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Measuring Human Relevant Information
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Representation Issues
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Pattern Recognition System

. N Representation H Generalization

Classification

Feature Space

Test object
classified as 'B’

Statistics needed to
solve class overlap
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Good Representations

= Class specific

Different classes should be
represented in different positions

in the representation space.

= Compact
Every class should be represented
in a small set of finite domains. (S o
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Compactness

Representations of real world similar objects are close.
There is no ground for any generalization (induction) on representations
that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

The compactness hypothesis is not
sufficient for perfect classification

as dissimilar objects may be close.
-> class overlap
probabilities

X,
(area)

(perimeter) X;
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High dimensional data often does not overlap

Complete feature representations, which enable the reconstruction of
human recognizable objects, may yield separable classes.

There is no picture that could be member of different classes.
In some representations classes are separable.
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The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.
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True Representations

Similar objects are close
and
Dissimilar objects are distant.

(perimeter) X;

- no probabilities needed, domains are sufficient!
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Domains instead of Densities

No well sampled training sets are needed.
Statistical classifiers have still to be developed.

Class structure €-> Object invariants
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The Connectivity Problem in the Pixel Representation

Feature space

Spatial connectivity is lost

Training set

Reshuffling pixels
will not change the classification
Test object
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Pixel Representation

Features X e oo
Shapes 2 e o eo e
Moments . '.'. “e%e o
Fourier descriptors | %% oo *
E,Sag Faces e00 e , o
Morphology %’
L

16x 16 |

Pixels

Pixels are more general, initially complete representation
Large datasets are available - good results for OCR
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Dissimilarity Representation
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Dissimilarities — Possible Assumptions

1. Positivity: d;=0
© 2. Reflexivity: d;=0
E 3. Definiteness: d;; = 0 objects i and j are identical
S 4. Symmetry: d; = d;

5. Triangle inequality: d;; < dy, + dy;

6. Compactness: if the objects i and j are very similar

then d; < 8.
7. True representation: if d; <  then the objects i and j
are very similar.

8. Continuity of d.
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Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox
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Pattern Recognition Paradox
Classification

error

training set size

feature set size (dimensionality)
classifier complexity
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Dissimilarity Representation ot used by ruie

Training set Discimilartcs . betw m{dudm 0y, 0y Ay dyy
B issimilarities d;; between | d_.d,,d,,d,,d
' » all training ol;jects A

A PPN

'*) D; = ddldAZdA{EMdlsdAGdl
ey 040, 03 0
. N
o1 Gy Ay ey des D s
Unlabeled object x to be classified L7\ d;d;,d;5d;, ddyedyy

The traditional Nearest Neighbor rule (template matching) finds:

label(@rgmin, ipee {di)
without using D;. Can we do any better?
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Examples Dissimilarity Measures (1)

ib) Area difference (el Measure by covers (d} Batween skeistons

The measure should be descriptive. If there is no preference,
a number of measures can be combined.
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Examples Dissimilarity Measures (2)
Comparison of spectra: some examples

[ —

—

cumulstive ‘denaity’ spectes

Euchdoan, city block.
W o o chetance

-m-w'
In real applications, the dissimilarity measure should be robust to
noise and small aberrations in the (raw) measurements.
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Examples Dissimilarity Measures (4)
7232587390

o

T

=27 weighted edit distance: non-Euclidean!

— ¥

N .
edit-dist (0-string, 9-string)
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Classification of Dissimilarity Data
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Examples Dissimilarity Measures (3)

Dist(A,B):

a € A, points of A

b € B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b
D(B,A) = max_b{min_a{d(b,a

N

Hausdorff Distance (metric):
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}y  D(AB) # D(B.A)

Modified Hausdorff Distance (non-metric):
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}
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Examples Dissimilarity Measures (5)

Matching new objects to various templates:
class(x) = class(argmin,(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Rep jon and recognition of jtten digit using
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Alternatives for the Nearest Neighbor Rule

Training setB Dissimilarities d betw
issimilarities d; between

' » all training otlxjjects
A »

Unlabeled object x to be classified

Pekalska, The dissimilarity
representation for PR.
World Scientific, 2005.

