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Pattern Recognition System
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Possible Object Representations
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Object Representations
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Feature Space - Discriminant Analysis

Objects
Object Representation in Feature Space
Noise and Biological Variations Cause Class Spread
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 S(x)≥ 0

Class B

Class A

Classification error due to class overlap

Find classifiers by
1. Distances
2. Densities
3. Error minimization
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Nearest Neighbor Classifier
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Probabilistic Approach: Bayes Rule

x

PAfA(x) PBfB(x)

S*(x) > 0 S*(x) < 0

S*(x) = PAfA(x) - PBfB(x) = 0

BA

ε* = minimum probability of error



4/4/2003 Pattern Recognition for Spectral Imaging 9

Error Minimization

x
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x
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*

decision function
S(x,θ) < 0 --> B

S(x,θ) ≥ 0 --> A

*

*

*

Change the parametersθ of the decision function such that the error is minimized

Error criterion: J(θ) = Σ C(S(x,θ)), e.g. error counting
x ∈Training set
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Non-Linear Classification
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--> Neural Networks
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Neural Network Classifiers
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Classifier Evaluation
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Learning Curves

Sample Size

Bayes error e*

True
Error

Classifier Complexity
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Feature Curves: Peaking Phenomenon

Feature Size

Error

Sample Size
∞

The curse of dimensionality

16 64 256 1024 4096
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Feature Selection

Reduction K Feature to N < K Features:

1. Define an evaluation criterion for some feature set:

    e.g. Divergence, Mahalanobis Distance, Classification Error.

2. Define a Strategy:

    e.g. Individual Selection, Forward, Backward, Branch & Bound, Floating.

3. Run.

For large features sets:

       very time consuming to learn.

       suboptimal.

       doubtful whether a small set of features will do.
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Feature Extraction

Find a small set of (non)linear combinations of given features:

1. Define an criterion, e.g. variance, Fisher distance.

2. Select the optimal combinations in parallel,

       directly, e.g. by eigenvalue decomposition

       iteratively, e.g. by some optimization procedure

    or sequentially, one by one.

For large feature sets:

     very time consuming to execute
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Feature Extraction by Principal Component Analysis

x1
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y1
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 # components (extracted features)

Variances

Described variance1

Maximizes the preserved variance

Neglects class separability

Not feasible for thousands of features
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Fisher Mapping (1)

µA µB–

x

e.g. Fisher Criterion:

JF x( )
µA µB–

2
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2 σB

2
+

-------------------------=σA σB

Fisher Mapping:

Find the direction that maximizes the sum of all pairwise Fisher

criteria over the set  classes.

Repeat perpendicular to established directions.

In total c-1 directions are found for c classes.
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Fisher Mapping (2)

x1

x2
B

A

y1

y2
B

A

y1/s2

y2/s2
B

A

B

A

x1

x2
B

A

y2/s2

y1/s2

1. Original 2. Decorrelated 3. Pre-whitened

4. PCA on means 5. Restored

Eigenvectors of Sw
1–
SB

4/4/2003 Pattern Recognition for Spectral Imaging 20

Face Recognition Example

40 classes, 10 images per class, 92 x 112 pixels
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PCA <--> Fisher Mapping
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PCA, Fisher Mapping (50) PCA, Fisher Mapping (200) PCA, Fisher Mapping (400)

Overtrained!
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Representations

Absolute, by features of objects

distributions, connectivity neglected

traditional

Relative, by dissimilarities between objects

distributions or domains, connectivity possibly included

proposed by us in 1997

Conceptual, by dissimilarities between objects and classes

domains, structural, connectivity included

new, inspired by Goldfarb
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d2

d1

dissimilarity
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train
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class A class B

dA dB
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The Dissimilarity Representation

A B

X

Given labeled training set T

Unlabeled object x  to be classified

The traditional Nearest Neighbor rule (template matching) just finds:

label(argmintrainset(di)),

without using DT. Can we do any better?

dx  =    (d1 d2 d3 d4 d5 d6 d7)

DT

d11d12d13d14d15d16d17

d21d22d23d24d25d26d27

d31d32d33d34d35d36d37

d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

4/4/2003 Pattern Recognition for Spectral Imaging 24

Approaches: Nearest Neighbor Rule

A B

X

Given labeled training set T

dx  =    (d1  d2   d3   d4 d5   d6   d7 )

class(x) = label ( argmin(di) )

- Computationally expensive

- Locally sensitive

- Consistent: if size(T) -->∞ then error --> 0Unlabeled object x  to be classified
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Approaches: Dissimilarity Space

dx  =   (d1 d2 d3 d4 d5 d6 d7)

DT

d11d12d13d14d15d16d17
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d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

r1 r2 r3

r1(d2)

r3(d7)

R3

Dissimilarities

Selection of 3 objects for representation

Classification in a 3D representation space

A B

X

Given labeled training set T

Unlabeled object x  to be classified

r2(d4)

really independent
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Embedding the Dissimilarity Representation

A B

Training set

Is there a feature space X for whichDist(X,X) = D?

