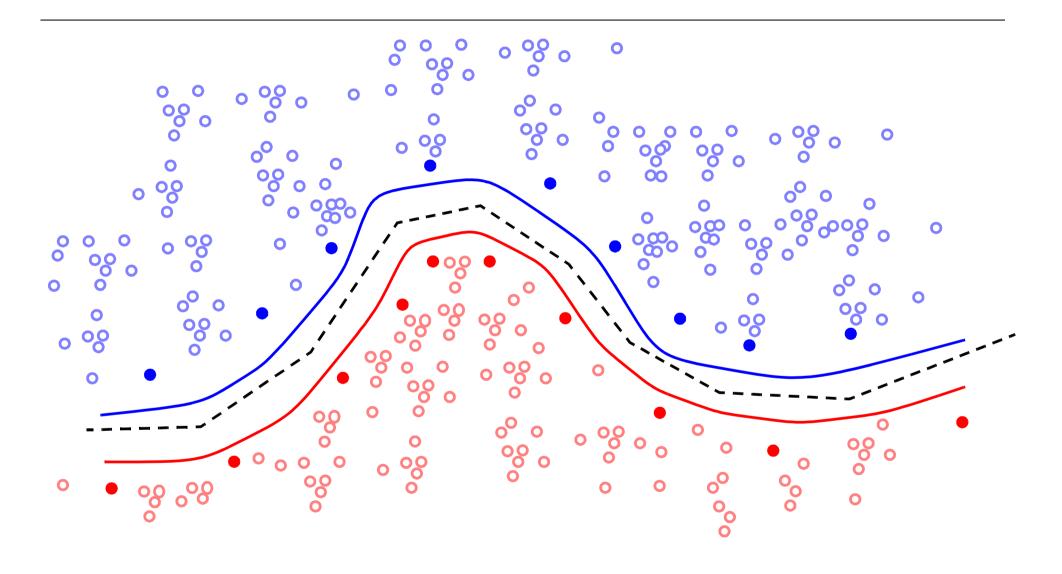


Let us assume that we deal with true representations:

If δ is sufficiently small than a and b belong to the same class, as b is just a minor distortion of a (Assuming true representations).

However, as Prob(b) > 0, there will be such an object for sufficiently large training sets \rightarrow zero classification error possible!

Zero-Error Classification



Contents

Representations

Dissimilarity Representations

 \Rightarrow Approaches

Examples

Approaches

Given labeled training set T

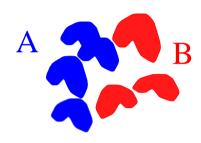
Unlabeled object x to be classified $d_x = (d_1 d_2 d_3 d_4 d_5 d_6 d_7)$

$$D_{T} = \begin{pmatrix} d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}d_{17} \\ d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}d_{27} \\ d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}d_{37} \\ d_{41}d_{42}d_{43}d_{44}d_{45}d_{46}d_{47} \\ d_{51}d_{52}d_{53}d_{54}d_{55}d_{56}d_{57} \\ d_{61}d_{62}d_{63}d_{64}d_{65}d_{66}d_{67} \\ d_{71}d_{72}d_{73}d_{74}d_{75}d_{76}d_{77} \end{pmatrix}$$

1. Nearest neighbour : find $min(d_x)$

- 2. Dissimilarity representation: use d_x as a feature vector.
- 3. Embedding: find a feature space for which D_T is correct

Approach 1: Nearest Neighbour Rule



Given labeled training set T

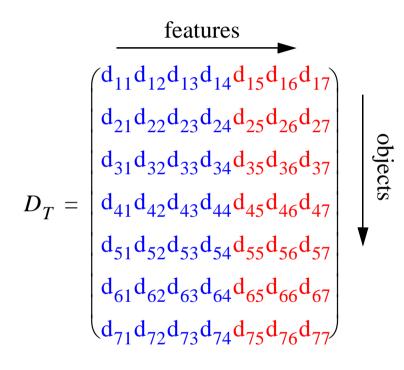
Unlabeled object x to be classified

$$d_{x} = (d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7})$$

$$class(x) = label (argmin(d_{i}))$$

- Computationally expensive
- Locally sensitive
- Consistent: if size(T) --> ∞ then error --> 0

