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Pattern Recognition System
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Object Representations
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Feature Space - Discriminant Analysis
- e
Objects > N . .
"‘@ SN Object Representation in Feature Space

Noise and Biological Variations Cause Class Spread
Classification error due to class overlap
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Nearest Neighbor Classifier
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Probabilistic Approach: Bayes Rule

£* = minimum probability of error
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S*(X) = Pafa(X) - Psfg(x) =0
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Error Minimization
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Change the parametdi®f the decision function such that the error is minimized

Error criterion: J§) = > C(S(xB)), e.g. error counting

x OTraining set
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Non-Linear Classification
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Neural Network Classifiers

Targets - Classes

Output unit ff(x w)
] 0

Weights w / "AM‘\ Y20 =5, 0
Hidden units /%"N\ b, 1
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0 T3 %
Weights
S Weights in all layers
Input units Normalized outputs (0,1) in all layers
Xy oo g More output units are possible

More hidden layers are possible.
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Classifier Evaluation
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Learning Curves

Classifier Complexity
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Feature Curves: Peaking Phenomenon
The curse of dimensionality
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Feature Selection

Reduction K Feature to N < K Features:
1. Define an evaluation criterion for some feature set:
e.g. Divergence, Mahalanobis Distance, Classification Error.
2. Define a Strategy:
e.g. Individual Selection, Forward, Backward, Branch & Bound, Floating.
3. Run.

For large features sets:
very time consuming to learn.
suboptimal.
doubtful whether a small set of features will do.
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Feature Extraction

Find a small set of (non)linear combinations of given features:
1. Define an criterion, e.g. variance, Fisher distance.
2. Select the optimal combinations in parallel,

directly, e.g. by eigenvalue decomposition

iteratively, e.g. by some optimization procedure

or sequentially, one by one.

For large feature sets:

very time consuming to execute
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Feature Extraction by Principal Component Analysis

Maximizes the preserved variance
Not feasible for thousands of features

Neglects class separability
yl

Variances
x1 # components (extracted features)
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Fisher Mapping (1)

e.g. Fisher Criterion:
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Fisher Mapping:

Find the direction that maximizes the sum of all pairwise Fisher
criteria over the set classes.

Repeat perpendicular to established directions.

In total c-1 directions are found for c classes.
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Fisher Mapping (2)

1. Original 2. Decorrelated 3. Pre-whitened
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Face Recognition Example

40 classes, 10 images per class, 92 x 112 pixels
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PCA <--> Fisher Mapping

PCA PCA, Fisher Mapping (5) PCA, Fisher Mapping (20)
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Absolute, by features of objects trag area feature space

o - °
distributions, connectivity neglected D__ | %
|\ .
traditional A L

N perimeter

Relative, by dissimilarities between objects

N d; dissimilarity
dy| o SPace
[)

proposed by us in 1997 LX) °

distributions or domains, connectivity possibly include

Conceptual, by dissimilarities between objects and classes
domains, structural, connectivity included class A class B

new, inspired by Goldfarb ” |\
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The Dissimilarity Representation
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Given labeled training set T [T 05,0505 400 s ]
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Unlabeled object x to be classified d, = (dy dy dg dy ds dg dy)

The traditional Nearest Neighbor rule (template matching) just finds:

label(argmifyzinsefd)),

without using DT. Can we do any better?
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Approaches: Nearest Neighbor Rule

: B class(x) = label ( argmin{d)
Given labeled training set T ) Computationally expensive
Q X - Locally sensitive

Unlabeled object x to be classified - Consistent: if size(T) --»o then error --> 0
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Approaches: Dissimilarity Space

A NN

Dissimilarities
Given labeled training set T :’Q
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Classification in a 3D representation space

4/4/2003 Pattern Recognition for Spectral Imaging 25

Embedding the Dissimilarity Representation

AﬁQB

:’Q —» Dissimilarity matrix D——  X?

Training set

Is there a feature space X for whidlst(X,X) = D?

X5 Rk

. o Euclidean distances D

X1
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Spectral Images

Pixel-band representation: very high-dimensional (~ 10 000 000)
Probably very redundant: need for other representations
Image pixels can be well represented by their spectra

(unlike grey value images)
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Pattern Recognition Task 1: Image Segmentation

X2 ® Rg
o © background
.. ¢ °
Biry o &
_ o o
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X1

In grey value images the pixel neighborhoogasded for its characterization!
Does it help in spectral images??
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Pattern Recognition Task 2: Image Recognition
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Do pixels really correspond?
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Image Recognition (2)
N Images NK Images NK Histograms
Filterbank (K)
1. Characterize pixels by their neighborhood (feature filters) X2 . Ro
[ J
2. Characterize feature filters by their histogram over the image o ® %
[ J
3. Characterize images by some bands in the histograms (here 2) ¢ 8 %
In spectral imaging the first step is not needed. X1
Each spectral band is already a pixel feature. N points in Bk
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Object Recognition

object feature

segmen[é'tion extraction

area

Segment the image perimeter

Find features for the segment
Classify
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Spectral Pixel Representation

powl

Spectru

3

frequenc
g

Pixel Representation:

By the amplitudes of aljands in its spectrum.

By gharacteristics (featuregj its spectrum.

By thegimilarities of its spectrum with other spectra.

By the one of these extended with sogeeghborhood properties.
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Spectral Image Representation

Spectral Image Representation:

Pixel based: by all pixels
Histogram based: by frequencies of particular pixel characteristics
Object based: by characteristics of image segments
Image based: by similarities with other images
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Spatial and Spectral Connectivity

spectral domain

* % .. neighboring pixels

f——»

1
pixel spectrum based feature space

spatial domain

In sample based representations the connectivity is lost between
the representation domains, but also between neighboring samples.
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Problems with the Pixel Based Image Representation - 1

Spatial connectivity is lost

X1/ X2 X3

Dependent (connected) measurements are represented independently.,
The dependency has to be refound from the data
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Problems with the Pixel Based Image Representation -2

Spatial connectivity is lost

pixel 2 Feature Space, R,
° : 0.
Training set %
o) 0
Reshuffle pixel_1

Pixels

Reshuffling pixels will not change the classification
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Problems with the Pixel Based Image Representation - 3

Representation jumps after small disturbances

pixel 2| e

° Feature Space, R, e

pixel_1
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Non-pixel Based Representations Needed for Connected Measurements

binary images grey value images hyperspectral images

What are representations that:
« use of the connectedness

* enable the integration of more knowledge

f How can they be optimized for
requenc
u * knowledge?

« for the data?

time signals

[
| | : I ' « for recognition (learning and testing)
amplitude , /1 | | | L '

V

\i/ fime Performance in accuracy (and time)
—
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Dissimilarities for Spectral Images

Relative, dissimilarity representations for solving the connectivity problem

- select an appropriate dissimilarity d(x,r) measure between spectra

- select a few (e.g. 3) pixels or a few standard spectra (r) for representation
- compute all dissimilarities d(x,r) with all pixel-spectra x

--> pixels in R for segmentation (clustering) or image recognition

f3 .o
d(x,ra) T R3 e eece:
f2 o o .o ¢ :o e o °
X dxrg) s =0 e )
- rl L ° ®
pixel spectrum /f'\ ® LT
representation dix,ry) —
spectra
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Discussion

Spectral images have well defined pixels,
so less need for characterization by their neighborhood.
Amount of data is high, but possibly redundant.
Preservation of the connectivity of spectra and images during the analysis
is recommended, but still not established.

Dissimilarity representations are promising.
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