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Abstract

Pattern recognition is a very general technology useful for the automatic detection and classifi-
cation of patterns in data. As such it can be used in almost any application of intelligent sensors 
as well as in all areas of research that need to find regularities in observations. The basic steps 
in pattern recognition, representation and generalization, will be introduced and discussed. It 
will thereby be made clear how learning from observations works, but also some paradoxical 
examples will be shown in  which more observations result in more confusion instead of more 
knowledge. 

Pattern recognition is primarily a human ability. Patterns are defined by human beings. Recog-
nition is thereby related to finding concepts and  the art of naming. As such, attempts to build 
automatic pattern recognition  systems have to rely on the understanding of the human ability 
to do so.  Consequently, pattern recognition is also a very basic area of science.  It suffers from 
prejudices and paradigm shifts. It's progress depends on the human possibility of self-under-
standing, and thereby on his consciousness.  

In the first part of the presentation the technology of pattern recognition will be discussed. In 
the second part a broader scientific perspective will  be taken, illustrated by some personal fail-
ures and steps in science and  consciousness. 

Slides:

0. Introduction

1. Generalization

2. Representation

3. Paradigms

4. Consciousness

These slides, especially the ones on consciousness, are intended to illustrate the oral presenta-
tion and generate a discussion. They should not be considered to present some definite facts or 
truths. 
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Pattern Recognition, LNCS, vol. 4109, Springer Verlag, Berlin, 2006, 41-55.

R.P.W. Duin and E. Pekalska, The Science of Pattern Recognition; Achievements and Perspec-
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Contents

• Pattern Recognition in Science

• The Generalization Problem
• The Representation Problem

• Steps in Science: Paradigm Shifts
• Steps in Consciousness: Patterns in Pattern Recognition
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Pattern Recognition Problem 

What is this? What occasion? Where are the faces? Who is who?
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Pattern Recognition: OCR

Kurzweil Reading Edge

Automatic text reading machine 
with speech synthesizer
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Pattern Recognition: Traffic

Road sign detection
Road sign recognition
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Pattern Recognition: Traffic

License Plates
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Pattern Recognition: Images

100 Objects
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Pattern Recognition: Faces

Is he in the database? Yes!
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Pattern Recognition: Speech
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Gesture Recognition

Is this gesture in the database?
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Pattern Recognition: Pathology

MRI Brain Image

19 June 2008 12Pattern Recognition: steps in Science and Consciousness

Pattern Recognition: Pathology
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Pattern Recognition: Seismics

Earthquakes
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Pattern Recognition: Shape Recognition

Pattern Recognition is very often Shape Recognition:
• Images: B/W, grey value, color, 2D, 3D, 4D
• Time Signals
• Spectra
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Pattern Recognition: Shapes

Examples of objects for different classes

Object of unknown class to be classified

A B?
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

perimeter

ar
ea

perimeter

area

Feature Representation
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Pattern Recognition Issues

• Generalization: how to define mathematically a recognition 
system, e.g. a classifier.

• Evaluation: how to determine the performance of a recognition 
system.

• Complexity: how is the performance of a recognition system 
related to its complexity?

• Representation: how to represent a real world problem in 
mathematical terms such that generalization can be done well.

• How does pattern recognition relate to science in general?
• Examples of paradigm shifts in pattern recognition.
• Consciousness as a condition for pattern recognition.
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Generalization: Learning from Examples

Examples of objects for different classes

Object of unknown class to be classified

A B?
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

perimeter

ar
ea

perimeter

area

Feature Representation
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Pattern Recognition System

Statistics needed to 
solve class overlap

Test object 
classified as ’A’

Representation GeneralizationSensor

Classification Feature Space 

1x

2x
BBA
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Bayes decision rule, formal

p(A|x)            >    p(B|x)             A else B

p(x|A) p(A)     >   p(x|B) p(B)      A else B

Bayes: p(x|A) p(A)           p(x|B) p(B) 
p(x)                    p(x)> A else B

2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) > 0  A else B

n-class problems: Class(x) = argmaxω(p(x|ω) p(ω))
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Decisions based on densities

length

p(length | male)p(length | female)

What is the gender of somebody with this length?

p(female | length) = p(length | female) p(female) / p(length)
p(male | length) = p(length | male) p(male) / p(length)Bayes: {
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Decisions based on densities

length

p(length | male) p(male)p(length | female) p(female)

What is the gender of somebody with this length?

p(female | length) = p(length | female) p(female) / p(length)
p(male | length) = p(length | male) p(male) / p(length)Bayes: {

p(female) = 0.3
p(male)    = 0.7

1.0
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Bayes decision rule

p(female | length)   >   p(male | length)   female else male

Bayes:

p(length | female) p(female)            p(length | male) p(male) 
p(length)                                  p(length)>

p(length | female) p(female) > p(length | male) p(male) female else male

pdf estimated from training set class prior probabilities
known, guessed or estimated
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Compactness

The compactness hypothesis is not
sufficient for perfect classification
as dissimilar objects may be close.

class overlap
probabilities

Representations of real world similar objects are close. 
There is no ground for any generalization (induction) on representations
that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

1x

2x

(perimeter)

(area)
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Distances and Densities

? to be classified as

B – because it is most
close to an object A

A – because the local
density of B is larger.

1x

2x

(perimeter)

(area)

A

B
?
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Distances: Scaling Problem

Before scaling: D(X,A) < D(X,B) After scaling: D(X,A) > D(X,B)

perimeter

√area

X B

Aarea

perimeter

X B

A
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How to Scale in Case of no Natural Features

Make variances equal:

color

perimeter

color'

)colorvar(
colorcolor'=

)perimetervar(
perimeterperimeter'=

perimeter
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Density Estimation:

What is the probability of finding an object
of class A (B) on this place in the 2D space? 