Approach 2: Dissimilarity Representation

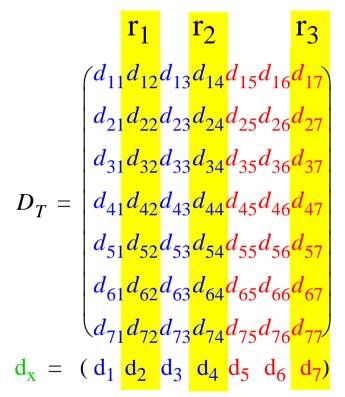


Consider dissimilarities as 'features'

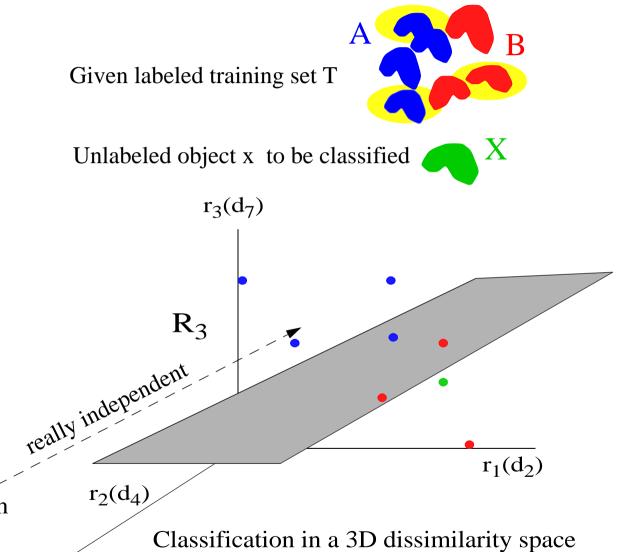
- \Rightarrow n objects given by n features \Rightarrow overtrained
- ⇒ select 'features', i.e. representation objects, by
 - regularisation
 - systematic selection
 - random selection

Approach 2: Dissimilarity Representation

Dissimilarities



Selection of 3 objects for representation



Example Dissimilarity Representation: NIST Digits 3 and 8

```
33333333333333333333333
333333333333333333
```

Examples of the raw data

Nearest Neighbour Errors

All digits '3' and '8' with an incorrect nearest neighbour.

Distance measure: Hamming distance in 32 x 32 resized images

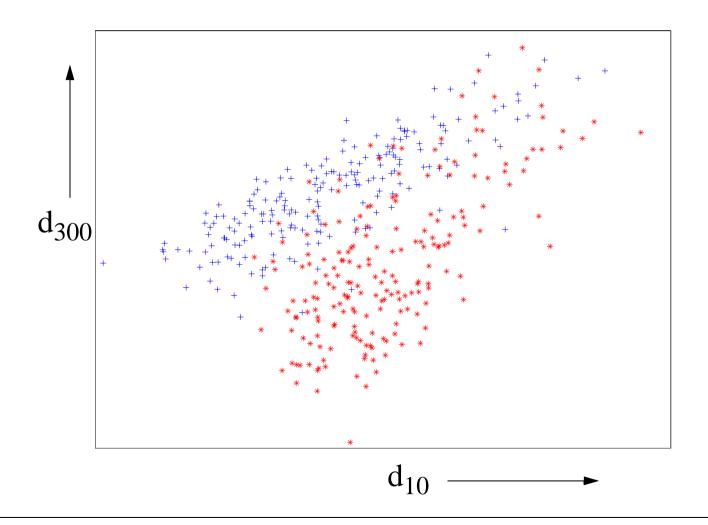
Row 1: the incorrectly classified objects

Row 2: the nearest neighbour in class '3'

