Workshop on Representations for PR

The dissimilarity representation, a basis for domain based pattern recognition?

Robert P.W.Duin, Elżbieta Pękalska, Pavel Paclik, David Tax Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology, The Netherlands

Cambridge, August 2004

P.O. Box 5031, 2600GA Delft, The Netherlands. Phone: +(31) 15 2786143, FAX: +(31) 15 2781843, E-mail: r.p.w.duin@ewi.tudelft.nl

R.P.W. Duin

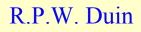
A Problem

Bring me an apple!!

Training

These are apples ...

... and these are pears

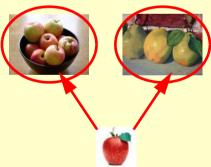


How to learn? Model based?

- Store all relevant properties of an apple

- Generalise over apple examples to obtain an 'apple class' model

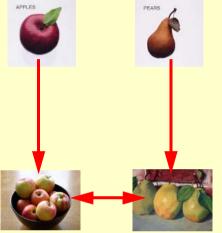
- Repeat for pears



- Find a way to compare 'apple-ness' with 'pear-ness'

We only look at class differences at classification time!!

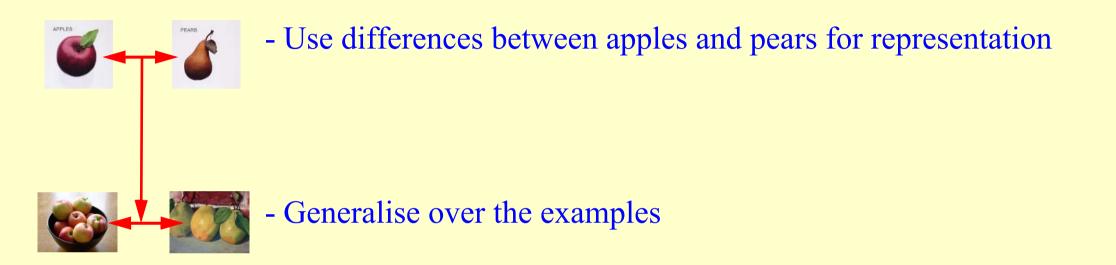
How to learn? Feature based?



- Choose possible <u>features</u> to represent individual apples and pears
- Select relevant <u>features</u> for the difference of apples and pears
- Generalise over the examples

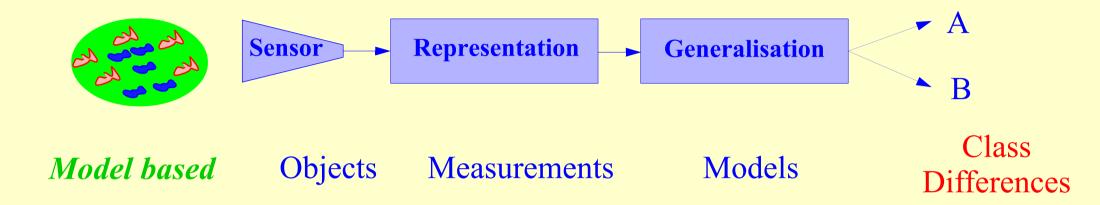
We only look at class differences at classification time!!

How to learn? Dissimilarity based?

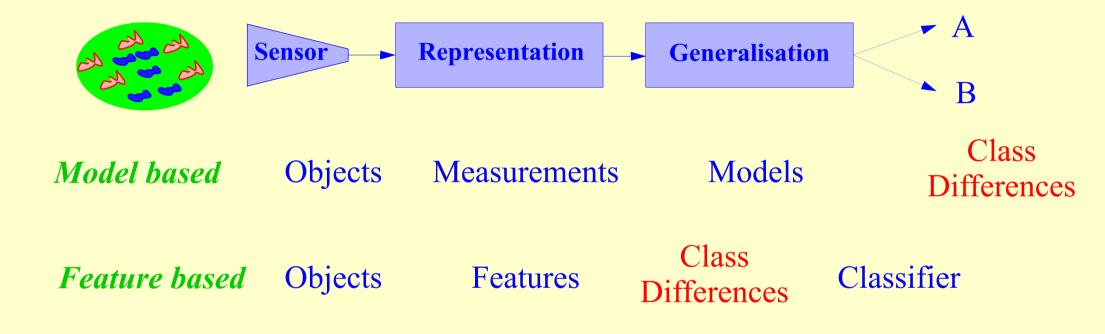


We only look at class differences during representation!!