What is the probability of finding an object
of class A (B) on this place in the 1D space? 

1x(perimeter)

(area)

A

B
?

2x

(perimeter)  1x
?
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Density estimation (1)
• The density is defined on the whole feature space.
• Around object x, the density is defined as:

• Given n measured objects, e.g. person’s height (m) how can we estimate p(x)?

⎟
⎠
⎞

⎜
⎝
⎛==

volume
objectsoffraction)()(

dx
xdPxp
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Density estimation (2)

• Parametric estimation:
• Assume a parameterized model, e.g. Gaussian
• Estimate parameters from data
• Resulting density is of the assumed form

• Non parametric estimation:
• Assume no ‘formal’ structure/model, choose ‘approach’
• Estimate density with chosen approach
• Resulting density has no formal form
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The Gaussian distribution (3)

• 1-dimensional density:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2

2

)(
2
1exp

2
1)(

σ
μ

πσ
xxp

• Normal distribution =
Gaussian distribution

• Standard normal
distribution:
μ = 0, σ 2 = 1

• 95% of data between
[ μ - 2σ, μ + 2σ ] (in 1D!)
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0
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0.2

0.3
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0.5

μ

σ
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Multivariate Gaussians

• k - dimensional density:

⎟
⎠
⎞

⎜
⎝
⎛ −−−

π
= − )()(

2
1exp

)det(2
1)( 1T μxGμx

G
xp

k

μ
G G == 3    13    1½½

11½½ 22
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Parametric estimation
• Assume Gaussian model
• Estimate mean and covariance from data
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Mahalanobis Distance

)(G)(D BA
1T

BA μ−μμ−μ= −

G,Aμ G,Bμ

Distance between two classes

)x(G)x(D 1T −μ−μ= −

G,μ

x
Distance between a point and a class
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Nonparametric estimation
Histogram method:
1. Divide feature space in 

N2 bins
2. Count the number of objects in each 

bin
3. Normalize:

, 1

ˆ ( ) ij
N

ij
i j

n
p x

n dxdy
=

=

∑
x

y

dx

dy
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Parzen density estimation (1)

• Fix volume of bin, vary positions of bins, add contribution of each bin
• Define ‘bin’-shape (kernel): 

• For test object z sum all bins

-2 -1 0 1 2 3 4 5 6 7
-3

-2

-1

0

1

2

3

40)( >rK

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

i

i

h
K

hn
p xzz 1)(

1)( =∫ rr dK
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Parzen density estimation (2)

)(xp̂

x

Parzen:

• With Gaussian kernel: ( )2

2

2π2
1 exp)( h

x
hxK =
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Parametric vs. Nonparametric

• Parametric estimation, based on some model:
• Model parameters to estimate
• More samples required than parameters
• Model assumption could be incorrect resulting in erroneous 

conclusions
• Non parametric estimation, hangs on data directly:

• Assume no ‘formal’ structure/model
• Almost no parameters to estimate
• Erroneous estimates are less likely
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Classification, Discriminant Analysis

Supervised learning: how to learn S(x) from examples?

B
A

S(x)=0
S(x)<
0

S(x)>=0

RARB

Vector space S(x)
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Classification error
Classification error ε is the probability that an arbitrary x is erroneously classified 
by a decision rule S(x):

)()|0)(()()|0)((
),0)((),0)((

BpBSPApASP
BSPASP

∈≥+∈<=
∈≥+∈<=

xxxx
xxxx

ε
ε

1)()( =+ BpAp

and          are the probability density functions (pdf’s) of A and B.)(xAf )(xBf

A then,0)(If →≥ xxS
Bthen,0)(If →< xxS

εA εB
xxxx

xx

dfBpdfAp
S

B
S

A ∫∫
≥<

+=
0)(0)(

)()()()(ε

B

A

S(x)=0S(x)<0

S(x)>=0

RA

RB

)(xBf )(xAf
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The optimal rule is the Bayes decision 
ruleDetermine the optimal S(x) such that

xxxxxxxx

xxxx

dfBpdfBpdfBpdfAp

S
R

B

S
R

B

S
R

B

S
R

A

BBAB
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<<≥<

−++=

0)(
:

0)(
:

0)(
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0)(
:

)()()()()()()()(ε
P(B)

This is minimum if over RB: S(x) <0. 0)]()()()([ <− xx BA fBpfAp

)()()()()(* xx BA fBpfApxS −=

So, the optimal rule is the Bayes decision rule.

xxxx
xx

dfBpdfAp
S

B
S

A ∫∫
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0)(0)(
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Optimal classification error = Bayes
error

Classification error is minimal, ε*, if the decision function is optimal. 
This is the Bayes error, the lowest achievable error!

xxx dfBpfAp BA })()(),()(min{* ∫=ε

Bayes error is only reachable if true distributions are known.

