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Structural pattern recognition 

• Shapes 

• Sequences 

• Graphs 
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Objects  Feature representation  Classifier 

 
Objects  Similarity / Dissimilarity  Nearest Neighbor Rule 
 
Here: 
 
Objects  Dissimilarities  Dissimilarity Space  Classifier 
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Dissimilarities  True Representation 
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Dissimilarity Representation 
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Dissimilarity Measures 

• Shapes : Geometrics, Morphing, Editing 

• Sequences: DTW, HMM, Editing 

• Graphs: Graph distances based on nodes / edges /attributes 
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Questions 

How to improve a given dissimilarity representation? 

 

Should it be Euclidean? (~Mercer kernels) 
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Structural Representation 
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How to generalize? Distances! 
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Examples Dissimilarity Measures 

A B 

Dist(A,B): 

a  A, points of A 
b B, points of B 
d(a,b): Euclidean distance 

D(A,B) = max_a{min_b{d(a,b)}} 

D(B,A) = max_b{min_a{d(b,a)}} 

Hausdorff Distance (metric):  
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}} 

Modified Hausdorff Distance (non-metric): 
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}} 

max B 

A 

max 

B 

A 

D(A,B) ≠ D(B,A)  

Dubuisoon & Jain, Modified Hausdorff distance for object matching, 
ICPR12, 2004,, voll 1, 566-568. 

Structural pattern recognition in dissimilarity space 10 July 2015 



9 Representation 

Dissimilarities – Possible Assumptions 

 1. Positivity:  dij  0 

 2. Reflexivity:  dii = 0  

 3. Definiteness:   dij = 0 iff objects i and j are identical 

 4. Symmetry:       dij = dji  

 5. Triangle inequality: dij < dik + dkj  

 6. Compactness: if the objects i and j are very similar then 
dij < d. 

 7. True representation: if dij < d then the objects i and j are 

very similar. 

 8. Continuity of d. 

M
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Class separability 

The identity property: 

 

• Definiteness:   dij = 0 iff objects i and j are identical 

 

causes no-overlapping classes if objects are uniquely labeled. 

 

There might be entirely different dissimilarity measures that 
have this property. Combining helps? 
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The identity property is sometimes not fulfilled 

Distance(Table,Book) = 0 

Distance(Table,Cup) = 0 

Distance(Book,Cup) = 1 

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

Single-linkage clustering 
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  Euclidean  -  Non Euclidean  -  Non Metric 
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What is an Euclidean dissimilarity matrix? 

Definition 

An 𝑛 × 𝑛 dissimilarity matrix between 𝑛 objects is 

Euclidean if it can arise as the distances between 
𝑛 points in an Euclidean space. 
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Note: An Euclidean dissimilarity matrix is square and has  
a zero diagonal, but this insufficient  to be Euclidean. 
 

𝐷 



Euclidean dissimilarities 
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Theorem I:  

Let 𝐷1
2 and 𝐷2

2 be squared Euclidean dissimilarity matrices, 

then: 

                             𝐷2 = α𝐷1
2 + 𝛽𝐷2

2   (,  ≥ 0) 

 

is a squared Euclidean dissimilarity matrix as well. 



Non-Euclidean Dissimilarities 

 

Theorem II:  

Let 𝐷2 be a squared non-Euclidean distance matrix, 

symmetric and with zero diagonal, then: 

                             𝐷2 = 𝐷𝑝
2  −  𝐷𝑛

2 

such that  

                    𝐷𝑝
2 and 𝐷𝑛

2   

are both Euclidean 
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Alternatives for the Nearest Neighbor Rule 
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1. Dissimilarity Space 
2. Embedding 

Pekalska, The dissimilarity  
representation for PR. 
World Scientific, 2005. 

𝐷𝑇 
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Alternative 1: Dissimilarity Space 
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Dissimilarities 

Selection of 3 objects for representation 
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Given labeled training set 

Unlabeled object to be classified  
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Alternative 2: Embedding 

Training set  

   Dissimilarity matrix 𝐷      𝑋 

Is there a feature space for which Dist(𝑋, 𝑋) = 𝐷 ? 

1x

2x

Position points in a vector space such  
that their Euclidean distances  𝐷 

Not possible if D is non-Euclidean 



Pseudo-Euclidean embedding 
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𝐷 

1x

2x

1y

2y

Positive space* 

Negative space* 

𝐷𝑝 

𝐷𝑛 

𝐷2 = 𝐷𝑝
2  −  𝐷𝑛

2 
Associate space* 
𝐷𝑎
2 = 𝐷𝑝

2 + 𝐷𝑛
2 

Non-Euclidean 

* Euclidean 
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Blob Recognition 

446 binary images, varying size, e.g.: 100 x 130 
  Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature 
  maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346. 

