

ACIT 2013

TUDelft

18 December 2013

Non-Euclidean Problems in Pattern Recognition

ACIT 2013, Khartoum, Sudan, 17-19 Dec 2013

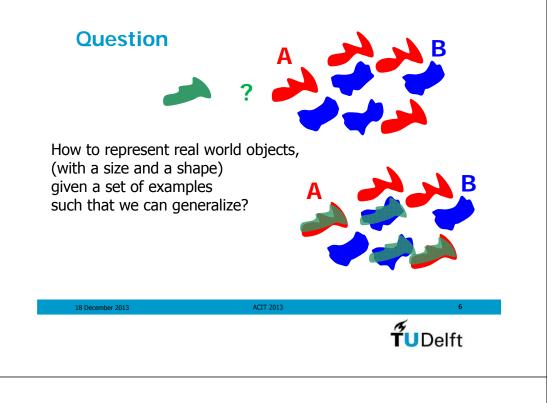
Robert P.W. Duin, Delft University of Technology (In cooperation with Elżbieta Pękalska, Univ. of Manchester)

Pattern Recognition Lab Delft University of Technology, The Netherlands <u>http://rduin.nl</u>

18 December 2013

ACIT 2013

Introduction



Real world objects and events

Images Spectra → shapes Time signals Gestures

How to build a representation? Features ←→ Structure

ACIT 2013

TUDelft

446 binary images, varying size, e.g.: 100 x 130 Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346.
Shape classification by weighted-edit distances (Bunke) Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern recognition 26 (1993) 1797–1812
18 December 2013

Blob Recognition

2-9-2-

BACK

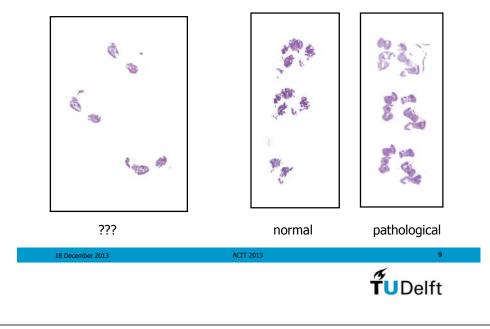
BREAST

WING

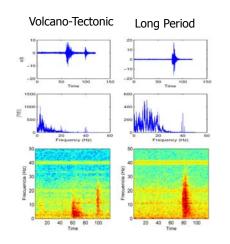
DRUMSTICK

THIGH-AND-BACK

Colon Tissue Recognition



Volcano / Seismic Signal Classification



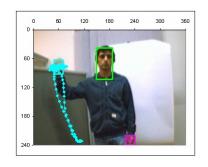
18 December 2013

150 000 events (1994 – 2008) 5 volcanos 40 stations 15 classes

- J. Makario, INGEOMINAS, Manizales, Colombia
- M. Orozco-Alzate, Nat. Univ. Colombia, Manizales
- R. Duin, TUDelft
- M. Bicego, Univ. of Verona, Italy
- Cenatav, Havana, Cuba

10

Gesture Recognition

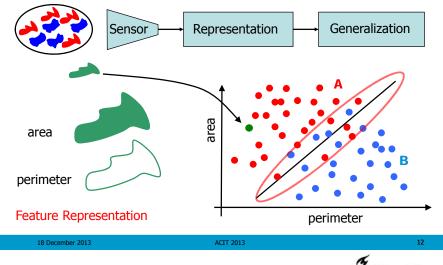


Is this gesture in the database?