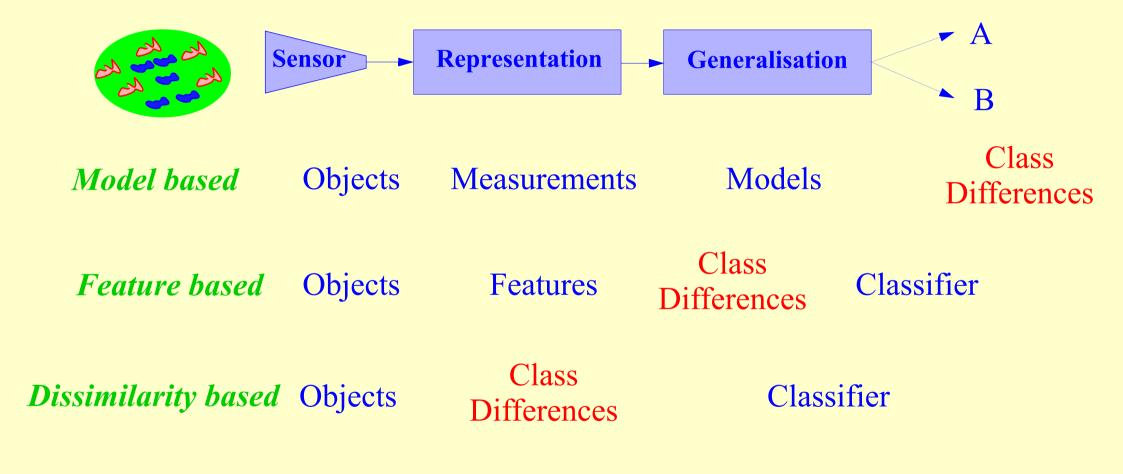
The Pattern Recognition System



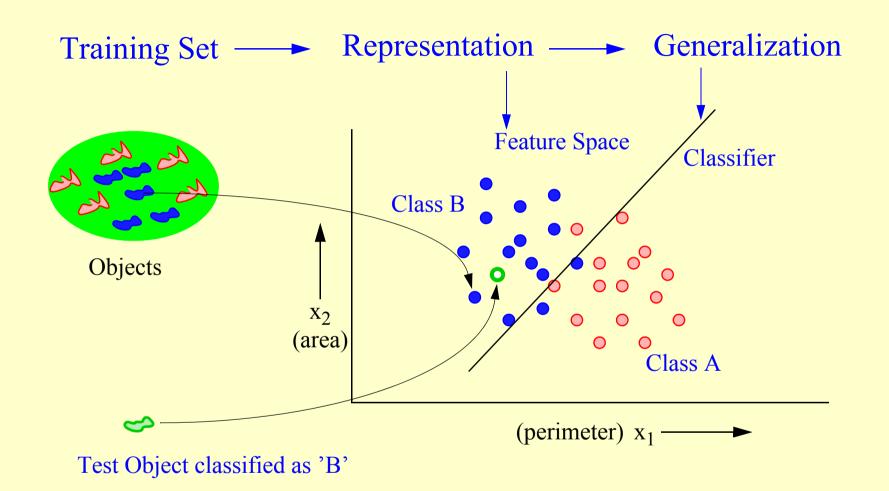
The Pattern Recognition System



The Pattern Recognition System



Generalisation from Features



Feature representation \rightarrow Object reduction \rightarrow Class overlap \rightarrow Probabilities

Classifiers for Feature Representations

Criterion : Min: $\varepsilon = \operatorname{Prob}(S(x) \rightarrow \omega | x \notin \omega)$

Neural Net Min:
$$\sum_{i} (S(x_{i}, w) - \lambda(x_{i}))^{2}$$

Fisher:
$$S(x) = y = w \bullet x + w_{0}, \text{ such that } L = \frac{(\bar{y}_{1} - \bar{y}_{2})^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \text{ is minimum}$$

Parzen:
$$S(x) = \frac{1}{n_1} \sum_{i \in \omega_1} \phi(|x - x_i|, h_1) - \frac{1}{n_2} \sum_{i \in \omega_2} \phi(|x - x_i|, h_2)$$

SVC: Max: $\min_{i} \{S(x_i)\lambda(x_i)\} + \sum_{i} \xi_j S(x_j)\lambda(x_i)$

Classifiers for Feature Representations
Criterion : Min:
$$\varepsilon = Prob(S(x) \rightarrow \omega | x \notin \omega)$$

Probability Arguments
Neural Net Min: $\sum_{i} (S(x_i, w) - \lambda(x_i))^2$
Fisher: $S(x) = y = w \bullet x + w_0$, such that $L = \frac{(\overline{y}_1 - \overline{y}_2)^2}{\sigma_1^2 + \sigma_2^2}$ is minimum
Parzen: $S(x) = \frac{1}{n} \sum_{i \in \omega} \rho(|x - x_i|, h_1) - \frac{1}{n_2} \sum_{i \in \omega_2} \phi(|x - x_i|, h_2)$
SVC: Max: min_i{ $S(x_i)\lambda(x_i)$ } $\sum_{j} \xi_j S(x_j)\lambda(x_i)$