1. Dissimilarity Space
2. Embedding
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Alternative 1: Dissimilarity Space

Dissimilarities o N
r, r, r Given labeled training set A ob S
q:udu dy QM 15 g Ve

@.d,,d,. 0. d Unlabeled object to be classiﬁed)
d;,d;, ds 0z
Dy =|dyyd,;d,5 0y
ey de, Ay ds, s d
fjsxdezdsa"u« ‘]p
d;,d;,07,07,0,d

da 4

Selection of 3 objects for representation r5(d,)
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Example Dissimilarity Space: NIST Digits 3 and 8

33333333333833333337
33333333333333333333
333333323333333333%33
23337373333323321333
32333333%333333333337%
A808R00PR888879FF39FS
7308888888888 8688688
6BEBBBBETTECRIRTLES S
FSESFPP7 882888988978
L8BBRBBARrFEsPFFITKSY

Example of raw data
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Example Dissimilarity Space: NIST Digits 3 and 8

NIST digits: Hamming distances of 2 x 200 digits

I

d300
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Embedding

o P
A'J‘
PP

Training set Is there a feature space for which Dist(X,X) = D ?

-> Dissimilarity matrixD > X

© ° Position points in a vector space such
that their Euclidean distances > D
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Dissimilarity Space Classification €= Nearest Neighbor Rule

Modified Haussdorff distance on contours of digits
" -
% [
b
AN * Nearest neighbour results

- ; : S _Fisher LD

e
&
i

Classification emor
(=]
i

A T [20] Size of the representation set
onm (31 Ll
solecton | 48 -

o 20 40 &0 80 100

TRAINING size per class

Dissimilarity based classification outperforms the nearest neighbor rule.
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Embedding of non  netric measurements

' B)\ > Dissimilarity matrixD > X
A 'J‘

L L

If the dissimilarity matrix cannot be explained from a vector space,
(e.g. for Hausdorff and Hamming distance of images)

orif dy > dy + d (triangle inequality not satisfied)

embedding in Euclidean space not possible

— Pseudo-Euclidean embedding

'fU Delft




Euclidean - Non Euclidean - Non Metric
C C
o/ | 10 o/, 10
D
5.1 5. 4 4
A 0 B A 0 B
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Embedding of non HEclidean Dissimilarities
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Pseude Hclidean Embedding

If D is non-Euclidean then B has p positive and g negative eigenvalues

Eigenspectrum

4 D o 0.3
: . ) =3I -yl
* ay . FAES 5|
0] * . x o
o e, e 54
5 2| k. . 4 g
5 - ce e e g2
C 4l = -l LE, w
u}*; * M + P ¢
6 ‘: . ® * kA 2
ol T p
R - I T
-10 -5 ) 5 Eigenvector
. . Feature 1
Solutions:

= Remove all eigenvectors with small and negative eigenvalues
= or, take absolute values of eigenvalues and proceed
= or, construct a pseudo-Euclidean space
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Non-metric distances

Weighted-edit distance for strings Single-linkage clustering
object 78 object 425

Bunke’s Chicken Dataset

object 419 D(A,O) > D(AB) + D(B,C)
vl /] Fisher criterion A o
M
X—p ‘]J. —n ‘2
JAB)="A—Tel JA,C)=0 J(A,B)=large
Oat0g J(C,B) =small = J(A,B)
'fU Delft

(Pseude Yuclidean Embedding

mxm D is a given, imperfect dissimilarity matrix of training objects.
Construct inner-product matrix: B=-1JD®J J=1-111
Eigenvalue Decomposition, B = Q AQT

Select k eigenvectors: X = QkA%k (problem: A< 0)

Let 3, be a k x k diag. matrix, S,(i.i) = sign(A(i,i))

Ay(i,i) < 0 — Pseudo-Euclidean
nxm D, is the dissimilarity matrix between new objects and the training set.
The inner-product matrix: B, =—1(D?J-111"D®))

The embedded objects:  Z=B,Q,[A,| 3,

I N B
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PES: Pseude Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and ( negative eigenvalues.
A pseudo-Euclidean space £ with signature (p,q), k =p+q, is a non-
degenerate inner product space R = SRD @ SRq such that:

P q | 0
(xy), =x"3y =2 Xy - 2'x; S =| O
i=1 j=p+l 0 - Iqxq
d2(x,y) =(x-y,x-y) =d3(x,y)-d2(x,y)
A

(-13

iﬁx.y; =d ﬁx.w - dﬁx.y}




Distances in

PES

<X,X>.< 0

d?(0,A)>0
d?(0,E)>0
d?(0,B)=0
d?(0,D) <0

All points in the grey area
are closer to O than O itself !?

Any point has a negative square
distance to some points on the
line vIx=0.
1Can it be used as a classifier?

PE Space €< Kernels

K(x,y)=-3ID(x,y)®J J=1-111

may by considered as a kernel. If

KX y) =< L(x), L(y) >

* The kernel trick may be used: operations defined on inner products
in kernel space can be operated directly on K(x,y) without embedding!