Shape classification by weighted-edit distances (Bunke) 
  Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape 
  recognition. Pattern recognition 26 (1993) 1797–1812 

BACK 
           
BREAST  
        
DRUMSTICK 
      
THIGH-AND-BACK 
 
WING  

Structural pattern recognition in dissimilarity space 10 July 2015 



The Chickenpieces dissimilarity matrices 
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Shape classification by weighted-edit distances (Bunke) 
  Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape 
  recognition. Pattern recognition 26 (1993) 1797–1812 

44 Weighted-edit distances measures based on  
4 cost functions and 
11 string representations. 



The Chickenpieces dissimilarity matrices - performances 
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Averaging dissimilarities 
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Weighted average of two dissimilarity matrices 
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Chickenpieces-15-45 and Chickenpieces-25-60 

Averaging helps! 
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Chickenpieces: Non-Euclideaness is informative 
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Average dissimilarity matrices for every cost function: 𝐷𝑐
2 = 

1

11
 𝐷𝑐,𝑖

211
𝑖=1  

Split in Euclidean matrices: 𝐷𝑐
2 = 𝐷𝑝

2 −𝐷𝑛
2 

Cross validation errors 

𝐷𝑐 𝐷𝑝 𝐷𝑛 

C=1 0.022 0.137 0.175 

C=2 0.020 0.067 0.173 

C=3 0.022 0.052 0.148 

C=4 0.034 0.108 0.148 

Random assignment error: 0.791 

Non-Euclideaness is informative 

Subtracting helps! 



Subtracting dissimilarities 
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𝐷𝑐: Chickenpieces-25-60 

 𝐷𝑐
2 = 𝐷𝑝

2 −𝐷𝑛
2 

𝐷2 = sin 𝛼 𝐷𝑝
2 + cos (𝛼)𝐷𝑛

2 
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 

Averaging does not help! 

Subtracting (𝐷𝑐
2) 

performs best 



Question 
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Averaging different (non-Euclidean) dissimilarity measures may help. 
 
A single non-Euclidean dissimilarity, however, may perform better  
than the difference of its two constituting Euclidean parts.  
So subtracting may help as well. 
 
How can we understand this?? 



Correlations between dissimilarity vectors 

𝜌(𝐷1, 𝐷2) 𝜌(𝐷𝑝, 𝐷𝑛) 

𝐷2 = 𝐷𝑝
2 −𝐷𝑛

2 

𝐷2 = sin 𝛼 𝐷𝑝
2 + cos (𝛼)𝐷𝑛

2 

𝐷2 = 𝐷𝑝
2 +𝐷𝑛

2 

𝐷2 = 𝐷1
2 +(1 − )𝐷2
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Ball Distances 

- Generate sets of balls (classes) 
uniformly, in a (hyper)cube;  
not intersecting. 

- Balls of the same class have the 
same size. 

- Compute all distances between the 
ball surfaces. 

-> Dissimilarity matrix D 

Duin et al., Non-Euclidean dissimilarities: Causes and informativeness,  
SSSPR 2010, 324-333. 
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Ball distances: Non-Euclideaness is very informative 

2 𝑥 100 balls with two sizes. 

Given are all Euclidean surface distances. 

Split in Euclidean matrices: 𝐷2 = 𝐷𝑝
2 −𝐷𝑛

2 

Cross validation errors 

𝐷𝑐 𝐷𝑝 𝐷𝑛 

0.470 0.405 0.000 Random assignment error: 0.50 

Non-Euclideaness is extremly informative 
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Application: Graphs 

33 

x2 

x4 

x5 

x3 

x1 

Graph with  
feature nodes 

Taken from: Ren, Aleksic, Wilson, Hancock, 
 A polynomial characterization of hypergraphs using the Ihara zeta function, 
Pattern Recognition, 2011, 1941-1957 
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Coil dataset 



Coil dataset (100 classes) 
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Selection of 10 most difficult classes 
72 objects per class 
• Segments 
• Sift points 
• Harris points 

3 sets of attributed graphs 

W.R.Lee, V. Cheplygina, D.M.J. Tax, M. Loog, R.P.W. Duin 
Bridging Structure and Feature Representations in Graph Matching, IJPRAI,2012 



Graph  
structure  

only 

Graph distances: 𝐷1 

Graphs represented by distance measures 
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x2 

x4 

x5 

x3 

x1 

Graph with  
feature nodes 

Features only 
(no structure) 
Multi-instance 

{x1  x2 x3 x4 x5} 

Set distances: 𝐷2 

Graph edit 
distance 

Weighted 
Average 
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Interpolating structural and feature space dissimilarities 
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Segment based graphs 

Structure 
only 

Multiple  
Instance 



Harris point based graphs 
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Interpolating structural and feature space dissimilarities 

Structure 
only 

Multiple  
Instance 
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Sift point based graphs 

Structure 
only 

Multiple  
Instance 

Interpolating structural and feature space dissimilarities 



Observations 
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𝐷1 𝐷2 

Average 𝐷 

improves 

𝐷 

𝐷𝑝 𝐷𝑛 

Both informative 
Possibly non-Euclidean 

Non-Euclidean 

Euclidean 
Decomposition 

Average 𝐷𝑒  
deteriorates 

Euclidean 



Conclusions 

• Combining dissimilarity representations based on different measures 
may improve the performance 

     - by addition as well as by subtraction 

     - for Euclidean as well as for non-Euclidean measures 

 

• Combining the positive and negative Euclidean representations 
obtained by decomposing a non-Euclidean representation improves 
the performance just by subtraction  
 Non-Eulideaness is informative. 

 

• Can we predict the behavior by just studying the representations 
before combining? 
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