Spectral Imaging Workshop

Pattern Recognition for Spectral Imaging

Robert P.W. Duin

Pattern Recognition Group Delft University of Technology The Netherlands

duin@ph.tn.tudelft.nl

Graz, 3 April 2003

Contents

Pattern Recognition System - Recapitulation Representations for Spectral Image Recognition Spectral Image Recognition Conclusions

Object Representations

Feature Space - Discriminant Analysis

Nearest Neighbor Classifier

Probabilistic Approach: Bayes Rule

Error Minimization

Change the parameters θ of the decision function such that the error is minimized

Error criterion: $J(\theta) = \sum_{x \in \text{Training set}} C(S(x,\theta))$, e.g. error counting

4/4/2003

Pattern Recognition for Spectral Imaging

9

Non-Linear Classification

--> Neural Networks

Neural Network Classifiers

Classifier Evaluation

Learning Curves

Feature Curves: Peaking Phenomenon

Reduction K Feature to N < K Features:

1. Define an evaluation criterion for some feature set:

e.g. Divergence, Mahalanobis Distance, Classification Error.

2. Define a Strategy:

e.g. Individual Selection, Forward, Backward, Branch & Bound, Floating.

3. Run.

For large features sets:

very time consuming to learn. suboptimal. doubtful whether a small set of features will do.

4/4/2003

Pattern Recognition for Spectral Imaging

15

Feature Extraction

Find a small set of (non)linear combinations of given features:

- 1. Define an criterion, e.g. variance, Fisher distance.
- 2. Select the optimal combinations in parallel,

directly, e.g. by eigenvalue decomposition

iteratively, e.g. by some optimization procedure

or sequentially, one by one.

For large feature sets:

very time consuming to execute

Feature Extraction by Principal Component Analysis

Fisher Mapping (1)

Fisher Mapping (2)

Face Recognition Example

40 classes, 10 images per class, 92 x 112 pixels

PCA <--> Fisher Mapping

Representations

The Dissimilarity Representation

The traditional Nearest Neighbor rule (template matching) just finds: label(argmin_{trainset}(d_i)), without using DT. Can we do any better?

4/4/2003

Pattern Recognition for Spectral Imaging

23

Approaches: Nearest Neighbor Rule

Given labeled training set T

 $d_x = (d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6 \ d_7)$ class(x) = label (argmin(d_i))

- Computationally expensive
- Locally sensitive
- Consistent: if size(T) --> ∞ then error --> 0

Approaches: Dissimilarity Space

Embedding the Dissimilarity Representation

Spectral Images

Pixel-band representation: very high-dimensional (~ 10 000 000)
Probably very redundant: need for other representations
Image pixels can be well represented by their spectra
(unlike grey value images)

4/4/2003

Pattern Recognition for Spectral Imaging

27

Pattern Recognition Task 1: Image Segmentation

In grey value images the pixel neighborhood is <u>needed</u> for its characterization! Does it help in spectral images??

Pattern Recognition Task 2: Image Recognition

Image Recognition (2)

Object Recognition

4/4/2003

Pattern Recognition for Spectral Imaging

31

Spectral Pixel Representation

Pixel Representation:

By the amplitudes of all <u>bands in its spectrum</u>. By <u>characteristics</u> (features) <u>of its spectrum</u>. By the <u>similarities</u> of its spectrum with other spectra. By the one of these extended with some <u>neighborhood</u> properties.

Spectral Image Representation

Spectral Image Representation:

Pixel based:	by all pixels
Histogram based:	by frequencies of particular pixel characteristics
Object based:	by characteristics of image segments
Image based:	by similarities with other images

4/4/2003

Pattern Recognition for Spectral Imaging

33

Spatial and Spectral Connectivity

In sample based representations the connectivity is lost between the representation domains, but also between neighboring samples.

Problems with the Pixel Based Image Representation -2

Problems with the Pixel Based Image Representation - 3

Non-pixel Based Representations Needed for Connected Measurements

Dissimilarities for Spectral Images

Relative, dissimilarity representations for solving the connectivity problem:

- select an appropriate dissimilarity d(x,r) measure between spectra
- select a few (e.g. 3) pixels or a few standard spectra (r) for representation
- compute all dissimilarities d(x,r) with all pixel-spectra x
- --> pixels in R_r for segmentation (clustering) or image recognition

Discussion

Spectral images have well defined pixels,

so less need for characterization by their neighborhood.

Amount of data is high, but possibly redundant.

Preservation of the connectivity of spectra and images during the analysis

is recommended, but still not established.

Dissimilarity representations are promising.