Classifiers for Feature Representations

Criterion : Min:
$$\varepsilon = \operatorname{Prob}(S(x) \to \omega | x \notin \omega)$$

Neural Net Min: $\sum_{i} (S(x_{i}, w) - \lambda(x_{i}))^{2}$
Fisher: $S(x) = y = w \bullet x + w_{0}$, such that $I = (\overline{y}_{1} = \overline{y}_{2})^{2}$ is minimum
Parzen: $S(x) = \frac{1}{n} \sum_{i \in \omega} \phi(|x - x_{i}|) h_{1} - \frac{1}{n_{2}} \sum_{i \in \omega_{2}} \phi(|x - x_{i}|, h_{2})$
SVC: Max: min_i $S(x_{i})\lambda(x_{i})$ $\sum_{j} \xi_{j}S(x_{j})\lambda(x_{i})$

Peaking, Curse of Dimensionality, Overtraining

Dimensionality, Complexity, Time

Asymptotically increasing classification error due to:

- Increasing Dimensionality
- Increasing Complexity
- Decreasing Regularization
- Increasing Computational Effort

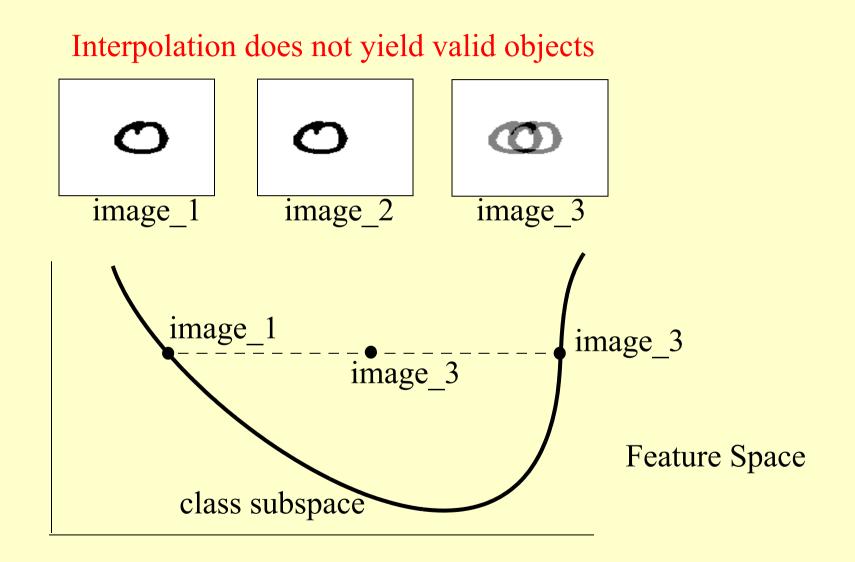
Curse of Dimensionality

Peaking Phenomenon

Overtraining

R.P.W. Duin

Problems with the Pixel_Feature Representation

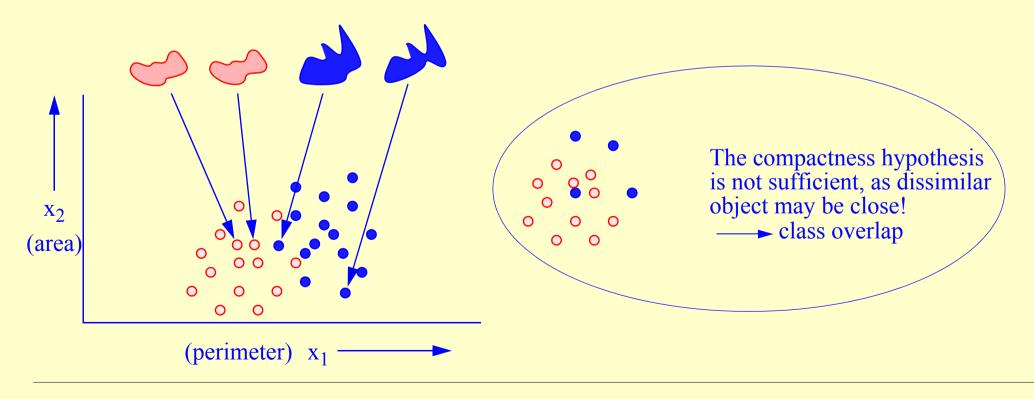


The Compactness Hypothesis

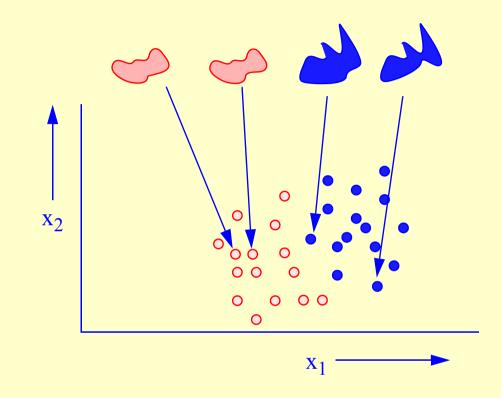
Representations of real world similar objects are close.

