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Pattern Recognition System

Statistics needed to 
solve class overlap

Test object 
classified as ’B’

Representation GeneralizationSensor

Classification Feature Space 
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Recap of classification
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Classification principles

Class B, as it has the highest 
density for B.

Class A, as it is most close to an 
object of class A.

Class B, as it is on the B-side of 
the linear minimum error classifier.

Principles

• Probabilities (densities)

• Distances, dissimilarities

• Error minimization

How should this object be classified?

1x

2x

?
A

B
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Density based classifiers
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Multi-dimensional may might be difficult to estimate 

Metric independent, estimators may be metric dependent
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Bayes decision rule, formal

p(A|x)            >    p(B|x)             A else B

Bayes: p(x|A) p(A)           p(x|B) p(B) 
p(x)                    p(x)>

p(x|A) p(A)     >   p(x|B) p(B)      A else B

A else B

2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) > 0  A else B

n-class problems: Class(x) = argmaxω(p(x|ω) p(ω))
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Examples Density Based Classifiers

QDA, Quadratic classifier based on normal distributions
LDA, Linear classifier based on normal distributions
MoG, Mixture of Gaussian classifier
Parzen, Non-parametric density estimation
k-NN, k-Nearest Neighbor rule
Naïve Bayes classifier

Various regularizations are used 
in case of degenerate vector spaces.

February 2008 9Indefinite Representations for Pattern Recognition - Robert P.W. Duin

Distance based classifiers

Metric Dependent

Nearest Neighbor

1x

2x

Nearest Mean

1x

2x

Support Vector Machine

1x

2x
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Performance optimization

1x

2x

Optimize parameters of classifier
for some separability criterion

Examples
PERC Linear Perceptron
ANN Artificial Neural Network
Fisher’s Linear Discriminant
Logistic Classifier
Support Vector Machine
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A Note on the Support Vector Machine
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The SVM depends on distances of support vectors to the classifier
(resulting in ||w||) as well as on the density of the class overlap
(resulting in the sum of slacks).
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Dissimilarity Representation
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Dissimilarity Representation
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The traditional Nearest Neighbor rule (template matching) finds:
label(argmintrainset{dxi}) , 

without using DT. Can we do any better?

Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

Not used by NN Rule

February 2008 14Indefinite Representations for Pattern Recognition - Robert P.W. Duin

Dissimilarities – Possible Assumptions

1. Positivity: dij ≥ 0
2. Reflexivity: dii = 0
3. Definiteness:  dij = 0 objects i and j are identical
4. Symmetry:      dij = dji

5. Triangle inequality: dij < dik + dkj

6. Compactness: if the objects i and j are very similar 
then dij < δ.

7. True representation: if dij < δ then the objects i and j
are very similar.

8. Continuity of d.

M
et

ri
c
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Examples Dissimilarity Measures (1)

The measure should be descriptive. If there is no preference, 
a number of measures can be combined.
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Examples Dissimilarity Measures (2)
Comparison of spectra: some examples

In real applications, the dissimilarity measure should be robust to 
noise and small aberrations in the (raw) measurements.
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Examples Dissimilarity Measures (3)

A B

Dist(A,B):
a ∈ A, points of A
b ∈ B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b)}}
D(B,A) = max_b{min_a{d(b,a)}}

Hausdorff Distance (metric): 
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}}

Modified Hausdorff Distance (non-metric):
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}

maxB
A

max

B
A

D(A,B) ≠ D(B,A) 
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Examples Dissimilarity Measures (4)

weighted edit distance: non-Euclidean!
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Examples Dissimilarity Measures (5)

Matching new objects to various templates:
class(x) = class(argminy(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using 
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Classification of Dissimilarity Data
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Alternatives for the Nearest Neighbor Rule
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Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

1. Dissimilarity Space
2. Embedding

Pekalska, The dissimilarity 
representation for PR.
World Scientific, 2005.
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Embedding

Training set 

B

A Dissimilarity matrix D   X

Is there a feature space for which Dist(X,X) = D ?