ACIT 2013

18 December 2013

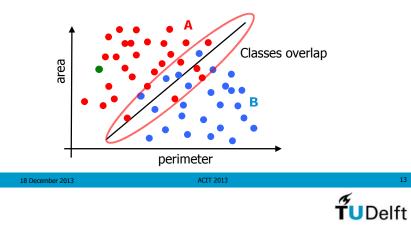
Pattern Recognition System



ACIT 2013

Feature Representation

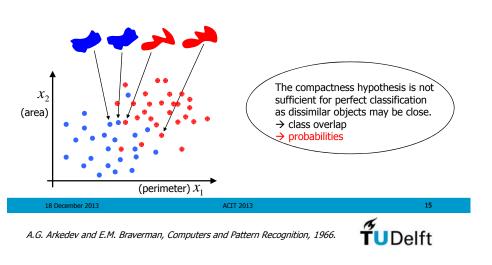
Objects \rightarrow points in a Euclidean Space Features reduce \rightarrow classes overlap \rightarrow to be solved by statistics



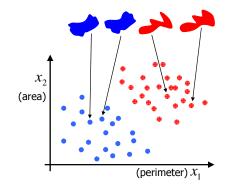
Representation

Compactness

Representations of real world similar objects are close. There is no ground for any generalization (induction) on representations that do not obey this demand.



True Representations

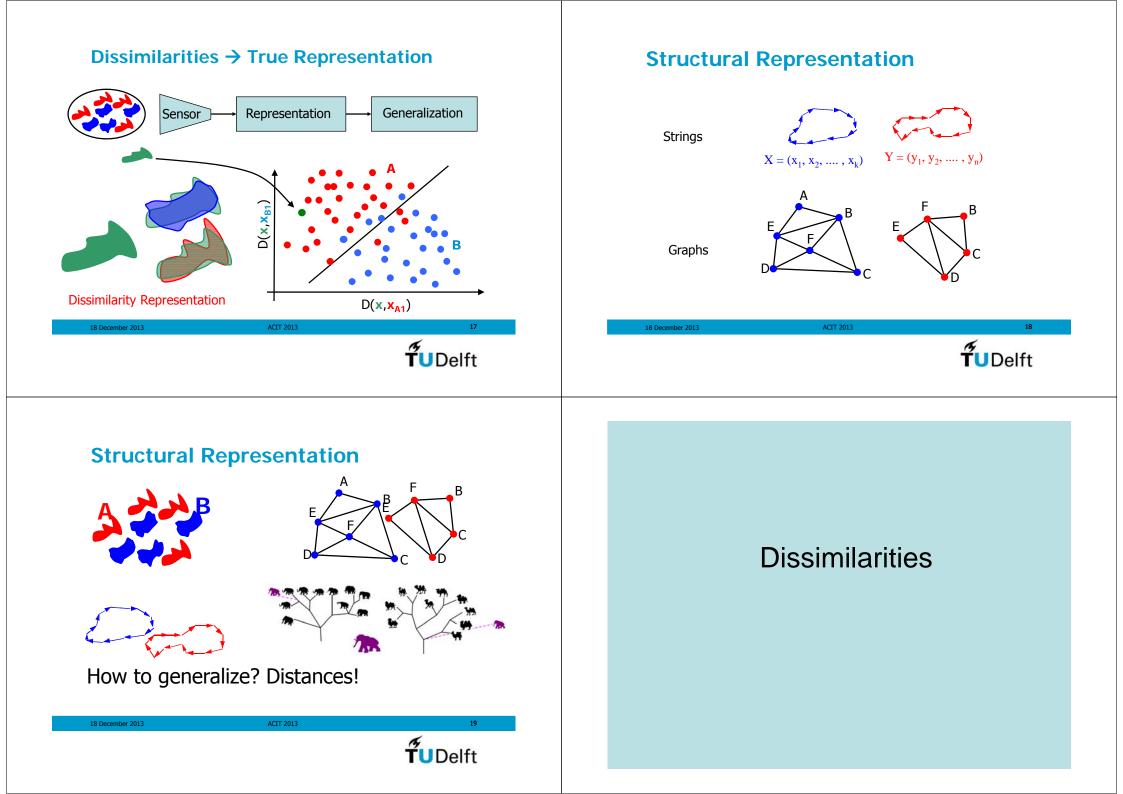


Similar objects are close and Dissimilar objects are distant.