There is no ground for any generalization (induction) on representations that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)



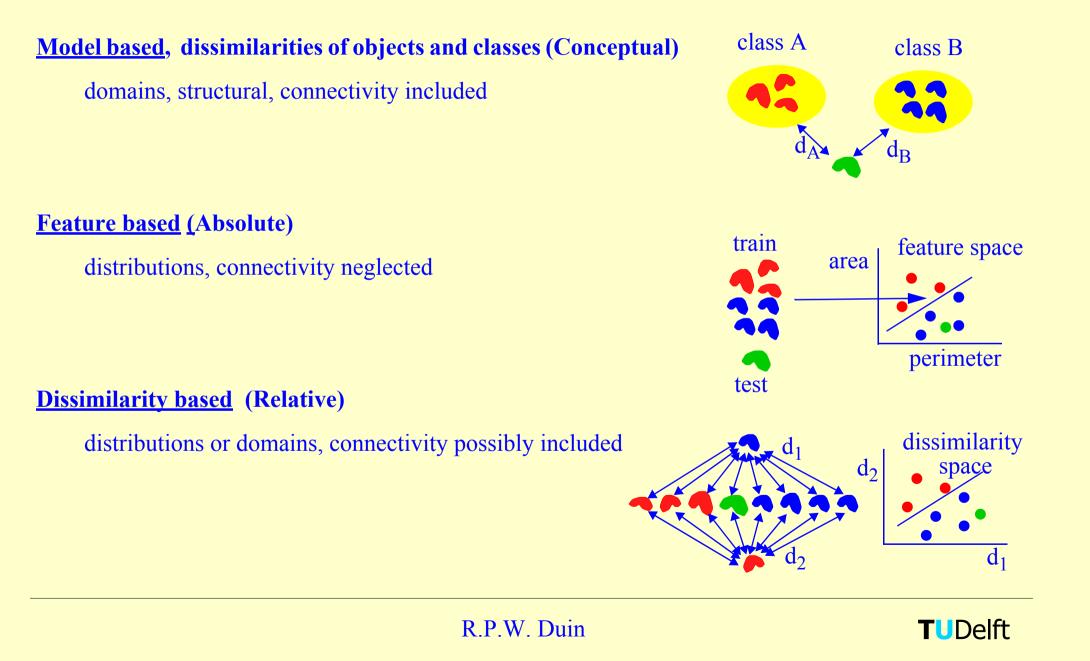
True Representations



Similar object should be close and dissimilar objects should be distant

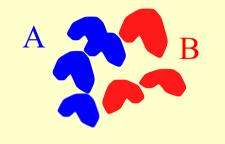
 Dissimilarity representations based on measurement signals describing the 'whole' object fulfill this.

Representation Principles



Dissimilarity Representation (DisRep)