Rk

x1

x2

           Euclidean distances      D

    Dissimilarity matrix D             X?



4/4/2003 Pattern Recognition for Spectral Imaging 27

Spectral Images

x

y

s

Pixel-band representation: very high-dimensional (~ 10 000 000)

Probably very redundant: need for other representations

Image pixels can be well represented by their spectra

                                           (unlike grey value images)
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Pattern Recognition Task 1: Image Segmentation

x1

x2
R9

object

background

In grey value images the pixel  neighborhood isneeded for its characterization!
Does it help in spectral images??
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Pattern Recognition Task 2: Image Recognition

x1

x2 Rn x n

K Images

x1

x2

K points in Rn x n

Rn x n

n

n

Do pixels really correspond?

4/4/2003 Pattern Recognition for Spectral Imaging 30

Image Recognition (2)

N Images NK Histograms

Filterbank (K)

NK Images

x1

x2

N points in R2K

R2K
1. Characterize pixels by their neighborhood (feature filters)

2. Characterize feature filters by their histogram over the image

3. Characterize images by some bands in the histograms (here 2)

In spectral imaging the first step is not needed.

Each spectral band is already a pixel feature.
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Object Recognition

perimeter

ar
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object
segmentation

feature
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Segment the image

Find features for the segment

Classify
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Spectral Pixel Representation

frequency

power

Spectrum

Pixel Representation:

By the amplitudes of allbands in its spectrum.
By characteristics (features)of its spectrum.
By thesimilarities of its spectrum with other spectra.
By the one of these extended with someneighborhood properties.
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Spectral Image Representation

x

y

s
Spectral Image Representation:

Pixel based: by all  pixels
Histogram based: by frequencies of particular pixel characteristics
Object based: by characteristics of image segments
Image based: by similarities with other images
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Spatial and Spectral Connectivity

x

y

s

frequency

power

Spectra f
2

*

*

*

*

f
1

neighboring pixels

pixel spectrum based feature space

spectral domain

spatial domain

In sample based representations the connectivity is lost between
the representation domains, but also between neighboring samples.
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Problems with the Pixel Based Image Representation - 1

Spatial connectivity is lost

x1 x2 x3

x1

x2

x3

Dependent (connected) measurements are represented independently.,
The dependency  has to be refound from the data
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Problems with the Pixel Based Image Representation -2

Reshuffle
Pixels

Feature Space, Rnxn

Reshuffling pixels will not change the classification

Training set

Spatial connectivity is lost

pixel_1

pixel_2

n

n
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Problems with the Pixel Based Image Representation - 3

Feature Space, Rnxn

Representation jumps after small disturbances

pixel_1

pixel_2
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Non-pixel Based Representations Needed for Connected Measurements

What are representations that:

• use of the connectedness

• enable the integration of more knowledge

How can they be optimized for

• knowledge?

• for the data?

• for recognition (learning and testing)

Performance in accuracy (and time)time

frequency

power

amplitude

binary images grey value images

spectra

time signals

hyperspectral images

x

y

s
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Dissimilarities for Spectral Images

Relative, dissimilarity representations for solving the connectivity problem:

- select an appropriate dissimilarity d(x,r) measure between spectra

- select a few (e.g. 3) pixels or a few standard spectra (r) for representation

- compute all dissimilarities d(x,r) with all pixel-spectra x

--> pixels in Rr for segmentation (clustering) or image recognition

pixel spectrum

representation
spectra

*

*

*

*

r3

r2

r1

x

d(x,r1)

d(x,r2)

d(x,r3)
R3
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Discussion

Spectral images have well defined pixels,

so less need for characterization by their neighborhood.

Amount of data is high, but possibly redundant.

Preservation of the connectivity of spectra and images during the analysis

is recommended, but still not established.

Dissimilarity representations are promising.