1x

2x

Position points in a vector space such 
that their Euclidean distances D
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Embedding of non- metric measurements

If the dissimilarity matrix cannot be explained from a vector space,
(e.g. for Hausdorff and Hamming distance of images)
or if dij > dik + dkj (triangle inequality not satisfied)
embedding in Euclidean space not possible 
→ Pseudo-Euclidean embedding

B

A

Dissimilarity matrix D   X

dkjdik

dij
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Euclidean  - Non Euclidean  - Non Metric
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Non-metric distances

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

μA μB–

x

σA σB

A B
C

Weighted-edit distance for strings Single-linkage clustering

2
B

2
A

2
BAB)J(A,
σ+σ
μ−μ

= 0C)J(A, = largeB)J(A, =

B)J(A,smallB)J(C, ≠=

Fisher criterion
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Embedding of non- Euclidean Dissimilarities
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(Pseudo- )Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.

Construct inner-product matrix:

Eigenvalue Decomposition , 

Select k eigenvectors:                        (problem:  Λk< 0)

Let ℑk be a k x k diag. matrix, ℑk(i,i) = sign(Λk(i,i))

Λk(i,i) < 0 → Pseudo-Euclidean

n×m Dz is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: 

The embedded objects: 

JJDB (2)
2
1−= 11m

1IJ −=
TQQB Λ=

2
1

kkQX Λ=

)JD-J(DB )2(T
n
1(2)

z2
1

z 11−=

kkkz
2
1

QBZ ℑΛ= −
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Pseudo- Euclidean Embedding

Solutions:
Remove all eigenvectors with small and negative eigenvalues
or, take absolute values of eigenvalues and proceed
or, construct a pseudo-Euclidean space

If D is non-Euclidean then B has p positive and q negative eigenvalues
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PES: Pseudo- Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-
degenerate inner product space ℜk = ℜp ⊕ ℜq such that:
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Distances in PES

O

0)A,O(d2 >
0)E,O(d2 >
0)B,O(d2 =
0)D,O(d2 <

All points in the grey area 
are closer to O than O itself !?

Any point has a negative square
distance to some points on the 
line vTJx=0. 
Can it be used as a classifier?
Can we define a margin as in 
the SVM?
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PE Space Kernels

may by considered as a kernel. If

Jy)JD(x,)y,x(K (2)
2
1−= 11m

1IJ −=

><= )y(L),x(L)y,x(K

• The kernel trick may be used: operations defined on inner products 
in kernel space can be operated directly on K(x,y) without embedding! 

• True for Mercer kernels (all eigenvalues ≥ 0).
• Difficult for indefinite kernels.
• Studying classifiers in PE space is studying the indefinite kernel space.
• Dissimilarities are more informative than kernels (due to normalization).
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Classifiers in Pseudo- Euclidean Space
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Distance based classifiers in PE Space

Nearest Neighbour and
Nearest Mean can be properly defined.
SVM ? What is the distance to a line?

p

q

A

B

X
0),x(d >•

0),x(d <•

Metric in PE Space.
Equidistant points to the origin.

X assigned to B
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Distance based classifiers in PE Space (2)

p

q
0))x(S,y(d >

0))x(S,y(d <

y

0))x(S,y(d <

0))x(S,y(d >

0wxw)x(S 0
T =+=

Some points on S(x) = 0 have very negative distances to y.
What is the distance between S(x) and y?
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SVM in PE Space

SVM on indefinite kernels may not converge as Mercer’s 
conditions are not fulfilled.

However, if it converges the solution is proper: 

is minimized.

See also: B. Haasdonk, Feature Space Interpretation of SVMs with 
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005.

|ww| Tℑ
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Densities in PE Space

Densities can be defined in a vector space on de basis of 
volumes, without the need of a metric.
Density estimates however, often need a metric.
E.g. the Parzen estimator:

needs a distance definition d(x,y).
There is no problem, however, in case for all objects d(x,y) > 0.
How can Gaussian densities be defined?
Note that QDA in PES is identical to the QDA in AES as the 
signature cancels. The relation with a Gaussian distribution, 
however, is lost.
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Performance optimization in PES

Needs specific definitions
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Euclidean corrections 
for non- Euclidean dissimilarities
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Correction Procedures PES ES

Make the PE space (more) Euclidean:

Reduction of the q-space contribution

Enlarging dissimilarities

Relaxing dissimilarity measure
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Example: Chickenpieces (H. Bunke, Bern)

446 binary images, varying size, e.g.: 100 x 130
Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature
maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.