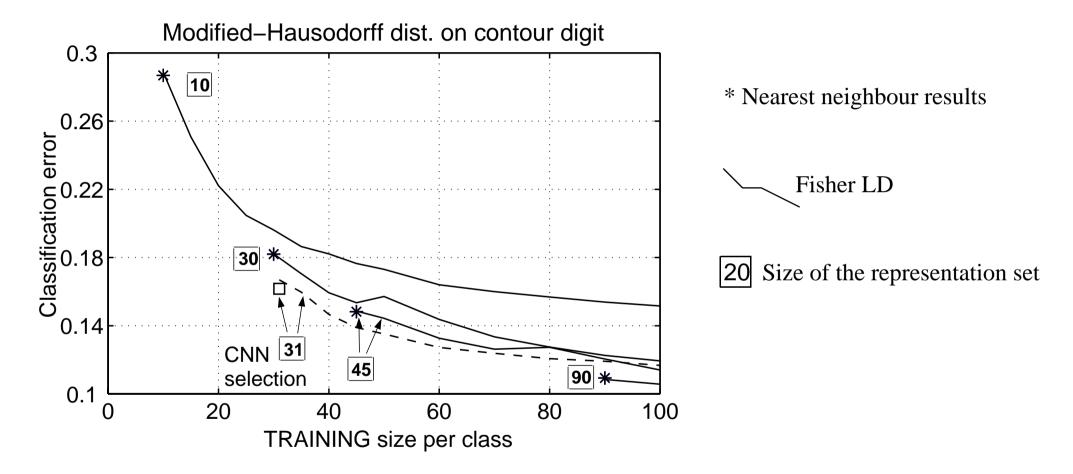
Row 3: the nearest neighbour in class '8'

Example of Dissimilarity Dissimilarity Space

NIST digits: Hamming distances of 2 x 200 digits

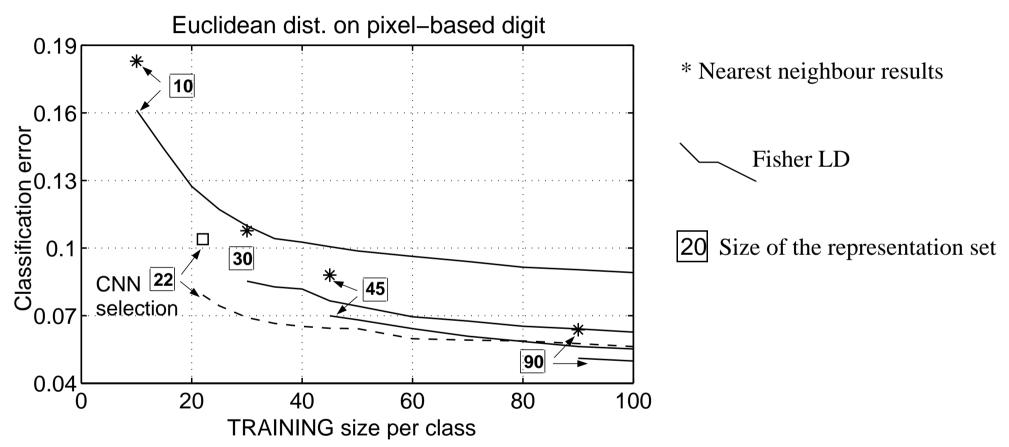


Dissimilarity Space based Classification ⇔ **Nearest Neighbour Rule**



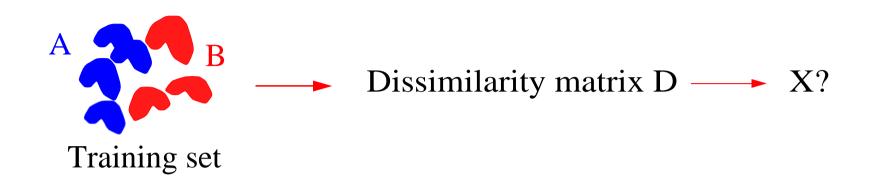
Dissimilarity based Classification outperforms Nearest neighbour Rule