18 December 2013

ACIT 2013

16



Dissimilarities

Objects \rightarrow Shape distances

18 December 2013

. Positivity:

2. Reflexivity:

3. Definiteness

4. Symmetry:

<δ.

18 December 2013

very similar. 8. Continuity of d.

Objects \rightarrow Features \rightarrow Euclidean distances

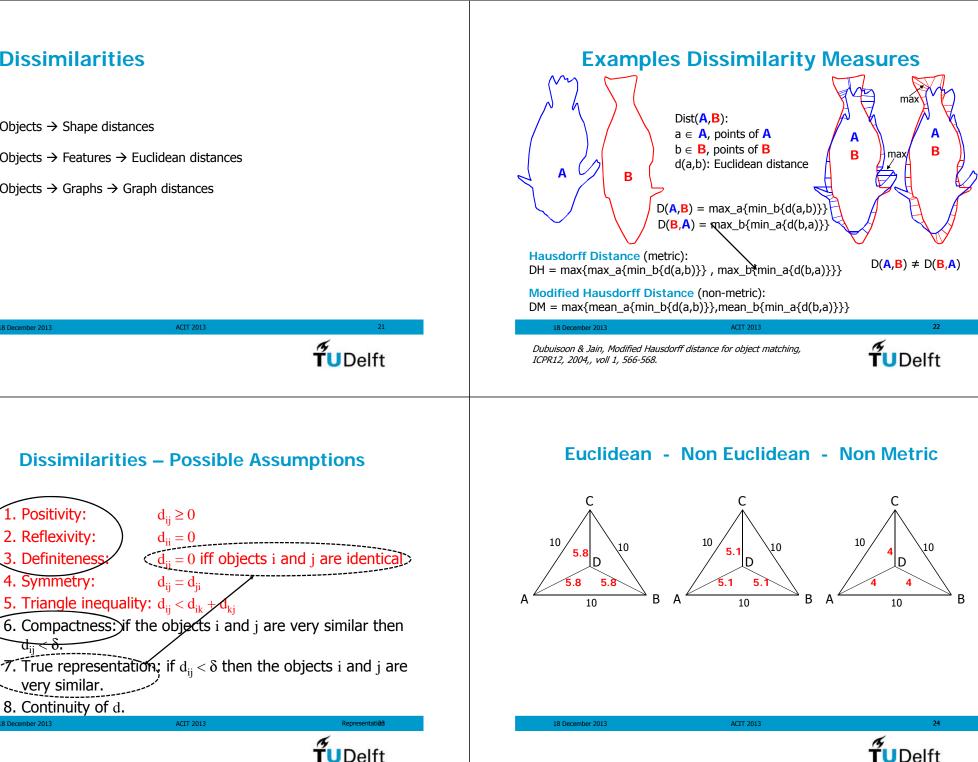
ACIT 2013

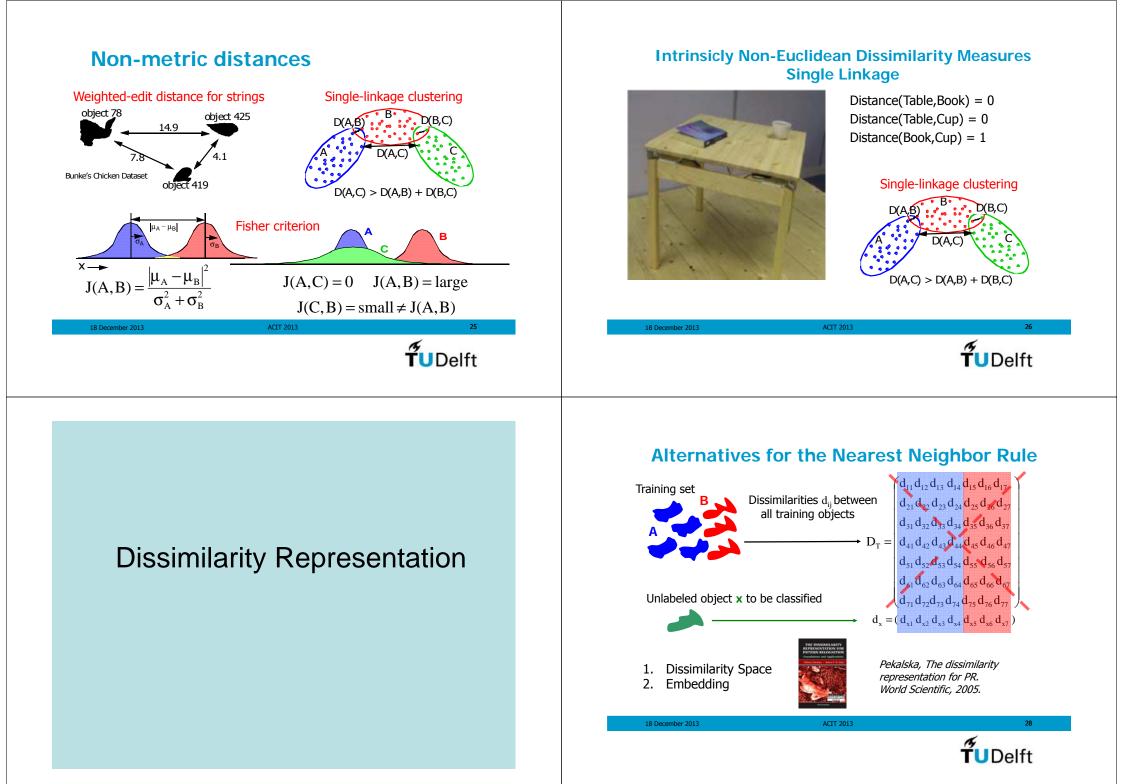
 $d_{ii} \ge 0$

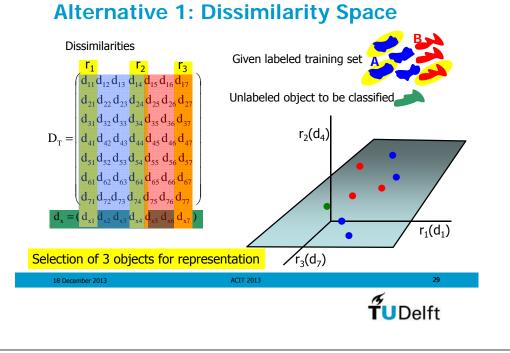
 $d_{ii} = d_{ii}$

ACIT 2013

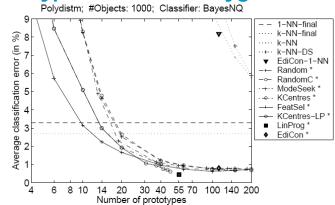
Objects \rightarrow Graphs \rightarrow Graph distances







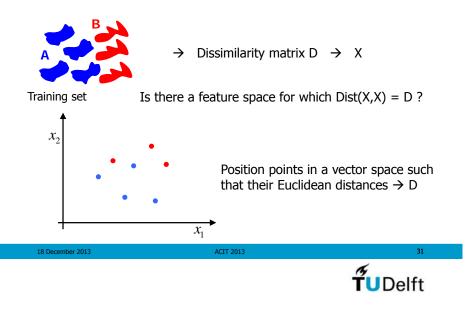
Prototype Selection: Polygon Dataset



The classification error as a function of the number of selected prototypes. For 10-20 prototypes results are already better than by using 1000 objects in the NN rules. ACIT 2013

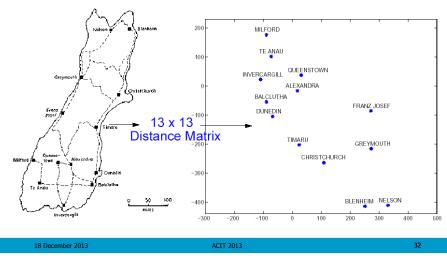
Pekalska et al., Prototype selection for dissimilarity-based classification, Pattern Recognition, 2006, 189-208.

