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A Problem

??

Bring me an apple!!
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Training

These are apples ... ... and these are pears

!!



TUDelftR.P.W. Duin

How to learn? Model based?

- Store all relevant properties of an apple

- Generalise over  apple examples to obtain an ’apple class’ model

- Repeat for pears

- Find a way to compare ’apple-ness’ with ’pear-ness’ 

We only look at class differences at classification time!!
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How to learn? Feature based?

- Choose possible features to represent individual apples and pears

- Select relevant features for the difference of apples and pears

- Generalise over the examples

We only look at class differences at classification time!!
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How to learn? Dissimilarity based?

- Use differences between apples and pears for representation

- Generalise over the examples

We only look at class differences during representation!!
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The Pattern Recognition System

Sensor Representation Generalisation
A

B

Measurements Models
Class

DifferencesObjectsModel based
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The Pattern Recognition System

Sensor Representation Generalisation
A

B

Measurements Models
Class

Differences

Class
Differences ClassifierObjects

Objects

Features

Objects
Class

Differences Classifier

Model based

Feature based

Dissimilarity based
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Generalisation from Features

(area)

(perimeter) x1

x2

Class A

Class B

Objects

Training Set GeneralizationRepresentation

Feature Space
Classifier

Test Object classified as ’B’

Feature representation → Object reduction → Class overlap → Probabilities
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Classifiers for Feature Representations

Criterion : Min: 

Neural Net Min: 

Fisher: , such that  is minimum

Parzen:

SVC: Max: 

ε Prob S x( ) ω→ x ω∉( )=

S xi w,( ) λ xi( )–( )2

i
∑

S x( ) y w x w0+•= = L
y1 y2–( )2

σ1
2 σ2

2+
------------------------=
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n1
----- ϕ x xi– h1,( )

i ω1∈
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mini S xi( )λ xi( ){ } ξjS xj( )λ xi( )
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∑+
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Peaking, Curse of Dimensionality, Overtraining

Asymptotically increasing classification error due to:

- Increasing Dimensionality Curse of Dimensionality

- Increasing Complexity Peaking Phenomenon

- Decreasing Regularization }Overtraining
- Increasing Computational Effort

Dimensionality, Complexity, Time

∞
sample size

Classification
Error
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Problems with the Pixel_Feature Representation

Interpolation does not yield valid objects

Feature Space

image_1 image_2 image_3

image_1 image_3
image_3

class subspace
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The Compactness Hypothesis

Representations of real world similar objects are close. 

There is no ground for any generalization (induction) on representations
 that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

(area)

(perimeter) x1

x2

The compactness hypothesis 
is not sufficient, as dissimilar
object may be close!

class overlap
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True Representations

x1

x2

Similar object should be close and dissimilar objects should be distant

Dissimilarity representations based on measurement signals 
describing the ’whole’ object fulfill this. 
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Representation Principles

Model based,  dissimilarities of objects and classes (Conceptual)

domains, structural, connectivity included

Feature based (Absolute) 

distributions, connectivity neglected

Dissimilarity based  (Relative)

distributions or domains, connectivity possibly included

area

perimeter

feature space

d2

d1

dissimilarity 
space

d1

d2

train

test

class A class B

dA dB
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Dissimilarity Representation (DisRep)

A B

X

Given labeled training set T

Unlabeled object x  to be classified

The traditional Nearest Neighbor rule (template matching) just finds: 

label(argmintrainset(di)), 

without using DT. Can we do any better?

dx  =    ( d1   d2    d3   d4   d5    d6   d7)

DT

d11d12d13d14d15d16d17

d21d22d23d24d25d26d27

d31d32d33d34d35d36d37

d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

Define dissimilarity measure dij between raw data of objects i and j
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Dissimilarity Spaces - Examples

Euclidean

Metric

Pre-Metric

Topological

L2, RMSE

L1 

Lp, p < 1

Mahalanobis

Pre-Topological

weighted edit-distance
triangle inequality

definiteness

continuity

Compactness always needed
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Why Dissimilarity Spaces?

Many (exotic) dissimilarity measures are used in pattern recognition

- they may solve the connectivity problem (e.g. pixel based features)

- they may offer a way to integrate structural and statistical approaches

  e.g. by graph distances.

Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbour classifier appear possible

(more accurate, faster) 
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DisRep Approach: NN Rule, Pre-topological Space

A B

X

Given labeled training set T

dx  =    ( d1  d2   d3   d4  d5   d6   d7 )

class(x) = label ( argmin(di) )

- Computationally expensive

- Locally sensitive

- Consistent: if size(T) --> ∞ then error --> 0Unlabeled object x  to be classified
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Dissimilarity Representation Approach: Dissimilarity Space

dx  =   ( d1  d2   d3   d4  d5   d6   d7)

DT

d11d12d13d14d15d16d17

d21d22d23d24d25d26d27

d31d32d33d34d35d36d37

d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

r1 r2 r3

r1(d2)

r3(d7)

R3

Dissimilarities

Selection of 3 objects for representation
Classification in a 3D representation space

A B

X

Given labeled training set T

Unlabeled object x  to be classified

r2(d4)

really independent
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Dissimilarity Representation Approach: Embedding 

A B
Training set

Is there a feature space X for which Dist(X,X) = D?
Rk

x1

x2

           Euclidean distances      D 

                
               Dissimilarity matrix D             X?