Define dissimilarity measure d_{ij} between raw data of objects i and j



Given labeled training set T

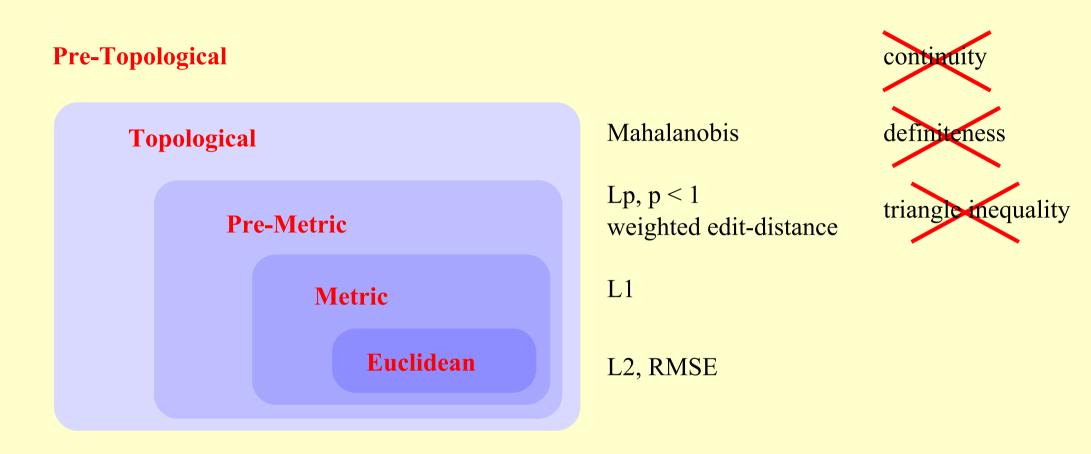
Unlabeled object x to be classified

 $D_{T} = \begin{pmatrix} d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}d_{17} \\ d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}d_{27} \\ d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}d_{37} \\ d_{41}d_{42}d_{43}d_{44}d_{45}d_{46}d_{47} \\ d_{51}d_{52}d_{53}d_{54}d_{55}d_{56}d_{57} \\ d_{61}d_{62}d_{63}d_{64}d_{65}d_{66}d_{67} \\ d_{71}d_{72}d_{73}d_{74}d_{75}d_{76}d_{77} \end{pmatrix}$

 $d_x = (d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7)$

The traditional Nearest Neighbor rule (template matching) just finds: label(argmin_{trainset}(di)), without using DT. Can we do any better?

Dissimilarity Spaces - Examples



Compactness always needed

Why Dissimilarity Spaces?

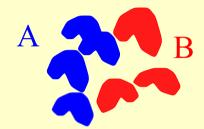
Many (exotic) dissimilarity measures are used in pattern recognition

- they may solve the connectivity problem (e.g. pixel based features)
- they may offer a way to integrate structural and statistical approaches
 e.g. by graph distances.

Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbour classifier appear possible (more accurate, faster)

DisRep Approach: NN Rule, Pre-topological Space



Given labeled training set T

Unlabeled object x to be classified

 $d_x = (d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7)$ class(x) = label (argmin(d_i))

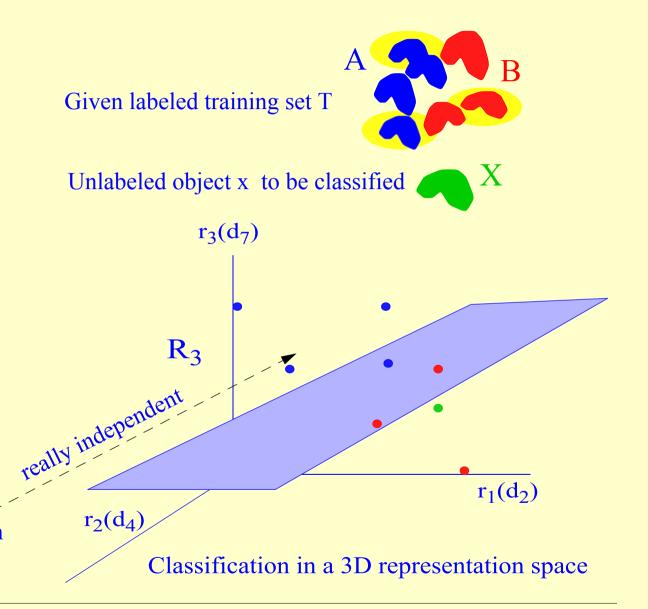
- Computationally expensive
- Locally sensitive
- Consistent: if size(T) $\rightarrow \infty$ then error $\rightarrow 0$