)()( xAfAp)()( xBfBp

Aε Bε

*ε

0)(* =xS
A 0)(* ∈→≥ xxSB 0)(* ∈→< xxS

)()()()()(* xxx BA fBpfApS −=Bayes decision rule:

Bayes error:
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Classification error
Sub-optimal classifier, e.g. based on wrong density estimates

xxxx
xx

dfBpdfAp
S

B
S

A ∫∫
≥<

+=
0)(0)(

)()()()(ε

)(),(),(),( xx BA ffBpAp estimated by parametric or non-parametric approaches

S(x)=0 discriminant function, e.g. piece-wise linear

x

εA εB

)()( xAfAp)()( xBfBp
BA εεε +=

Aε

0)( =xS
A 0)( ∈→≥ xxSB 0)( ∈→< xxS

Bε

09/06/2008 29Generalization

Bayes rule for different distributions

)()()()()(* xxx BA fBpfApS −=

∫= xxxx dfBpfAp BA )}()(),()(min{)(*ε

x

x

A 0)(* ∈→≥ xxS
x

)()( xAfAp

)()( xBfBp

*ε

B 0)(* ∈→< xxS
A 0)(* ∈→≥ xxS

Aε
Bε

Bε
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Bayes decision making (how-to)

Assumes knowledge about class pdf’s.
),()|(ˆ σμω Np i =x

x1 x5 x7x4x3x2 x6 x8

Two approaches to estimate pdf’s:
1) Parametric

• Assume a particular model for each pdf
• Estimate parameters from the training set
• E.g. Gaussian, Mixtures of Gaussians

2) Non-parametric
• No assumption about the underlying pdf

(restrict the smoothness of the estimate)
• Estimate locally and combine globally
• E.g. Histogram, k-NN, Parzen

)|(ˆ)( ii pf ωxx =

)()|(maxarg)(class ii pp
i

ωω
ω

xx =

Total
||

)(ˆ i
ip

ω
ω =

∑
∈

−=
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h
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i hK
n

p
ω

ω )/)((1)|(ˆ yxx

)/)(( hKh yx −

x1 x5 x7x4x3x2 x6 x8
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Bayes rule: summary
• Bayes decision rule is optimal when both class priors and pdf’s are known. 

• Usually, we have to estimate both pdf’s and priors from the data, which  
leads to estimation errors. We may approach the Bayes error only for very 
large training sets. 

• In other cases additional costs or risk are involved. E.g:
• it is very risky to classify an ill patient as healthy 
• it is less risky to classify a healthy patient as ill (extra tests)

In this situation we have to adapt the formulation to the minimum cost  
classification.
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Discriminant Analysis
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Probability density estimates of the classes
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Quadratic discriminant=Bayes rule for Normal 
Distributions [G]

)]B|()(log[)]A|()(log[
)B|()()A|()(

xx
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pBppAp

=
=

0)B|()()A|()()( =−= xxx pBppApSBayes rule

logs don’t 
matter
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R(x) and S(x) have the same signs
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Normal
distribution

Substitute

Quadratic expression
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T
A +−Σ−+−Σ−−= −− μxμxμxμxxR
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Quadratic discriminant functions
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QDC assumes that classes are normally 
distributed. Wrong decision boundaries are 
estimated if this does not hold.
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Bayes rule for Normal Distributions with Equal 
Covariances [G]

const)ˆ(ˆ)ˆ(
2
1)ˆ(ˆ)ˆ(

2
1)( B

1
B

T
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1
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T
A +−Σ−+−Σ−−= −− μxμxμxμxxR

Assume ΣA and ΣB are equal: Σ=ΣA=ΣB. Quadratic term disappears.

QDC

(B)]log[p(A)/pˆˆˆ
2
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2
1

B
1T

BA
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Unequal covariance matrices use linear approximation Σ=p(A)ΣA+p(B)ΣB
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Σ=p(A)ΣA +p(B)ΣB
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Linear expression

LDC
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Linear discriminant function (summary) 
[G]

const)()( 1T
BA +Σ−= − xμμxS

Normal distributions with equal 
covariance matrices Σ are optimally 
separated by a linear classifier

Optimal classifier for normal distributions 
with unequal covariance matrices ΣA and 
ΣB can be approximated by:

x1

x2

const))B()A(()()( 1
BA

T
BA +Σ+Σ−= − xμμx ppS

ldc

x1

x2
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Fisher linear discriminant (I)
Assume a two-class problem. We look for a linear discriminant: 

0
T)( wS += xwx

such that the separability between the classes is maximized along w. 

Fisher criterion:

22

2
BA

2
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Fisher linear discriminant (II)

Fisher criterion along the direction w:

ww
ww
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Solution for ΣW= Σ:

ΣB is the between-class covariance matrix.

ΣW is the within-class covariance matrix.

)ˆ-ˆ(ˆ
BA

1
W μμw −Σ=

Same as LDC up to a constant.

No assumption is made about 
normality of the data.

w

fisherc
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Nearest mean classifier (NMC) [G]
Assume Σ=ΣA =ΣB =I. Linear discriminant becomes the nearest mean classifier.
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Naïve-Bayes classifier [G]

∏
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Assume class-independent features.

Estimate class probability density functions per feature: 1D histograms, 1D 
normal distributions, 1D Parzen estimates, etc. Multiply estimates.

x2

x1

Use Bayes decision rule: 

naivebc )()|(maxarg)(class kk pp
k

ωω
ω

xx =

)()()()()( xxx BA fBpfApS −=
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Logistic model – logistic classifier [D]
• It holds for the Bayes discriminant: 
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• For linear discriminants, we have:

)|(1)|( xx ApBp −=Given that

loglc
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Logistic function

• It appears that                              is linear for many distributions.

• E.g. normal, binary, multimodal and mixtures of them.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)B|()(
)A|()(log

x
x

pBp
pAp

0
T

1
1)|()(

we
Apf

−−+
==

xw
xx is called the logistic function.