* True for Mercer kernels (all eigenvalues 2 0).
« Difficult for indefinite kernels.
« Studying classifiers in PE space is studying the indefinite kernel space.

-4
4 -3 -2 -1 0 1 2 3 4 Canwe defineamarginasin
the SYM?
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Dissimilarity based classifiers compared
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Three Approaches Compared for the Zongker Data

Digit drta
LER '
—— RLDC. Fep. Set
4- LF. Rop. Sat
— RLDC: Embed.
-= 1M
By

: :‘.\“Nearest neighbour Rule

K 00 1000
Size of the representation set R

Aot 1o Qeedealizalion seor
o

1500

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule
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« Dissimilarities are more informative than kernels (due to normalization).
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Dissimilarity based classification procedured compared

N
;$$ - Dissimilarity matrix D

Test object x Y

1. Nearest Neighbour Rule

2. Reduce training set to representation set

= dissimilarity space

3. Embedding:Select large A; > 0 = Euclidean space} discriminant function
Select large |A;| > 0 — pseudo-Euclidean space

Training set

- Dissimilarities d, with training set

| s T ety vt rtteoon e
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Polygon Data

Convex ™
Pentagons (.
Heptagons ) 2\

no class overlapy Minimum edge length: 0.1 of maximum edge length
Zero error

Distance measures: Hausdorff D = max { max(miny(dy)) , max(min(dy)) }.

Modified Hausdorff D = max {mean,(min,(dy)), mean,(min(dy)) }. (no metric!)
d; = distance between vertex i of polygon_1 and vertex j of polygon_2.
Polygons are scaled and centered.

Find the largest of the
smallest vertex distances
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Dissimilarity Based Classification of Polygons

Poiygon data.
o
Yy —— ALDC. Rep. Sat
al + LP. Rl St
018 of = (b mbed
. 1=Kl
. 3NN
B0
g" 3 earest neighbour Rule
Boaf 4 e
£
;ona -
§0.06) B “vuy
2
o) N
_— Embedding
o.0q) P - L 4 - -
Dissimilarity Space———==——3p—
1500

500 1000
Bize of e representation set R
Zero error difficult to reach!
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An Analysis of Causes of Non Mifric Data
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Computational Problems

Large distances are overestimated
due to computational problems
object 8 object 425

14.9 -
7. /.1

Bunke's Chicken Dataset g
object 419

Weighted edit distance for strings
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Prototype Selection: Polygon Dataset

Polydistm; #0bjects: 1000; Classifier: BayesNQ
T ; i T . — = 1-NN-fmal
\ 5 v - k-NH-final
-+ k=NN

++ k=NN-D5

EdiCon-1-NN
Random *
RandomC *
- ModeSeek *
KCentros *
+— FealSel *
KCentres-LP *

B @ - @ W

ssification emor {in %)

LinProg *
EdiCon *

Average clas
(TR

i

%‘:&‘-— gl i
0

4 6 810 14 20 30 40 6570 100 140 200
Murnber of prototypes

The classification performance of the quadratic Bayes Normal classifier and
the k-NN in dissimilarity spaces and the direct k-NN, as a function of the il
number of selected prototypes. Note that for 10-20 prototypes already
better results are obtained than by using 1000 objects in the NN rules.

Lack of information

1800:

Crossing the Jostedalsbreen was impossible.
Travelling around (200 km) lasted 5 days.
Untill the shared point X was found.

People could visit each other in 8 hours.

D(V,J) = 5 days
D(V,X) = 4 hours
D(X,J) = 4 hours
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Projections - Occlusions

Small distances are underestimated

non-metric data due to
partially observed projections
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Projections - Occlusions

Preferences for items _ -

15 3 1

Consumers

"
W

- da N b
(¥}

Example: consumer preferences for recommendation systems
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Intrinsicly Different Dissimilarity Measures

Non-Euclidean human relations
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Perspective

Human defined patterns do not fit in a Euclidean space.
Objects cannot be represented by points as they have an inner life.

Respect it.
® n
J .
-0 s ‘ jl/( /
‘ . ‘“’\‘t ,,,;//’

Blob Representation String Representation
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Intrinsicly Different Dissimilarity Measures

Distance(Table,Book) = 0
Distance(Table,Cup) = 0
Distance(Book,Cup) = 1

Single-linkage clustering

D(A,C) > D(AB) + D(B,C)
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Causes of Metric Dissimilarities

= Overestimated large distances (too difficult to compute)

= Underestimated small distances (one-sided view of objects)
caused by the construction of complicated measures, needed to
correspond with human observations.

= Essential non-metric distance definitions
as the human concept of distance differs from the mathematical one.
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