Dissimilarity Representation Approach: Dissimilarity Space

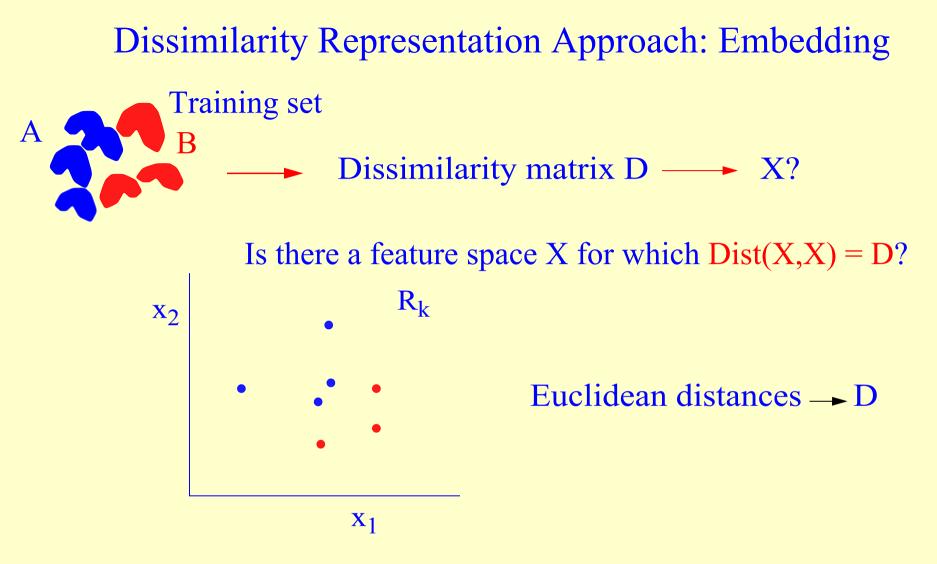
Dissimilarities

$$D_{T} = \begin{pmatrix} d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}d_{17} \\ d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}d_{27} \\ d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}d_{37} \\ d_{41}d_{42}d_{43}d_{44}d_{45}d_{46}d_{47} \\ d_{51}d_{52}d_{53}d_{54}d_{55}d_{56}d_{57} \\ d_{61}d_{62}d_{63}d_{64}d_{65}d_{66}d_{67} \\ d_{71}d_{72}d_{73}d_{74}d_{75}d_{76}d_{77} \end{pmatrix}$$
$$d_{x} = (d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7})$$

Selection of 3 objects for representation

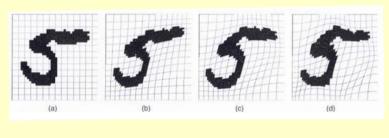


R.P.W. Duin



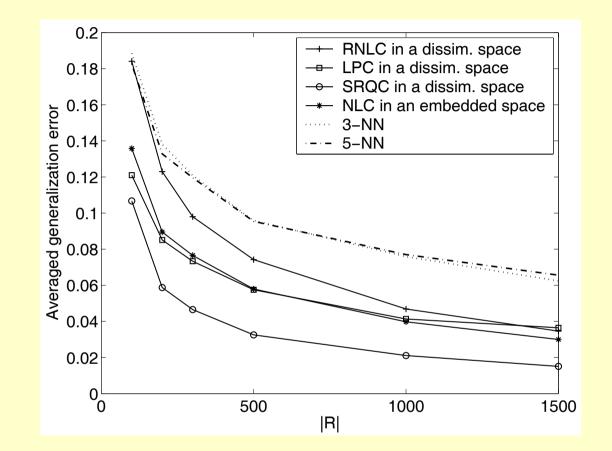
If D is non-Euclidean, embedding results in a pseudo-Euclidean Space (*Goldfarb, Pekalska*)

Digit Classification Example



Matching new objects x to various templates y class(x) = class(argmin_y(D(x, y)))

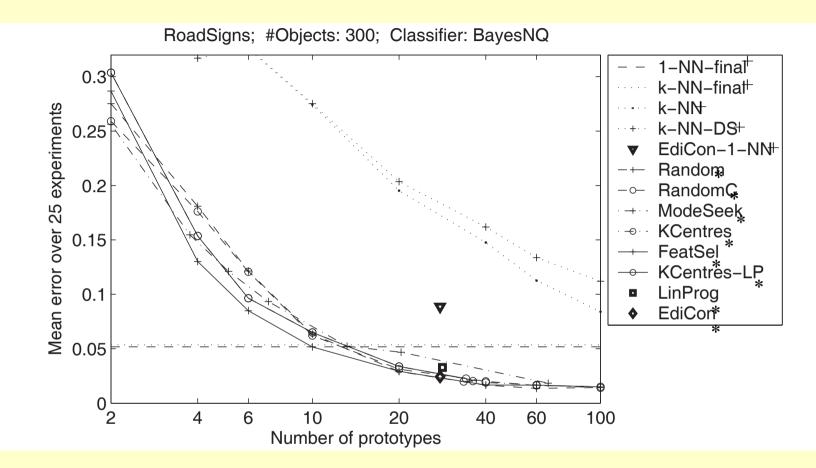
A.K. Jain, D. Zongker, PAMI, vol. 19, no. 12, 1997.



Dissimilarity based classifiers compared to the nearest neighbor

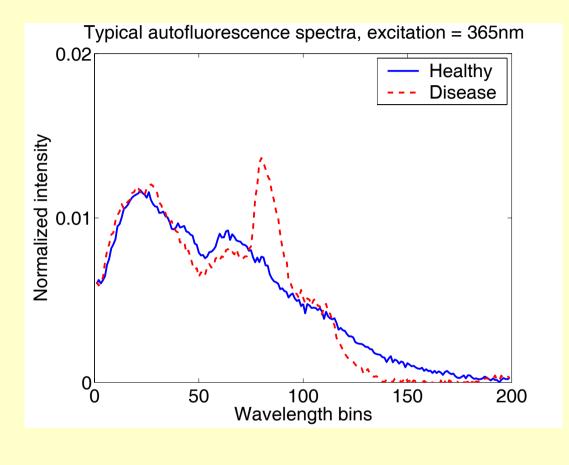
rule for a 10-class digit classification problem.