See: Anderson, Logistic Discrimination, in : Handbook of Statistics, vol. 2, Krishnaiah and Kanal
(eds.), North Holland, 1982, pp. 169 - 191
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The Logistic Model, ML Estimation
• Observations X={x1,..,xn} depend on the unknown parameter θ. 
• Assumption: data samples are independent, identically distributed (iid):

f(x1,..,xn| θ) = ∏ f(xi| θ). 
• Likelihood is a function of θ, samples xi are fixed. L(θ|X)=f(x1,..,xn|θ)=∏ f(xi|θ).
• Maximum Likelihood: θML=argmaxθ L(θ|X) =argmaxθ log L(θ|X).

});|();|(log{)(log ∏∏
∈∈

=
B

i
A

i
ii

BpApL
xx

wxwxw
In the logistic model, we maximize the conditional log-likelihood:

∑∑
∈∈

−=
∂

∂
=

B
j

A
j

j

BpxApx
w
L

xx
wxwxw );|();|()(log0

by using a gradient-descent method (steepest ascent or Newton) :

loglc

For separable classes, maximum is at ∞, as p(A|x)=1 for x in A, and p(B|x)=1 for x in B. 
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Decision trees [D]

x1 < a ?

x1 < b ?

x2 < d ?x2 < c ?

B

A

A

B

B

yes

yes

yes yes

no

no

no

no

x1

x2

a b

c

d

B

A

Implementation of a piece-wise linear classifier: 
treec

C4.5-decision tree. An algorithm used to generate a decision tree developed by Ross Quinlan. 
See: J.R.Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

• Fast.
• Moderate performance.
• Often simple to interpret.
• Can handle numerical and categorical variables.
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Nearest neighbor rule (1-NN rule) [D]

1-NN rule:

• Often relies on the Euclidean distance. 
Other distance measures can be used.

• Insensitive to prior probabilities!

• Scaling dependent. Features should be 
scaled properly.

There are no errors on the training set. The classifier is overtrained.

Assign a new object to the class of the nearest neighbor in the training set.

knnc

x1

x 2
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1-NN rule: examples

-10 -5 0 5
-10

-5

0

5

Feature 1
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Banana Set

-4 -2 0 2 4

-2

-1

0

1

2

3

4

Feature 1

F
ea

tu
re

 2

Simple Problem

Advantages:
• Simple.
• Works well for almost separable classes.
• Useful to shape non-linear decision functions.

Disadvantages:
• No training time. Long execution time. 
• All data should be stored.

gendatb
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1-NN classification error

The nearest neighbor rule will not perform worse than twice the best possible 
classifier.

1-NN is often a very good classifier!!!!

Asymptotically (for very large training sets):

*2*)1(*2* 1 εεεεε ≤−≤≤
∞→

−
n
NN
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k-nearest neighbor rule (k-NN) [D]

Assign an object to the class that is most frequently represented among k 
nearest neighbors in the training set of n objects.

Less local than 1-NN. 
More smooth. 
Very global when k n.

x1

x 2

• Simplifies to majority vote:

)(Vol
)|(ˆ

x
x

j

j
j n

k
p =ω

n

n
p j

j =)(̂ω

kjkk jk ≠∀>

knnc

• k-NN class density estimates

• Priors

• Decision rule

kj
n
n

n
k

n
n

n
k j

j

jk

k

k ≠∀>
)(Vol)(Vol xx

)|(ˆ)(ˆ jj pp ωω x
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k-NN decision boundaries: optimal k in the k-
NN rule

: k=5
: k=50
: k=100
: k=200

k

Classification
error e e1NN

e = 1-maxi{p(ωi)}

May be approximated by 
leave-one-out optimization 
of the error on the training 
set

Rule of thumb: 
choose k= sqrt(n)
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Nearest prototype rule: editing and 
condensing

Editing: removes objects that are 
misclassified by the k-NN rule.

x1

x 2

x1

x2

*

x1

x2

*

Condensing: select a subset of 
prototypes such that the 1-NN rule 
performs similarly as on the complete 
training set.

k-NN rule: distances to all training 
objects have to be computed.

Editing-and-condensing reduces the 
complexity while aiming at comparable 
classification accuracy.

edicon
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Parzen classifier [G]
• Bayes decision rule

• Substitute Parzen density estimates

• Parzenc: optimize h for classification

• Parzendc: optimize h for density 
estimation per class

)()|(maxarg)(class kk pp
k

ωω
ω

xx =

⎟
⎠
⎞

⎜
⎝
⎛ −
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hK

x1 x5 x7x4x3x2 x6 x8

⎟
⎠
⎞

⎜
⎝
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Parzen: density estimates vs the smoothing 
parameter h
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0
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Simple Problem
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-10 -5 0 5

-8

-6

-4

-2

0

2

4

Feature 1

F
ea

tu
re

 2

Banana Set

-10 -5 0 5

-8

-6

-4

-2

0

2

4

Feature 1

F
e

at
ur

e
 2

Banana Set

-10 -5 0 5

-8

-6

-4

-2

0

2

4

Feature 1

F
e

a
tu

re
 2

Banana Set

Small h Optimal h Large h

2D

1D

Increasing smoothing parameter h
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Parzen classifier performance

Smoothing parameter h

Classification
error ε

ε1NN

εNMC

nmcknnc

parzenc

Parzen classifier:

• Small smoothing parameter: 1-NN performance, ε ε1NN

• Large smoothing parameter: Nearest mean performance, ε εNMC
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Support vector machine (SVM) [D]

For linearly-separable classes find 
the few objects that determine the 
classifier. These are support vectors.

They have the same distance to the 
classifier: the margin.