Alternative 2: Embedding



Embedding

18 December 2013



(Pseudo-)Euclidean Embedding

-3

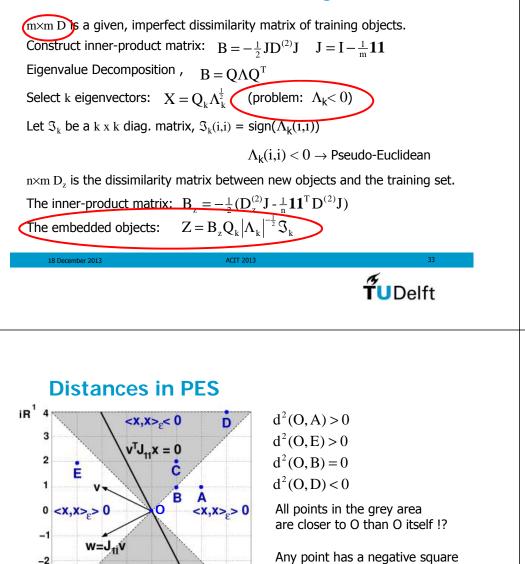
-3

18 December 2013

< x, x > < 0

2 3 4

ACIT 2013



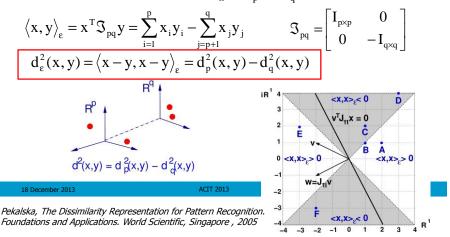
Any point has a negative square distance to some points on the line $v^T J x=0$.

TUDelft

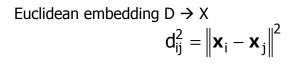
R ¹Can it be used as a classifier? Can we define a margin as in the SVM?

PES: Pseudo-Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and q negative eigenvalues. A pseudo-Euclidean space \mathcal{E} with signature (p,q), k = p+q, is a nondegenerate inner product space $\Re_k = \Re_p \oplus \Re_q$ such that:



Pseudo Euclidean Space



Pseudo Euclidean embedding D \rightarrow {X^p,X^q}

$$d_{ij}^{2} = \left\| {\bm{x}}_{i}^{p} - {\bm{x}}_{j}^{p} \right\|^{2} - \left\| {\bm{x}}_{i}^{q} - {\bm{x}}_{j}^{q} \right\|^{2}$$

'Positive' and 'negative' space, Compare Minkowsky space in relativity theory

ACIT 2013

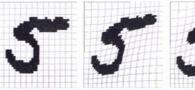
18 December 2013

Delft

PE-Space classifiers

- kNN, Parzen, Nearest Mean As object distances can be computed (are known)
- LDA, QDA As PE inner possibly product definitions cancel they can be computed, interpretation ... ?
- SVM May get a result (indefinite kernel), possibly not optimal
- Others ??

Examples Dissimilarity Measures

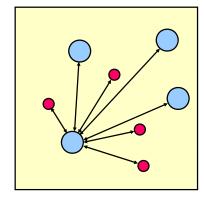


Matching new objects to various templates: $class(x) = class(argmin_y(D(x,y)))$

Dissimilarity measure appears to be non-metric.