Prototype Selection for Road Sign Recognition



The averaged error (over 25 experiments) of the quadratic Bayes classifier (*) in dissimilarity spaces of various dimensionalities, based on a series of selection procedures. For comparison a number of nearest neighbor results (+) are presented.

Combining Dissimilarity Measures for Spectra Recognition

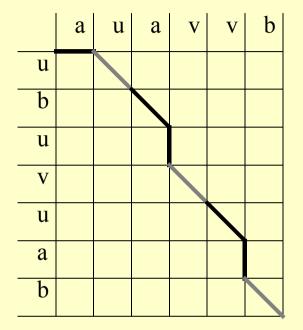


. Dissimilarity combining experiment

	Dis. Rep.	AUC (st. dev)	#SO
Dis Measure	D ⁽¹⁾	72.3 (0.7)	2.5
	D ⁽²⁾	72.0 (0.7)	2.8
	D ⁽³⁾	78.2 (0.6)	2.7
	D ⁽⁴⁾	68.1 (0.8)	3.1
	D ⁽⁵⁾	75.1 (0.6)	2.1
Comb. Dis.Meas.	Mean	93.1 (0.5)	4.9
	Prod	93.6 (0.4)	4.6
	Min	85.0 (0.6)	15.3
	Max	84.1 (0.9)	7.2

Typical examples of two auto-fluorescence spectra in the oral cavity

Representation by Orders Sets (Strings); Edit Distance



Possibly weighted.

Triangle inequality --> computational feasible.

Length normalisation problem: D(aa,bb) < D(abcdef,bcdd)



 $X = (x_1, x_2, ..., x_k)$ $Y = (y_1, y_2, ..., y_n)$

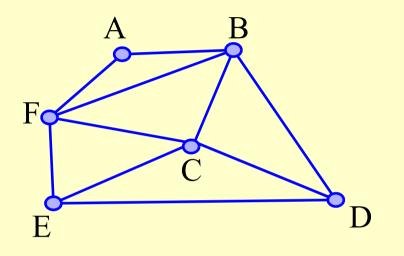
 $D_E(X, Y)$: Σ edit operations $X \rightarrow Y$ (insertions, deletions, substitutions)

 $D_E(\text{snert ,meer }) = 3$: snert --> seert --> meer

 $D_E(\text{ ner ,meer }) = 2:$ ner --> mer --> meer

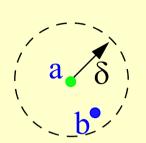
See Marzal & Vidal, IEEE PAMI-15, 1993, 926-932

Representation by Connected Sets (Graphs)



Graph (Nodes, Connections, Attributes)
Distance (Graph_1 , Graph_2)

The Prospect of Dissimilarity based Representations: Zero Error



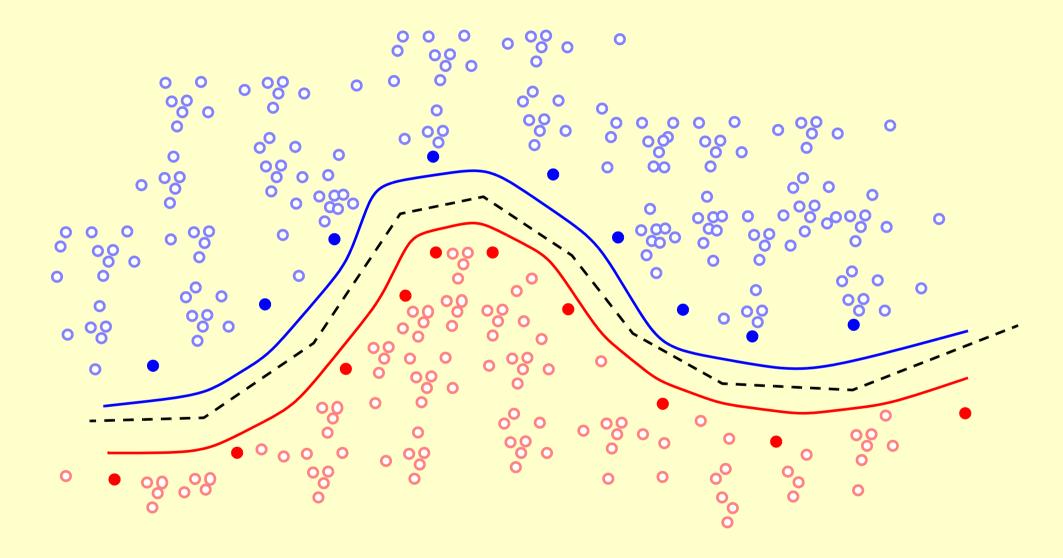
Let us assume that we deal with true representations:

 $\left(\begin{array}{c} a & \delta \\ & \delta \end{array}\right)$ $d_{ab} < \delta$ if and only if the objects a and b are very similar.