Shape classification by weighted-edit distances (Bunke)
Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape
recognition. Pattern recognition 26 (1993) 1797–1812

BACK

BREAST 

DRUMSTICK

THIGH-AND-BACK

WING 
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Nearest Neighbor Results
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Nearest Neighbor Results (2)
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Classification Results for Various Dissimilarity Measures

Best classification result is for a very 
non-Euclidean dissimilarity measure !
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Various Classification Results

Best classification results
Most non-Euclidean case 
Least non-Euclidean case 

Pekalska, Harol, Duin, Bunke, Spillman, SSSPR 2006
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Is non- Eulidean behavior here 
essential for good classification?

Non-Euclidean or non-metric measures can be informative
(Pekalska, Harol, Duin, Bunke, Spillman, SSSPR 2006).

More Euclidean measures behave worse.

However: Is it possible to transform the non-Euclidean data 
such that a (more)  Euclidean embedding can be found that 
obtains similar or better classification results?
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Metric Triangle Violations

8772 triangle violations
5458 corrections to make D metric
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Corrections have a 
insignificant influence
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Minkowski 0.4 Example
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Minkowski_0.4 Example

440 points in 2D, 4 classes

∑ −=
i

4.0/14.0
ii )|yx|()y,x(d

Signature: (p,q): (181, 258)

0 100 200 300 400
-1

0

1

2

3

4
x 10

5

Eigenvector

E
ig

e
nv

al
ue

Eigenspectrum 2D Minkowski 0.4

February 2008 50Indefinite Representations for Pattern Recognition - Robert P.W. Duin

q-Space Reduction, PES AES
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q-Space Reduction, PES AES
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q- Space Reduction: Examples Compared
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Growing Distances

yx,c)y,x(d)y,x(d 22 ≠+⇐ εε

c = 0: Original embedding
in Pseudo-Euclidean Space

c large: Embedding in
normal Euclidean Space

c
c
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Growing Distances
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Dissimilarity Measure Relaxation

c c

c
c

1c,)y,x(d)y,x(d c/1 ≥⇐ εε

c = 1: Original embedding
in Pseudo-Euclidean Space

c large (e.g. 10): Embedding
in normal Euclidean Space
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Dissimilarity Measure Relaxation

c = 1: Original embedding
in Pseudo-Euclidean Space

c large (e.g. 10): Embedding
in normal Euclidean Space

1c,)y,x(d)y,x(d c/1 ≥⇐ εε
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Dissimilarity Measure Relaxation: 
Examples Compared
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Conclusions on classifiers in PE Space

Locally sensitive rules like 1-NN and Parzen_small do 
very well.
Euclidean corrections do not improve computable 
classifications (may be other classifiers in Euclidean 
spaces perform better).
QDA seems to be a possible globally sensitive rule, but 
is usually outperformed by 1-NN and Parzen_small.
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Test Data projected in PE Space



11

February 2008 61Indefinite Representations for Pattern Recognition - Robert P.W. Duin

PE Space constructed by Object 1, Object 2 and Table.
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Projection Problems of PE Space
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Projections of new objects in PE space 
may be entirely wrong

February 2008 62Indefinite Representations for Pattern Recognition - Robert P.W. Duin

Experiment
• Take a non-Euclidean dissimilarity matrix.
• Use 50% for embedding (representation set).
• Project remaining 50% (test set).
• Compute all distances between these sets

in the projection space
• Compare them with given distances
• Repeat for Euclidean distances derived from

the Associated Euclidean Space (AES)

Linear projection of new objects in a PES may
be entirely wrong.

Due to the occurrence of negative square 
distances linear procedures are not sufficient.
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Avoiding Large Projection Errors

Do not use a full space for embedding.

Or, project training set and test set simultaneously.
(Transductive Learning).

Consequences for indefinite kernel approaches ???
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Conclusions on informativeness
of non- metric dissimilarity measures

Non-metric measures can be informative.

After Euclidean correction performances do not 
significant improve.

Traditional classification approaches based on 
distances or densities should be redesigned to 
construct global generalising classifiers in PE space.

Projection of new data in PE space is problematic. 