Dissimilarity Space based Classification ⇔ **Nearest Neighbour Rule**

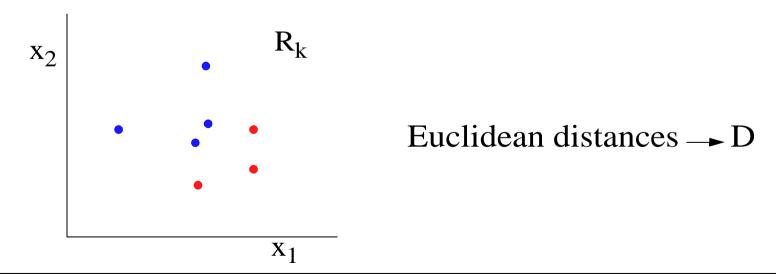


Dissimilarity based Classification outperforms Nearest Neighbour Rule

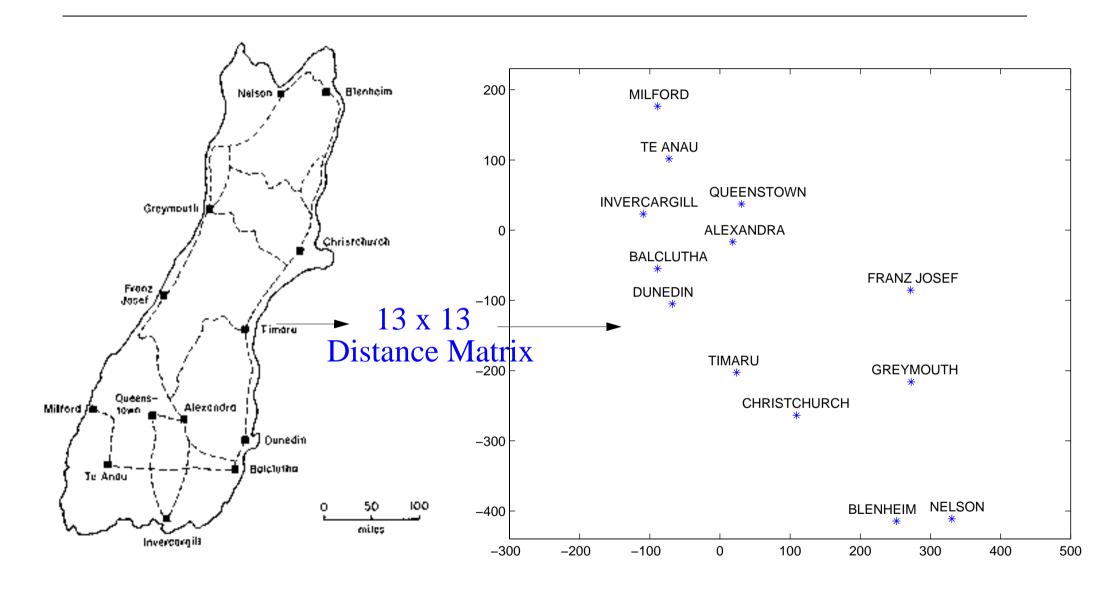
Approach 3: Embedding the Dissimilarity Representation



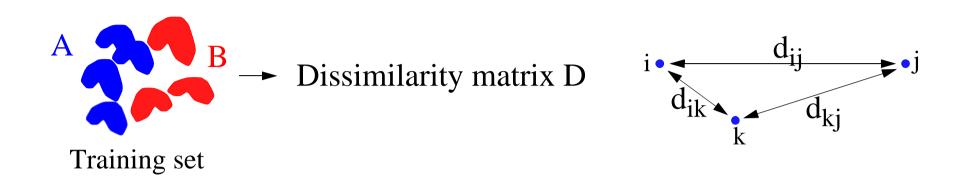
Is there a feature space X for which Dist(X,X) = D?



Euclidean Embedding: Multidimensional Scaling (MDS)



(Linear) Euclidean Embedding



If the dissimilarity matrix cannot be explained from a vector space, e.g. Hausdorff and Hamming distance.

or if sometimes $d_{ij} > d_{ik} + d_{kj}$: triangulation inequality not satisfied.

embedding in Euclidean space not possible → Pseudo-Euclidean embedding

Pseudo-Euclidean Embedding

D is a given, imperfect dissimilarity matrix of training objects.

Construct inner-product matrix: $B = -\frac{1}{2}JD^{(2)}J$, $J = I - \frac{1}{m}\mathbf{1}\mathbf{1}^T$

Eigenvalue Decomposition $B = Q\Lambda Q^T$,

Select k eigenvectors: $X = Q_k \Lambda_k^{\frac{1}{2}}$ (problem: $\Lambda_k < 0$)

Let M_k be a k x k diag. matrix, $M_k(i,i) = \text{sign}(\Lambda_k(i,i))$ $X = Q_k |\Lambda_k|^{\frac{1}{2}} M_k$