If D is non-Euclidean, embedding results in a pseudo-Euclidean Space 
(Goldfarb, Pekalska)
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Digit Classification Example

Dissimilarity based classifiers compared to the nearest neighbor 

rule for a 10-class digit classification problem.
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LPC in a dissim. space
SRQC in a dissim. space
NLC in an embedded space
3−NN
5−NN

Matching new objects x to various 
templates y
class x( ) class minarg y D x y,( )( )( )=

A.K. Jain, D. Zongker, PAMI, vol. 19, 
no. 12, 1997.
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 Prototype Selection for Road Sign Recognition
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RoadSigns;  #Objects: 300;  Classifier: BayesNQ

1−NN−final
k−NN−final
k−NN
k−NN−DS
EdiCon−1−NN
Random
RandomC
ModeSeek
KCentres
FeatSel
KCentres−LP
LinProg
EdiCon

*
*
*

*
*

*
*
*

+
+

+
+
+

The averaged error (over 25 experiments) of the quadratic Bayes classifier (*) in dissimilarity 

spaces of various dimensionalities, based on a series of selection procedures. For comparison a 

number of nearest neighbor results (+) are presented.
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Combining Dissimilarity Measures for Spectra Recognition
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Typical autofluorescence spectra, excitation = 365nm

Healthy
Disease

Typical examples of two auto-fluorescence spectra in the oral cavity 

. Dissimilarity combining experiment

Dis. Rep. AUC (st. dev) #SO

D
is

 M
ea

su
re

D(1) 72.3 (0.7) 2.5

D(2) 72.0 (0.7) 2.8

D(3) 78.2 (0.6) 2.7

D(4) 68.1 (0.8) 3.1

D(5) 75.1 (0.6) 2.1

C
om

b.
 D

is
.M

ea
s. Mean 93.1 (0.5) 4.9

Prod 93.6 (0.4) 4.6

Min 85.0 (0.6) 15.3

Max 84.1 (0.9) 7.2
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Representation by Orders Sets (Strings); Edit Distance

 X = (x1, x2, .... , xk)        Y = (y1, y2, .... , yn)

DE(X,Y) : Σ edit operations X --> Y
(insertions, deletions, substitutions)

DE(snert ,meer ) = 3:
snert --> seert --> seer --> meer

DE( ner ,meer ) = 2:
ner --> mer --> meer

b
a
u
v
u
b
u

a u a v v b

Possibly weighted.

Triangle inequality -->
      computational feasible.

Length normalisation problem: 
D(aa,bb) < D(abcdef,bcdd)

See Marzal & Vidal, IEEE PAMI-15, 1993, 926-932
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Representation by Connected Sets (Graphs)

C
DE

F

A B

Graph ( Nodes, Connections, Attributes)
Distance ( Graph_1 , Graph_2 )
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The Prospect of Dissimilarity based  Representations: Zero Error

Let us assume that we deal with true representations:

dab < δ  if and only if the objects a and b are very similar.

If  δ  is sufficiently small than a and b belong to the same class, as 

b is just a minor distortion of a (Assuming true representations).

However, as Prob(b) > 0, there will be such an object for 

sufficiently large training sets → zero classification error possible!

δa

b
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Zero-Error Classification
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Domain Based Classification

Objects from different classes have non-zero distance (assumption)

d(apple1,apple2) ≥ 0, d(apple, pear) > 0

→ Classes don’t overlap

→ Probabilistic approaches are not needed

→ No need for stochastic sampling

→ Good for ill-defined, ill sampled problems, or problems with unknown priors.
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Towards Domain Classifiers: Remove Probabilistic Contributions

Criterion : Min: 

Neural Net Min: 

Fisher: , such that  is minimum

Parzen:

SVC: Max: 

ε Prob S x( ) ω→ x ω∉( )=

S xi w,( ) λ xi( )–( )2

i
∑

S x( ) y w x w0+•= = L
y1 y2–( )2

σ1
2 σ2

2+
------------------------=

S x( ) 1
n1
----- ϕ x xi– h1,( )

i ω1∈
∑

1
n2
----- ϕ x xi– h2,( )

i ω2∈
∑–=

mini S xi( )λ xi( ){ } ξjS xj( )λ xi( )
j

∑+

Probability Arguments
Distance Arguments
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Domain Based Classifiers

Criterion : Max: 

Neural Net Min: 

Fisher: , such that  is minimum

Parzen:

SVC: Max: 

δ minx S x( )λ x( )( )=

maxi S xi w,( ) λ xi( )–( )2( )

S x( ) y w x w0+•= = L
y1 y2–( )2

d1
2 d2

2+
------------------------=

S x( ) maxi ϕ x xi– h1,( )( ) maxi ϕ x xi– h2,( )( )–=

mini S xi( )λ xi( ){ }

Distance Arguments
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Can Dissimilarity Measures Be Learned?

Sensor Representation Generalisation
A

B

Objects
Class

Differences ClassifierDissimilarity based

If the representation is based on dissimilarities of raw measurements, an 

optimization of the dissimilarity measure has to be based on raw data.

Should dissimilarities or similarities be used? 
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Ways to Adjust or Constitute Dissimilarity Measures

1. Combining different dissimilarity measures (compare combining classifiers)

2. Combining dissimilarities (similarities) for different object parts

3. Monotonic transformations of given dissimilarities

4. Transforming non-Euclidean distances to Euclidean distances*

*See Pekalska, SSSPR2004, On not making dissimilarities Euclidean
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Conclusions

Dissimilarity based pattern recognition uses class differences during 

representation.

In many applications it is a good alternative for the feature based approach.

It thereby may combine structural approaches with learning from examples.

For some applications class overlaps may be avoided and domain based 

classifiers become of interest.

Learning and improving dissimilarity measures have to be studied further.


