Structural pattern recognition in dissimilarity space

Robert P.W. Duin, Delft University of Technology

Pattern Recognition Lab Delft University of Technology, The Netherlands http://rduin.nl

Structural pattern recognition

- Shapes
- Sequences
- Graphs

Objects \rightarrow Feature representation \rightarrow Classifier

Objects \rightarrow Similarity / Dissimilarity \rightarrow Nearest Neighbor Rule

Here:

 $\mathsf{Objects} \rightarrow \mathsf{Dissimilarities} \rightarrow \mathsf{Dissimilarity} \ \mathsf{Space} \rightarrow \mathsf{Classifier}$

Dissimilarities \rightarrow **True Representation**

10 July 2015

Structural pattern recognition in dissimilarity space

Dissimilarity Measures

- Shapes : Geometrics, Morphing, Editing
- Sequences: DTW, HMM, Editing
- Graphs: Graph distances based on nodes / edges /attributes

How to improve a given dissimilarity representation?

Should it be Euclidean? (~Mercer kernels)

Structural Representation

How to generalize? Distances!

10 July 2015

Structural pattern recognition in dissimilarity space

Dubuisoon & Jain, Modified Hausdorff distance for object matching, ICPR12, 2004,, voll 1, 566-568.

Dissimilarities – Possible Assumptions

TUDelft

Class separability

The identity property:

• Definiteness: $d_{ii} = 0$ iff objects i and j are identical

causes no-overlapping classes if objects are uniquely labeled.

There might be entirely different dissimilarity measures that have this property. Combining helps?

The identity property is sometimes not fulfilled

Distance(Table,Book) = 0 Distance(Table,Cup) = 0 Distance(Book,Cup) = 1

10 July 2015

Structural pattern recognition in dissimilarity space

Euclidean - Non Euclidean - Non Metric

What is an Euclidean dissimilarity matrix?

Definition

An $n \times n$ dissimilarity matrix between n objects is Euclidean if it can arise as the distances between n points in an Euclidean space.

Note: An Euclidean dissimilarity matrix is **square** and has a **zero diagonal**, but this **insufficient** to be Euclidean.

Structural pattern recognition in dissimilarity space

Euclidean dissimilarities

Theorem I:

Let D_1^2 and D_2^2 be squared Euclidean dissimilarity matrices, then:

$$D^2 = \alpha D_1^2 + \beta D_2^2 \quad (\alpha, \beta \ge 0)$$

is a squared Euclidean dissimilarity matrix as well.

Non-Euclidean Dissimilarities

Theorem II:

Let D^2 be a squared non-Euclidean distance matrix, symmetric and with zero diagonal, then:

$$D^2 = D_p^2 - D_n^2$$

such that

$$D_p^2$$
 and D_n^2

are both Euclidean

Alternatives for the Nearest Neighbor Rule

- 1. Dissimilarity Space
- 2. Embedding

Pekalska, The dissimilarity representation for PR. World Scientific, 2005.

Alternative 2: Embedding

Training set

 χ_{γ}

Not possible if D is non-Euclidean

10 July 2015

 X_1

Pseudo-Euclidean embedding

Blob Recognition BACK BREAST DRUMSTICK THIGH-AND-BACK WING

446 binary images, varying size, e.g.: 100 x 130 Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.
Shape classification by weighted-edit distances (Bunke) Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern recognition 26 (1993) 1797–1812

10 July 2015

Structural pattern recognition in dissimilarity space

The Chickenpieces dissimilarity matrices

2- **7** , **5 4** えうそう

44 Weighted-edit distances measures based on4 cost functions and11 string representations.

Shape classification by weighted-edit distances (Bunke) Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern recognition **26** (1993) 1797–1812

The Chickenpieces dissimilarity matrices - performances

Averaging dissimilarities

Weighted average of two dissimilarity matrices

Chickenpieces-15-45 and Chickenpieces-25-60

Chickenpieces: Non-Euclideaness is informative

Average dissimilarity matrices for every cost function: $D_c^2 = \frac{1}{11} \sum_{i=1}^{11} D_{c,i}^2$

Subtracting helps! Split in Euclidean matrices: $D_c^2 = D_p^2 - D_n^2$ Non-Euclideaness is informative Cross validation errors D_p D_n D_c 0.175 C=10.022 0.137 Random assignment error: 0.791 C=2 0.067 -0.020 0.173 C=3 0.022 0.052 0.148 C=4 0.034 0.108 0.148

Subtracting dissimilarities

Structural pattern recognition in dissimilarity space

10 July 2015

Averaging different (non-Euclidean) dissimilarity measures may help.

A single non-Euclidean dissimilarity, however, may perform better than the difference of its two constituting Euclidean parts. So **subtracting may help as well**.

How can we understand this??

Correlations between dissimilarity vectors

Ball Distances

- Generate sets of balls (classes) uniformly, in a (hyper)cube; not intersecting.
- Balls of the same class have the same size.
- Compute all distances between the ball surfaces.
- -> Dissimilarity matrix D

10 July 2015

Duin et al., Non-Euclidean dissimilarities: Causes and informativeness, SSSPR 2010, 324-333.

Ball distances: Non-Euclideaness is very informative

 2×100 balls with two sizes. Given are all Euclidean surface distances.

Split in Euclidean matrices: $D^2 = D_p^2 - D_n^2$

Application: Graphs

-15°

е

С

-5°

15°

0° h

5°

g

Coil dataset

Structural pattern recognition in dissimilarity space

33

Taken from: Ren, Aleksic, Wilson, Hancock, A polynomial characterization of hypergraphs using the Ihara zeta function, Pattern Recognition, 2011, 1941-1957

Coil dataset (100 classes)

Selection of 10 most difficult classes 72 objects per class

- Segments
- Sift points
- Harris points

3 sets of attributed graphs

10 July 2015

Structural pattern recognition in dissimilarity space

W.R.Lee, V. Cheplygina, D.M.J. Tax, M. Loog, R.P.W. Duin Bridging Structure and Feature Representations in Graph Matching, IJPRAI,2012

Graphs represented by distance measures

Structural pattern recognition in dissimilarity space

10 July 2015

Interpolating structural and feature space dissimilarities

Interpolating structural and feature space dissimilarities

37

10 July 2015

Interpolating structural and feature space dissimilarities

38

10 July 2015

Observations

Conclusions

- Combining dissimilarity representations based on different measures may improve the performance
 - by addition as well as by subtraction
 - for Euclidean as well as for non-Euclidean measures
- Combining the positive and negative Euclidean representations obtained by decomposing a non-Euclidean representation improves the performance just by subtraction
 → Non-Eulideaness is informative.
- Can we predict the behavior by just studying the representations before combining?