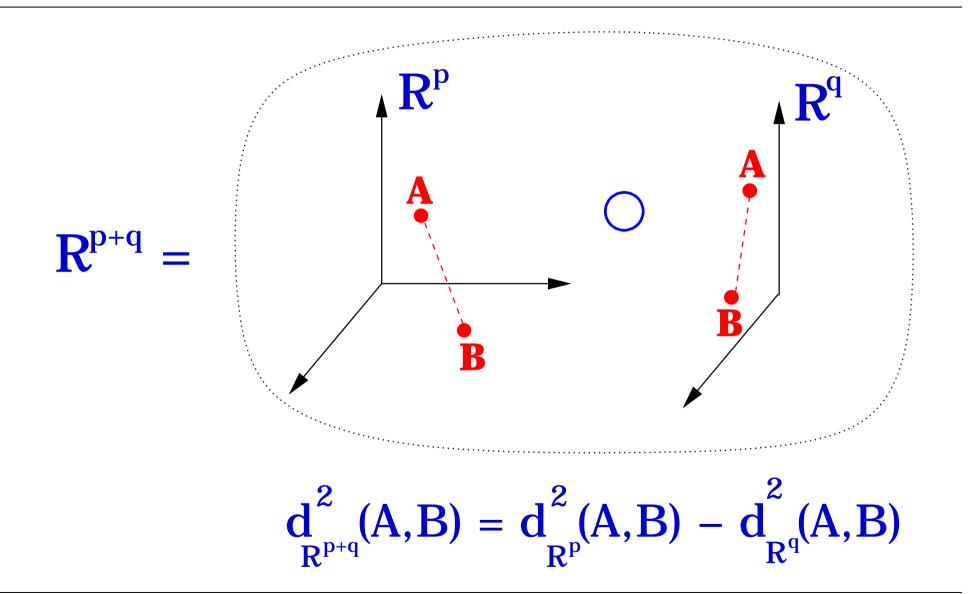
 $\Lambda_k(i,i) < 0 \rightarrow Pseudo-Euclidean$

Let D_z be the dissimilarity matrix between new objects and the training set.

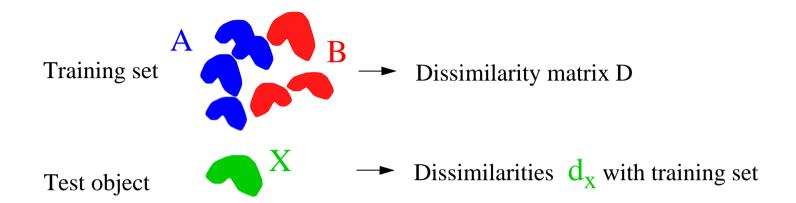
The inner-product matrix: $B_z = -\frac{1}{2}(D_z^{(2)}J - \frac{1}{m}\mathbf{1}\mathbf{1}^TD^{(2)}J)$

The embedded objects: $Z = B_z Q_k |\Lambda_k|^{\frac{1}{2}} M_k$

Distances in a Pseudo-Euclidean Space



Dissimilarity Based Classification



- 1. Nearest neighbour rule
- 2. Reduce training set to representation set
- 3. Embedding: Select large $\Lambda_{ii} > 0$

- \rightarrow dissimilarity space
- → Euclidean space
- Select large $|\Lambda_{ii}| > 0$ \rightarrow pseudo-Euclidean space