Identical to
“maximum-margin classifier”

∑=
i

T
ii xxxS )()( α

)min(,)( wwxwxS TT=
x1

x2

*

x1

x2

*

1995-2005

svc 
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SVM: Examples

-2 0 2 4 6 8 10
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Gaussian Data

Support Vector Classifier
Bayes-Normal-1

-10 -5 0 5

-8

-6

-4

-2

0

2

4

6

Feature 1
F

ea
tu

re
 2

Banana Set

Support Vector Classifier
RB Support Vector Classifier

svc versus ldc for classes with 
very different domains

Linear (svc) versus nonlinear 
support vector classifier (rbsvc)

svc ldc svc rbsvc
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Classifiers based on error optimization 
[D]

A then,0);(If →≥ xθxS
B then,0);(If →< xθxS

B

A

x1 = area

x 2
=

 p
er

im
et

er

0);( =θxS

Change parameters θ of the decision function such that the classification error is 
minimized. Gradient-based techniques are used to solve nonlinear equations.

perlc

bpxnc

lmnc

Error function: ));(()(
setTrainingin

θxθ
x

∑= SFJ
E.g. error count, average 
error, sum of distances 
to the boundary
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x1

x2

*

x1

x2

*

Perceptron [D]

x
1

x
n

.......

y = w • x

1

wnw0 w1

1 2
3

xw •Classifier outcome

correcterror

xw •Δ
correction

Linear classifier. The 
weights are corrected 
for erroneously 
classified objects only

x),w(www nnn Δ+=+1

perlc
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Neural network classifiers [D]

x1 x2

Weights w12jWeights w11j

Weights w2j

 Σ w1ij xi

oj

-w10j
0

1

 Σ w2j oj

f(x,W)

-w20
0

1

Input units

Hidden units
(hidden layer)

Output unit

1985-1995
Number of layers with identical 
neurons (simple linear classifiers) 
with non-linear transitions in 
between (sigmoids). Leads to a 
moderately non-linear classifier.

Trained object by object to 
minimize the MSE on the output 
compared with targets (labels).

Tricky training procedure.

Slow training and execution, 
unless special hardware is used.

Good performance; danger of 
overtraining.

rbnclmncbpxncneurcrnnc
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Classifier outputs
What are the possible outcomes of y = classifier(x)?
• Label, y1 ∈{‘apple’,’banana’}.
• y2 ∈{0,1} as crisp numeric labels
• y3 ∈ [0,1] for soft labels (confidences)
• y4 ∈ [0,∞) for distances to a class
• y5 ∈ (- ∞,+ ∞) for distances to a classifier

Conversions are often made, e.g.:
y2 = (y1 == ‘apple’)

y2 = round(y3)

y3 = sigm(y5)

y5 = invsigm(y3)

09/06/2008 60Generalization

Combining classifiers

Training set

Classifier 1

Classifier 2

Classifier ..

Classifier n

Combining
Classifier

Base classifiers

Trained combiner

Training set for combiner

base classifiers

Training Set

a Classifier outputs may be 
used as features for training 
a combining classifier. Fixed 
rules like max, sum and 
product are often used, 
instead.

Compare to neural networks

parallel stacked 
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Multiple classifiers (I)
Undecidable region in case of multiple 2-class discriminants.

09/06/2008 62Generalization

Multiple classifiers (II)
Undecidable regions in case of multiple one-vs-all-other discriminants.

09/06/2008 63Generalization

Multiple classifiers (III)

Instead of discriminants, use class description functions: class 
probability density functions, Euclidean or Mahalanobis
distances. 

If D(x,ωk ) > D( x,ωi )   for all i ≠ k   then  x ωk

PRTools
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Classifier Evaluation

• How to estimate classifier 
performance.

• Learning curves

• Feature curves

• Rejects and ROC curves
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Learning Curve

Size training set

True classification error ε

Bayes error ε*

Sub-optimal classifier

Bayes consistent classifier

cleval

testc
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The Apparent Classification Error

Size training set

Classification error True error ε

Apparent error εA of training set 

The apparent (or resubstitution error) of the 
training set is positively biased (optimistic).

An independent test set is needed!

bias
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Cross-validation

Training

ClassifieriTesting Classification Error 
Estimate

Rotate
n times

Size test set 1/n of design set.

Size training set is (n - 1)/n of design set.

Train and test n test times. Average errors. (Good choice: n = 10)

All objects are tested ones most reliable test result that is possible.

Final classifier: trained by all objects best possible classifier. 

Error estimate is slightly pessimistically biased.

crossval
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Learning Curves for 
Different Classifier Complexity

Size training set

Classification error

complexity

Bayes error

More complex classifiers are better in case of large training sets
and worse in case of small training sets

cleval
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Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox

feature set size (dimensionality)
classifier complexity

Classification error training set size

clevalf
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Reject and ROC Analysis

• Reject Types

• Reject Curves

• Performance Measures

• Varying Costs and Priors

• ROC Analysis

Error

Reject

ε0

εr

r

x

∑

length
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How much to reject?

For given total cost c
this is a linear function 
in the (r,ε) space.
Shift it until a possible 
operating point is reached.

Error ε

Reject r

d

d*

Cost c

reject plote

Compare the cost of a rejected object, cr , with the cost of a classification error, cε :
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ROC Analysis

ROC: Receiver-Operator Characteristic (from communication theory)

Performance
of target class

Error in non-targets
1

1

0
0

1

0

Error class A

Error
class B

Medical diagnostics
Database retrieval

2-class pattern recognition

roc plote
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Pattern Representations in Vector Spaces

Representation GeneralizationSensor

Vector spaces offer many tools
for generalization.

What ways are there to obtain
a vector representation?