December 2013	ACIT 2013	³⁷ TUDelft	18 December 2013 A.K. Jain, D. Zongker, Representation using deformable templates, IEEE-PAN		
Three Approacl	hes Compared for the	_	Representation St	trategies	
i.			Avoiding the PE space		
	3-NN		Dissimilarity Space:	X = D	
raitzation error	Nearest neighbour Rule		Correcting Associated space	$\mathbf{X} = \{ [\mathbf{X}\mathbf{p}, \mathbf{X}\mathbf{q}], \mathcal{O} \}$	$\tilde{d}_{ij}^2 = d_p^2(x_i, x_j) + d_q^2(x_i, x_j)$
Averaged generaliz	_	-	Positive space	$X = X_{p}$	
	Embedding	5×16	Negative space	$\mathbf{X} = \mathbf{X}_{q}$	5 I 5
	ity Space		Additive Correction	$\tilde{d}_{ij}^2 = d_{ij}^2 + c, i \neq j$	$X = \text{Embedding}(\tilde{D})$
0	500 1000 Size of the representation set R	1500	As it is Pseudo Euclidean Space	$X = \{Xp, Xq\}$	$d_{ij}^2 = d_p^2(x_i, x_j) - d_q^2(x_i, x_j)$
issimilarity Space equiv	alent to Embedding better than I	Nearest Neighbour Rule	Classifiers to be develope	d further	
18 December 2013	ACIT 2013	39	18 December 2013	ACIT 2013	40
	esentation for Pattern Recognition.	<i></i>	10 December 2015	ACT 2015	4
	orld Scientific, Singapore , 2005	ŤU Delft			Ť UDelft

Ball Distances



- Generate sets of balls (classes) uniformly, in a (hyper)cube; not intersecting.
- Balls of the same class have the same size.
- Compute all distances between the ball surfaces.
- -> Dissimilarity matrix D

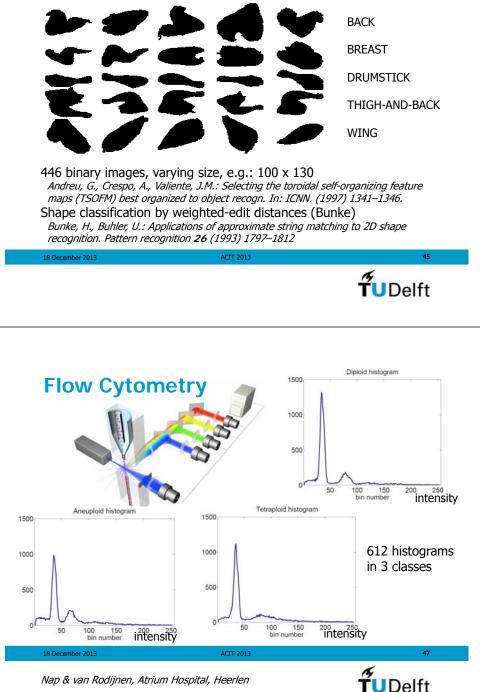
Balls3D

Classifier	PE Sp	Ass Sp	Pos Sp	Neg Sp	Cor Sp
1-NN	47.4 (2.0)	47.4 (2.0)	47.4 (2.0)	44.2 (1.5)	47.4 (2.0)
Parzen	45.7 (1.7)	45.5 (1.6)	45.6 (1.7)	35.5 (1.7)	45.7 (1.7)
NM	47.5 (2.0)	47.7 (2.0)	47.6 (1.9)	49.6 (0.2)	48.1 (1.8)
SVM-1	50.7 (2.2)	50.0 (2.7)	50.0 (2.5)	62.1 (1.7)	50.1 (2.0)
Classifier	PE Dis Sp	Ass Dis Sp	Pos Dis Sp	Neg Dis Sp	Cor Dis Sp
1-NN	49.8 (2.2)	49.8 (2.2)	49.8 (2.2)	5.1 (0.8)	49.7 (2.2)
Parzen	47.9 (2.2)	47.9 (2.2)	47.9 (2.2)	4.6 (0.5)	47.9 (2.2)
NM	49.8 (2.2)	49.8 (2.2)	49.8 (2.2)	5.0(0.8)	49.9 (2.2)

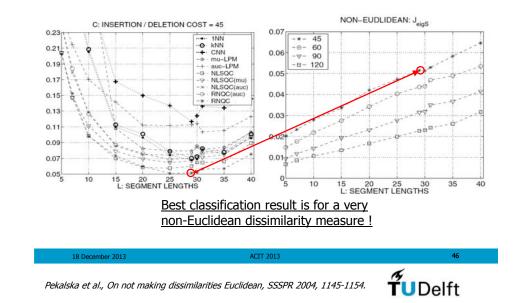
10 x (2-fold crossvalidation of 50 objects per class)