discriminant function

Contents

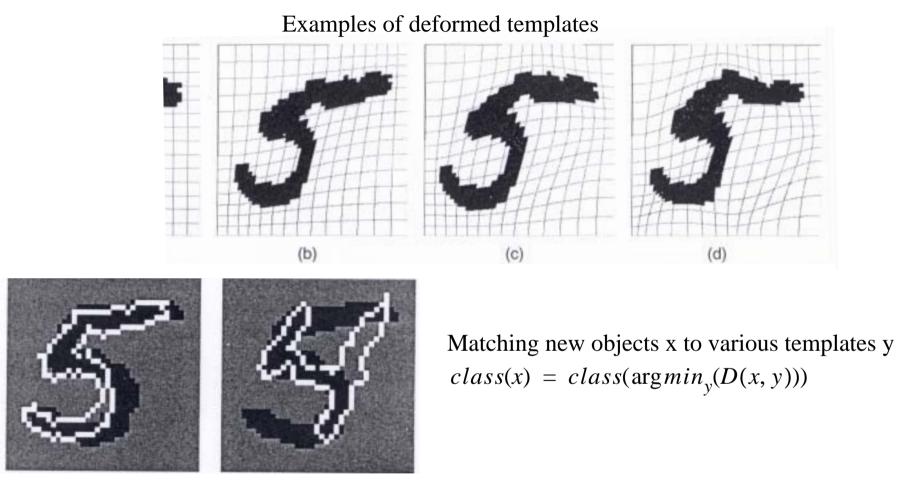
Representations

Dissimilarity Representations

Approaches

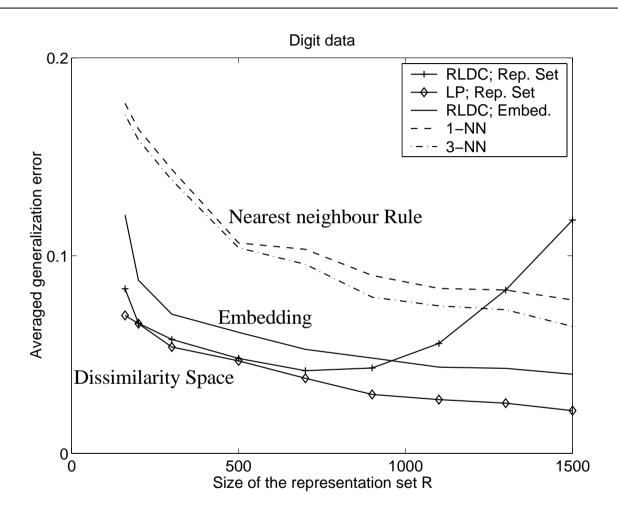
 \Rightarrow Examples

Example 1: Zongker Data



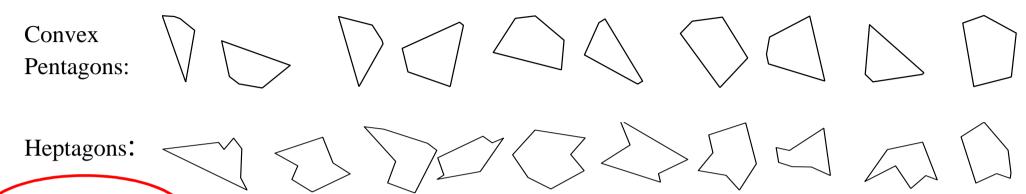
A.K. Jain, D. Zongker, Representation and recognition of handwritten digit using deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.

3 Approaches Compared for the Zongker Data



Dissimilarity Space better than Embedding better than Nearest Neighbour Rule

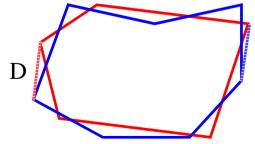
Example 2: Polygons



no class overlap zero error

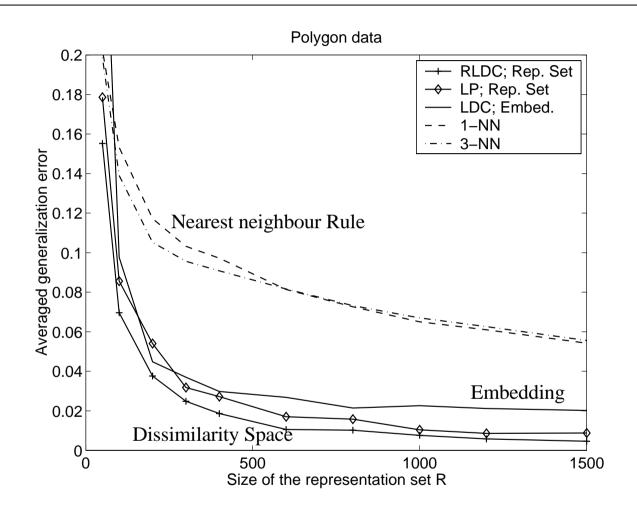
Minimum edge length: 0.1 of maximum edge length

Distance measures: Hausdorff $D = max\{ max_i(min_j(d_{ij})), max_j(min_i(d_{ij})) \}$. Modified Hausdorff $D = max\{mean_i(min_j(d_{ij})), mean_j(min_i(d_{ij})) \}$. (no metric!) $d_{ij} = distance$ between vertex i of polygon_1 and vertex j of polygon_2. Polygons are scaled and centered.