1x

2x

B

A

B

A

(perimeter)

(area)

19 June 2008 2Representations

Generalization

Generalization is the ability to make statements on unknown 
properties of new objects (e.g. their class) using a set of examples. 

This can be done on the basis of: 
- distances or (dis)similarities
- probabilities
- domains, decision functions

?

19 June 2008 3Representations

Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

perimeter

ar
ea

perimeter

area

Feature Representation

19 June 2008 4Representations

Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

pixel_1

pi
xe

l_
2

Pixel Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

D(x,xA1)

D
(x

,x
B

1
)

Dissimilarity Representation
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Pattern Recognition System

Representation GeneralizationSensor

B

A

B

A

Classifier_1

B

A

B

A

B

A

B

A

Combining Classifiers

Cl
as

si
fie

r_
2
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Compactness

The compactness hypothesis is not
sufficient for perfect classification
as dissimilar objects may be close.

class overlap
probabilities

Representations of real world similar objects are close. 
There is no ground for any generalization (induction) on representations
that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

1x

2x

(perimeter)

(area)

19 June 2008 8Representations

True Representations

no probabilities needed, domains are sufficient!

1x

2x

(perimeter)

(area)

Similar objects are close 
and

Dissimilar objects are distant.

19 June 2008 9Representations

Demands for a Representation

The representation should enable generalisation:

Computation of: 
dissimilarities, probabilities, domains, decision functions

Measuring objects ⇒ numbers
Compactness ⇐ e.g. continuity

Feature Representation

19 June 2008 11Representations

Features are Based on Knowledge

Knowledge ⇒ good features 
⇒ (almost)  separable classes

Lack of knowledge ⇒ (too many) bad features 
⇒ hardly separable classes 

Many features: ~ Lack of knowledge

Training set Representation Generalization

1x

2x

B
A

B
A

(perimeter)

(area)

objects
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Features Reduce

1x

2x

B

A

B

A

(perimeter)

objects

Due to reduction essentially different objects are represented identically.

The feature space representation needs a statistical, probabilistic generalization
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Probabilistic Generalization

What is the gender of a person with this height?

x = height measured

p(x|F) p(x|M)

x1 = height

Best guess is to choose the most ’probable’ class (→ small error).

⇒ Good for overlapping classes. 

⇒ Assumes the existence of a probabilistic class
distribution and a representative set of examples.

Pixel Representation
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Measuring Human Relevant Information

A

B

AAA AAA BB B B
Nearest neighbours sorted:
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Pixel Representation

Features
Shapes
Moments
Fourier descriptors
Faces
Morphology

Pixels
1x

2x

16 x 16
R256

Pixels are more general, initially complete representation
Large datasets are available good results for OCR
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Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox

feature set size (dimensionality)
classifier complexity

training set size

∞

Classification 
error

Pattern Recognition Paradox
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The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

x3x2x1

Image

X1

X2

X3

Images in pixel space
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The Connectivity Problem in the Pixel Representation

Spatial connectivity is lost

Training set

Test object

Reshuffle 
pixels

Feature space

Reshuffling pixels 
will not change the classification

19 June 2008 20Representations

The Connectivity Problem in the Pixel Representation

Feature Space

image_1 image_3
image_2

class subspace

Interpolation does not yield valid objects

19 June 2008 21Representations

The Connectivity Problem in the Pixel Representation

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

x3x2x1

Image

X1

X2

X3

Images in pixel space
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Reasons for selecting a pixel (sample) representation

No good features can be found 

Sufficient training samples are available

Direct, fast classification of the image 
(linear classifier == convolution)

19 June 2008 23Representations

Domains instead of Densities

No well sampled training sets are needed.

Statistical classifiers have still to be developed.

Class structure Object invariants
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Domain-based Classification

• Do not trust class densities.

• Estimate for each class a domain.

• Outlier sensitive.

• Distances instead of densities

How to construct domain based classifiers?
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Dissimilarity Representation
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Dissimilarity Representation

⎟⎟
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T

ddddddd
ddddddd
ddddddd
ddddddd
ddddddd
ddddddd
ddddddd

D

The traditional Nearest Neighbor rule (template matching) finds:
label(argmintrainset{dxi}) , 

without using DT. Can we do any better?

Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

Not used by NN Rule
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Dissimilarities – Possible Assumptions

1. Positivity: dij ≥ 0
2. Reflexivity: dii = 0
3. Definiteness:  dij = 0 objects i and j are identical
4. Symmetry:      dij = dji

5. Triangle inequality: dij < dik + dkj

6. Compactness: if the objects i and j are very similar 
then dij < δ.

7. True representation: if dij < δ then the objects i and j
are very similar.

8. Continuity of d.

M
et

ri
c
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Examples Dissimilarity Measures (1)

The measure should be descriptive. If there is no preference, 
a number of measures can be combined.
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Examples Dissimilarity Measures (2)
Comparison of spectra: some examples

In real applications, the dissimilarity measure should be robust to 
noise and small aberrations in the (raw) measurements.
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Examples Dissimilarity Measures (3)

A B

Dist(A,B):
a ∈ A, points of A
b ∈ B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b)}}
D(B,A) = max_b{min_a{d(b,a)}}

Hausdorff Distance (metric): 
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}}

Modified Hausdorff Distance (non-metric):
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}

maxB
A

max

B
A

D(A,B) ≠ D(B,A) 
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Examples Dissimilarity Measures (4)

b

a

u

v

u

b

u

a u a v v b

Possibly weighted

Triangle inequality ⇒ computationally feasible

D(aa,bb) < D(abcdef,bcdd)

X = (x1, x2, .... , xk) Y = (y1, y2, .... , yn)

DE(X,Y) : Σ edit operations X ⇒ Y
(insertions, deletions, substitutions)

DE(snert ,meer ) = 3:
snert ⇒ seert ⇒ seer ⇒ meer

DE( ner ,meer ) = 2:
ner ⇒ mer ⇒ meer
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Examples Dissimilarity Measures 
(5)

Matching new objects to various templates:
class(x) = class(argminy(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using 
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Prospect of Dissimilarity based  Representations: Zero

Let us assume that we deal with true representations:
dab < δ if and only if the objects a and b are very similar.