If δ is sufficiently small than a and b belong to the same class, as b is just a minor distortion of a (Assuming true representations).

However, as Prob(b) > 0, there will be such an object for sufficiently large training sets \rightarrow zero classification error possible!

Zero-Error Classification



R.P.W. Duin

Domain Based Classification

Objects from different classes have non-zero distance (assumption)

 $d(apple1,apple2) \ge 0, d(apple, pear) > 0$

- \rightarrow Classes don't overlap
- \rightarrow Probabilistic approaches are not needed
- \rightarrow No need for stochastic sampling
- \rightarrow Good for ill-defined, ill sampled problems, or problems with unknown priors.

Towards Domain Classifiers: Remove Probabilistic Contributions

Criterion : Min:
$$\varepsilon = \operatorname{Prob}(S(x) \to \omega | x \notin \omega)$$

Neural Net Min: $\int_{i} (S(x_{i}, w) - \lambda(x_{i}))^{2}$
Fisher: $S(x) = y = w \bullet x + w_{0}$, such that $L = (\overline{y}_{+} - \overline{y}_{2})^{2}$ is minimum
Parzen: $S(x) = \frac{1}{n} \sum_{i \in \omega} \rho(|x - x_{i}|) h_{1} - \frac{1}{n_{2}} \sum_{i \in \omega_{2}} \rho(|x - x_{i}|, h_{2})$
SVC: Max: $\min_{i} S(x_{i})\lambda(x_{i}) + \sum_{j} \xi_{j}S(x_{j})\lambda(x_{i})$

Domain Based Classifiers

Criterion : Max: $\delta = \min_{x}(S(x)\lambda(x))$

Distance Arguments

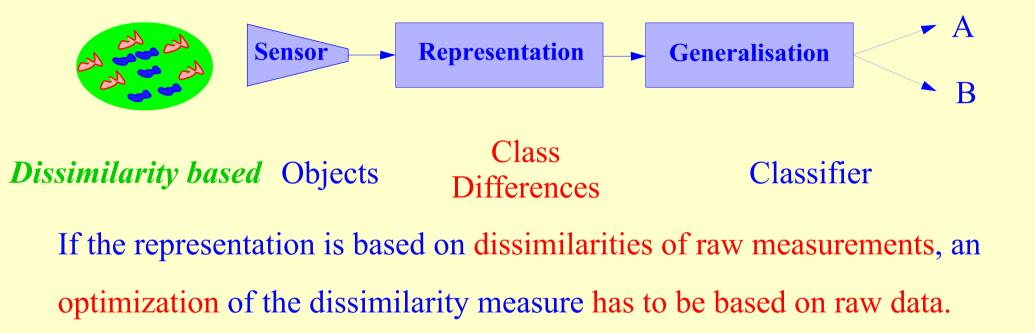
Neural Net Min: $\max_{i}((S(x_{i}, w) - \lambda(x_{i}))^{2})$

Fisher:
$$S(x) = y = w \bullet x + w_0$$
, such that $L = \frac{(\bar{y}_1 - \bar{y}_2)^2}{d_1^2 + d_2^2}$ is minimum

Parzen:
$$S(x) = \max_{i}(\phi(|x - x_{i}|, h_{1})) - \max_{i}(\phi(|x - x_{i}|, h_{2}))$$

SVC: Max: $\min_{i} \{S(x_i)\lambda(x_i)\}$

Can Dissimilarity Measures Be Learned?



Should dissimilarities or similarities be used?

Ways to Adjust or Constitute Dissimilarity Measures

- 1. Combining different dissimilarity measures (compare combining classifiers)
- 2. Combining dissimilarities (similarities) for different object parts
- 3. Monotonic transformations of given dissimilarities
- 4. Transforming non-Euclidean distances to Euclidean distances*

*See Pekalska, SSSPR2004, On not making dissimilarities Euclidean

Conclusions

Dissimilarity based pattern recognition uses class differences during representation.

In many applications it is a good alternative for the feature based approach.

It thereby may combine structural approaches with learning from examples.

For some applications class overlaps may be avoided and domain based classifiers become of interest.

Learning and improving dissimilarity measures have to be studied further.