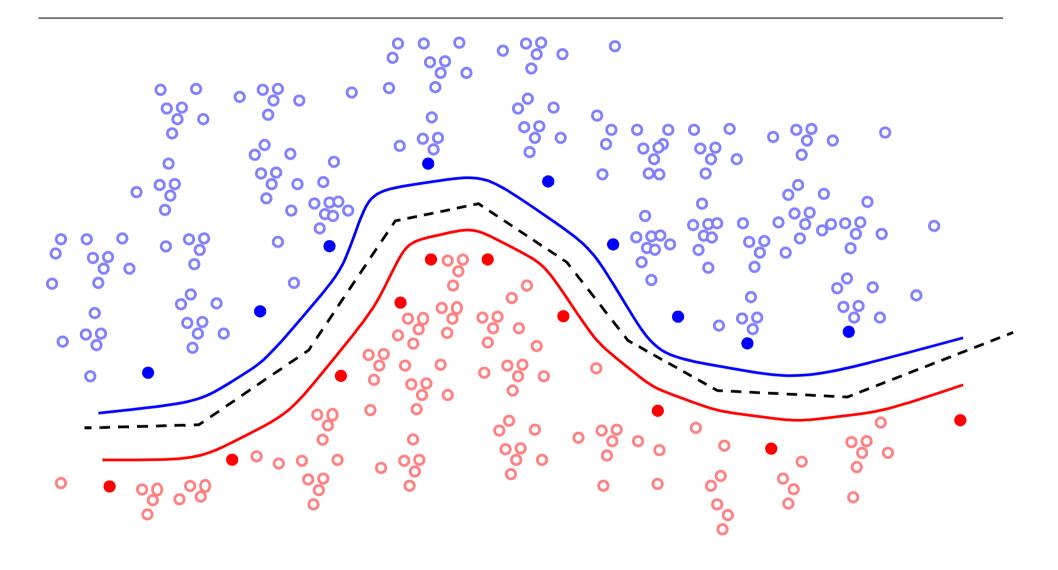
find the largest from the smallest vertex distance