18 December 2013ACIT 201341Duin et al., Non-Euclidean dissimilarities: Causes and informativeness, SSSPR 2010, 324-333.file	18 December 2013 ACIT 2013 42
Is the PE Space Informative? $iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	Examples

Example: Chickenpieces (H. Bunke, Bern)



Chickenpieces: Various Dissimilarity Measures



Flow Cytometry: classification errors

Pairwise, horizontal (intensity calibration): $D(hist1,hist2) = min_{\alpha}L_1(hist1,hist2(\alpha))$

	\leftarrow Dissimilarity space \rightarrow			
Data Source	NEF	1-NN	1-NND	SVM-1
Tube 1	0.27	0.38	0.38	0.30
Tube 2	0.27	0.37	0.37	0.29
Tube 3	0.27	0.38	0.40	0.27
Tube 4	0.27	0.42	0.42	0.30
Averaged	0.24	0.27	0.20	0.11

ACIT 2013

18 December 2013

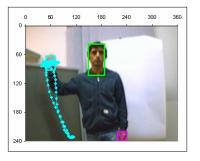
UDelft

Bio-crystallization: Dissimilarity Measures Bio-crystallization Gauss \rightarrow L2 image size: 2114 x 2114 Different food products / quality 2 classes, 54 examples/class Laplace \rightarrow L2 Originals $Laplace \rightarrow Abs \rightarrow Histogram \rightarrow L1$ 49 ACIT 2013 18 December 2013 ACIT 2013 50 18 December 2013 **T**UDelft **T**UDelft Busscher et al., Standardization of the iocrystallization Method for Carrot Samples, Biological Agriculture and Horticulture, 2010, Vol. 27, pp. 1–23

Bio-crystallization: classification errors

		Dissimilarity space		
Dissimilarity Measure	NEF	1-NN	1-NND	SVM-1
Gauss	0	0.329	0.266	0.106
Laplace	0	0.229	0.313	0.125
Laplace Histogram	0.067	0.107	0.172	0.072
Averaged Dissimilarities	0.004	0.114	0.166	0.057

Gesture Recognition



Is this gesture in the database?