If δ is sufficiently small then a and b belong to the same class, as b 
is just a minor distortion of a (assuming true representations).

However, as Prob(b) > 0, there will be such an object for sufficiently 
large training sets ⇒ zero classification error possible!

⇒ Dissimilarity representation can be a true representation

δ
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Why a Dissimilarity Representation?

Many (exotic) dissimilarity measures are used in pattern recognition
- they may solve the connectivity problem (e.g. pixel based features)
- they may offer a way to integrate structural and statistical approaches
e.g. by graph distances.

Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbor classifier appear possible
(more accurate, faster) 

Classification of Dissimilarity Data
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Alternatives for the Nearest Neighbor 
Rule
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Dissimilarities dij between
all training objects   

Training set 
B

A

) d d d d d d d (d x7x6x5x4x3x2x1x =

Unlabeled object x to be classified

1. Dissimilarity Space
2. Embedding

Pekalska, The dissimilarity 
representation for PR.
World Scientific, 2005.
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The Dissimilarity Space
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Alternative 1: Dissimilarity Space
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Dissimilarities

Selection of 3 objects for representation

B

A

r1(d1)

r2(d4)

r3(d7)

Given labeled training set

Unlabeled object to be classified
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Example Dissimilarity Space: NIST Digits 3 and 8

Example of raw data
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Example Dissimilarity Space: NIST Digits 3 and 8

NIST digits: Hamming distances of 2 x 200 digits

d10

d300
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Dissimilarity Space Classification Nearest Neighbor Rule

Modified Haussdorff distance on contours of digits

Dissimilarity based classification outperforms the nearest neighbor rule.

Embedding of non-Euclidean Dissimilarities
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Embedding of (non-Euclidean) Dissimilarities

19 June 2008 44Representations

Embedding

Training set 

B

A Dissimilarity matrix D   X

Is there a feature space for which Dist(X,X) = D ?

1x

2x

Position points in a vector space such 
that their Euclidean distances D
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Embedding
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Embedding of non-metric measurements

If the dissimilarity matrix cannot be explained from a vector space,
(e.g. for Hausdorff and Hamming distance of images)
or if dij > dik + dkj (triangle inequality not satisfied)
embedding in Euclidean space not possible 
→ Pseudo-Euclidean embedding

B

A

Dissimilarity matrix D   X

dkjdik

dij
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Euclidean  - Non Euclidean  - Non Metric
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Non-metric distances

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

μA μB–

x

σA σB

A B
C

Weighted-edit distance for strings Single-linkage clustering

2
B

2
A

2
BAB)J(A,

σ+σ
μ−μ

= 0C)J(A, = largeB)J(A, =

B)J(A,smallB)J(C, ≠=

Fisher criterion
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(Pseudo-)Euclidean Embedding

m×m D is a given, imperfect dissimilarity matrix of training objects.

Construct inner-product matrix:

Eigenvalue Decomposition , 

Select k eigenvectors:                        (problem:  Λk< 0)

Let ℑk be a k x k diag. matrix, ℑk(i,i) = sign(Λk(i,i))

Λk(i,i) < 0 → Pseudo-Euclidean

n×m Dz is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: 

The embedded objects: 

JJDB (2)
2
1−= 11m

1IJ −=
TQQB Λ=

2
1

kkQX Λ=

)JD-J(DB )2(T
n
1(2)

z2
1

z 11−=

kkkz
2
1

QBZ ℑΛ= −
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PES: Pseudo-Euclidean Space (Krein
Space)If D is non-Euclidean, B has p positive and q negative eigenvalues.

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-
degenerate inner product space ℜk = ℜp ⊕ ℜq such that:
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Distances in PES

O

0)A,O(d2 >
0)E,O(d2 >
0)B,O(d2 =
0)D,O(d2 <

All points in the grey area 
are closer to O than O itself !?

Any point has a negative square
distance to some points on the 
line vTJx=0. 
Can it be used as a classifier?
Can we define a margin as in 
the SVM?
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PE Space Kernels

may by considered as a kernel. 
If

Jy)JD(x,)y,x(K (2)
2
1−= 11m

1IJ −=

><= )y(L),x(L)y,x(K

• The kernel trick may be used: operations defined on inner products 
in kernel space can be operated directly on K(x,y) without embedding! 

• True for Mercer kernels (all eigenvalues ≥ 0).
• Difficult for indefinite kernels.
• Studying classifiers in PE space is studying the indefinite kernel space.
• Dissimilarities are more informative than kernels (due to normalization).

Classifiers in Pseudo-Euclidean Space
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Distance based classifiers in PE Space

Nearest Neighbour and
Nearest Mean can be properly defined.
SVM ? What is the distance to a line?

p

q

A

B

X
0),x(d >•

0),x(d <•

Metric in PE Space.
Equidistant points to the origin.

X assigned to B
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SVM in PE Space

SVM on indefinite kernels may not converge as Mercer’s 
conditions are not fulfilled.

However, if it converges the solution is proper: 

is minimized.