Dissimilarity Based Classification of Polygons

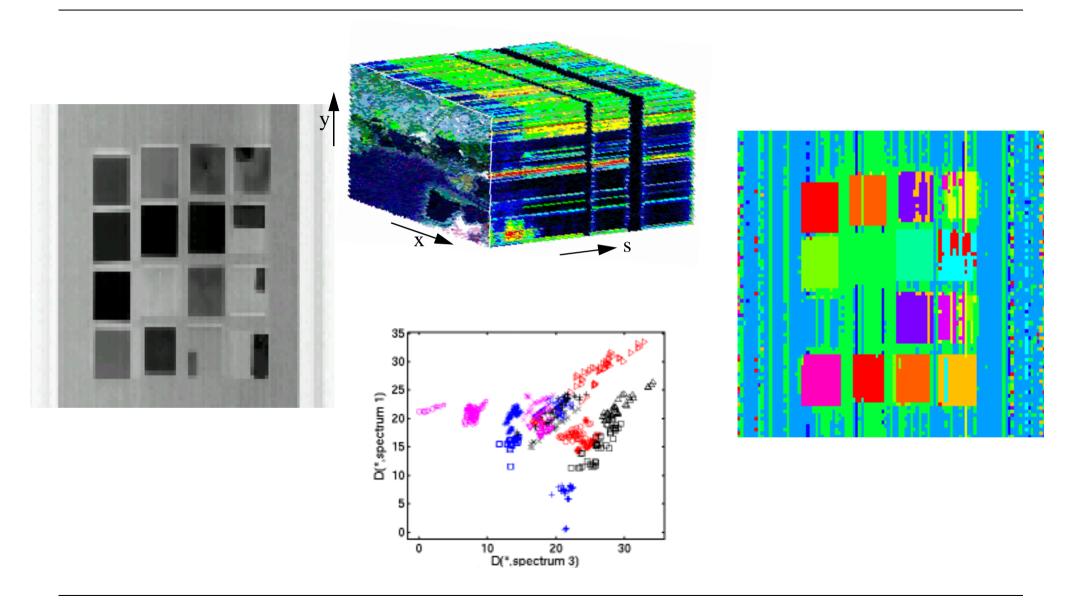


Zero error difficult to reach

Zero-Error Classification by a Small Representation Set

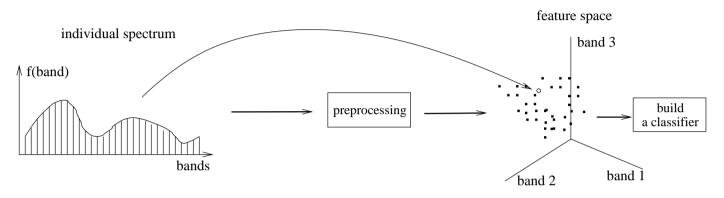


Example 3: Plastic Recognition by Hyperspectral Imaging



Classification of Spectra in Dissimilarity Space

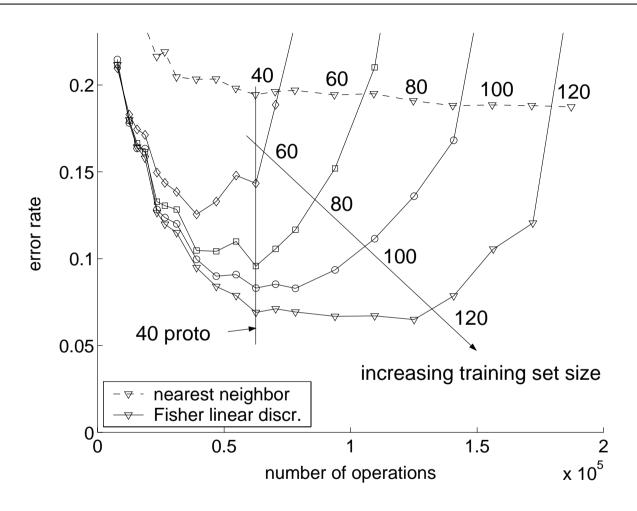
feature-based representation of spectra



dissimilarity representation of spectra

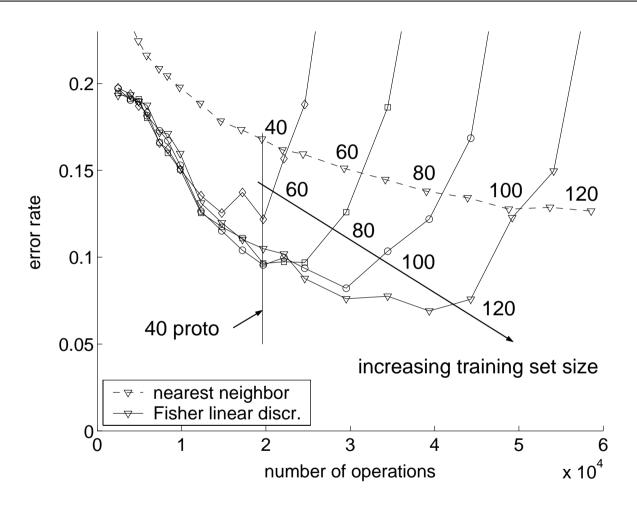


Results Dissimilarity Measure 1: Spectral Angle Mapper

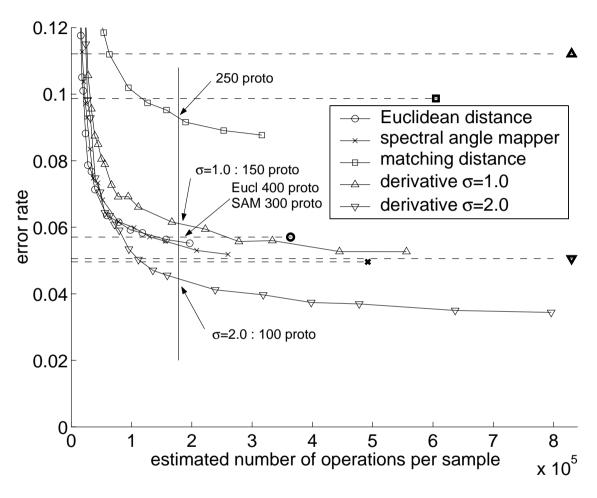


Better and faster than Nearest Neighbour

Results Dissimilarity Measure 2: Derivative Based Distances



Better and faster than Nearest Neighbour



Better and faster than Nearest Neighbour

Conclusions

Dissimilarity based representation is an alternative for features.

Classifier can be built in

- in dissimilarity spaces by selecting a representation set
- in (pseudo-)Euclidean spaces by embedding

Possible advantages:

- other type of expert knowledge (dissimilarities instead of features)
- larger training sets may compensate bad dissimilarity measures
- good performance, usually better than Nearest Neighbour!!
- zero-error is in principle possible, in practice very hard to achieve
- control of computational complexity

Finally

The study of representation is a key area for pattern recognition