ACIT 2013

18 December 2013

52

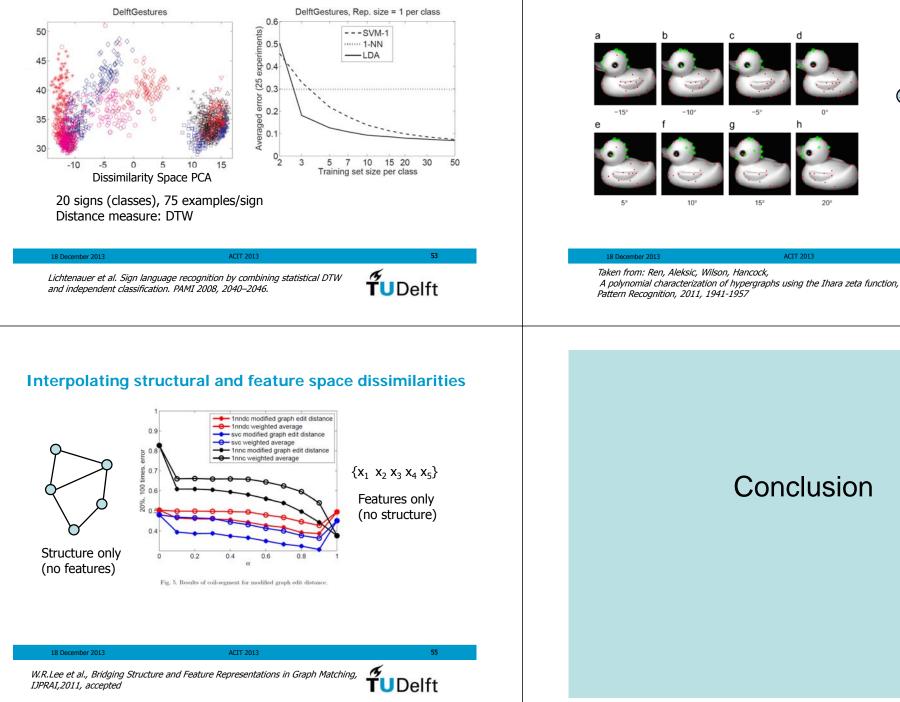
18 December 2013

ACIT 2013

TUDelft

51

Gesture Recognition



Application: Graphs

Graph with

feature nodes

TUDelft

54

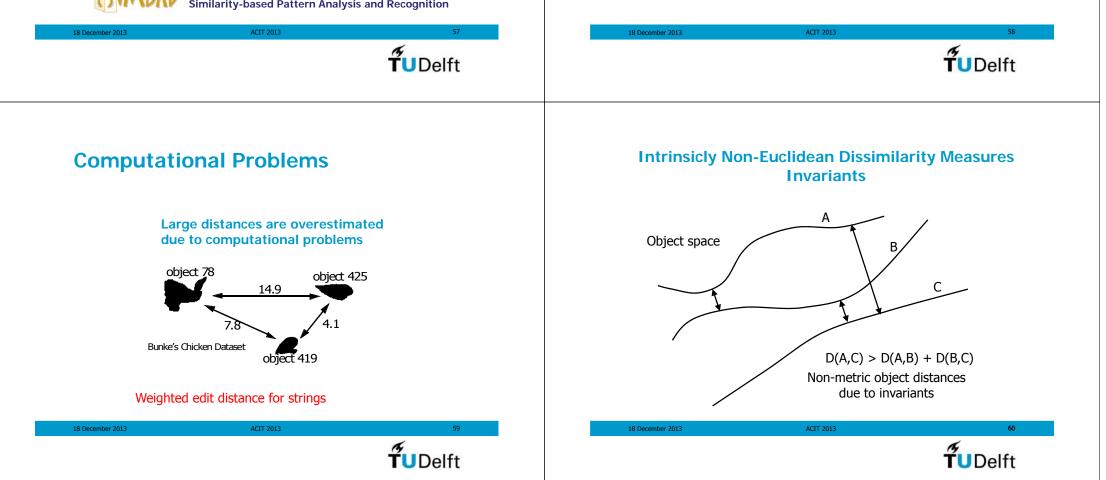
Non-Euclidean Representations

- Why do we have them?
- Are they essential?
- Can we build classifiers for them? (to some extend)
- Can we transform them into Euclidean representations? (Yes, but at the cost of performance loss)

Beyond Features Similarity-based Pattern Analysis and Recognition

Computational Noise

- Even for Euclidean distance matrices zero eigenvalues may show negative, e.g:
- X = N(50,20): 50 points in 20 dimensions
- D = Dist(X): 50 x 50 distance matrix
- Expected: 49-20 = 29 zero eigenvalues
- Found: 15 negative eigenvalues



Intrinsicly Non-Euclidean Dissimilarity Measures Boundary distances Mahalanobis A dAB Pairwise comparison between B differently shaped data distributions A set of boundary distances may characterize sets of datapoints: Distances \rightarrow features Different pairs \rightarrow different comparison frameworks → non-Euclidean ACIT 2013 18 December 2013 61 18 December 2013 ACIT 2013 62 **T**UDelft **T**UDelft **Conclusions** • Real world objects are not points • Objects have a size Relations are non-Euclidean D = 1 • Non-Euclidean generalization procedures are needed Man Horse David W. Jacobs, Daphna Weinshall and Yoram Gdalyahu, Classification with Nonmetric Distances: Image Retrieval and Class Representation, IEEE Trans. Pattern Anal. Mach. Intell, 22(6), pp. 583-600, 2000. 28 December 2013 ACIT 2013 63 18 December 2013 ACIT 2013 Delft Delft