See also: B. Haasdonk, Feature Space Interpretation of SVMs with 
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005.

|ww| Tℑ
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Densities in PE Space

Densities can be defined in a vector space on de basis of 
volumes, without the need of a metric.
Density estimates however, often need a metric.
E.g. the Parzen estimator:

needs a distance definition d(x,y).
There is no problem, however, in case for all objects d(x,y) > 0.
How can Gaussian densities be defined?
Note that QDA in PES is identical to the QDA in AES as the 
signature cancels. The relation with a Gaussian distribution, 
however, is lost.

)
h2

)y,x(dexp(c)x(f̂
iy

2

2
i

n
1 ∑ −=

Dissimilarity based classifiers compared
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Prototype Selection

Assume D(T,R) are the distances between a training set T and a 
representation set R.
A classifier can be trained:

on the distances directly
in dissimilarity spaces
in embedded spaces defined by D(R,R)

Selection of prototypes R ⊂ T:
Random
k-centres, mode seeking or some clustering procedure
Feature selection methods
Editting and condensing methods
Sparse linear programming methods (L1-norm SVM)
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Dissimilarity based classification procedured compared

1. Nearest Neighbour Rule

2. Reduce training set to representation set 

⇒ dissimilarity space

3. Embedding:Select large Λii > 0 ⇒ Euclidean space

Select large |Λii| > 0  → pseudo-Euclidean space
}

B

A
Training set

Test object x

Dissimilarity matrix D

Dissimilarities dx with training set

discriminant function
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Three Approaches Compared for the Zongker Data

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule
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Polygon Data
Convex
Pentagons

Heptagons

Minimum edge length: 0.1 of maximum edge lengthno class overlap
zero error

Find the largest of the 
smallest vertex distances

Distance measures:  Hausdorff D = max { maxi(minj(dij)) ,  maxj(mini(dij)) }.
Modified Hausdorff D = max {meani(minj(dij)), meanj(mini(dij)) }. (no metric!)

dij = distance between vertex i of polygon_1 and vertex j of polygon_2.
Polygons are scaled and centered. 
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Dissimilarity Based Classification of Polygons

Zero error difficult to reach!
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Prototype Selection: Polygon Dataset

The classification performance of the quadratic Bayes Normal classifier and 
the k-NN in dissimilarity spaces and the direct k-NN, as a function of the 
number of selected prototypes. Note that for 10-20 prototypes already 
better results are obtained than by using 1000 objects in the NN rules.

An Analysis of Causes of Non-Metric Data
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Lack of information

1800: 
Crossing the Jostedalsbreen was impossible.
Travelling around (200 km) lasted 5 days.
Untill the shared point X was found.
People could visit each other in 8 hours.

D(V,J) = 5 days
D(V,X) = 4 hours 
D(X,J) = 4 hours
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Computational Problems

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

Weighted edit distance for strings

Large distances are overestimated
due to computational problems
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Projections - Occlusions
Small distances are underestimated

non-metric data due to
partially observed projections 

?
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Projections - Occlusions

Example: consumer preferences for recommendation systems
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Intrinsicly Different Dissimilarity Measures

Distance(Table,Book) = 0
Distance(Table,Cup) = 0
Distance(Book,Cup) = 1

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

Single-linkage clustering
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Intrinsicly Different Dissimilarity Measures

Non-Euclidean human relations
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Causes of Non-Metric Dissimilarities

Overestimated large distances (too difficult to compute)

Underestimated small distances (one-sided view of objects) 
caused by the construction of complicated measures, needed to 
correspond with human observations.

Essential non-metric distance definitions
as the human concept of distance differs from the mathematical one.

19 June 2008 72Representations

Perspective

Human defined patterns do not fit in a Euclidean space.

Objects cannot be represented by points as they have an inner life.

Respect it.

Blob Representation String Representation
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Pattern Recognition: 
Steps in Science and Consciousness

Tutorial
Barcelona, 7 July 2008

Robert P.W. Duin

Pattern Recognition Group
Delft University of Technology

The Netherlands

//ict.ewi.tudelft.nl/~duin
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Paradigms in Pattern Recognition

• Paradigms: Popper versus Kuhn

• More features are good peaking phenomenon
• Avoid multi-layer perceptrons neural networks
• Peaking phenomenon structural risk minimization
• Bridging the semantic gap

19 June 2008 3Paradigms

Popper versus Kuhn

Karl Popper: 
We generate a conjecture and 
try to refute it by an observation.

Thomas Kuhn:
Theories and counter examples can coincide 
for a long time until by a paradigm shift
a new theory is accepted.

19 June 2008 4Paradigms

The peaking phenomenon

feature set size (dimensionality)
classifier complexity

Classification error training set size
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Cover, 1965

Arbitrary labeled sets of 5 points in 2D can always be separated
by a quadratic classifier. 

So a quadratic classifier does not generalize well for 5 points in 2D.

T.M. Cover, Geometrical and Statistical Properties of Systems of Linear Inequalities 
with Applications in Pattern Recognition, 
IEEE Trans. on Electr. Comp., June 1965, 326-334.

19 June 2008 6Paradigms

Cover, 1965, Theory on sample size / feature size

dimension

Sample_size/dimension

Fraction of randomly
labeled dichotomies
that is linearly separable.

Choose sample size > 2 x dimension
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Allais, 1966: Theory and experiments

D.C. Allais, The problem of too many measurements in pattern recognition
and prediction, IEEE Int. Con. Rec., vol. Part 7, March 1966, 124-130.

19 June 2008 8Paradigms

G. Hughes, On the mean accuracy 
of statistical pattern recognizers 
IEEE Transactions on Information 
Theory, vol. 14, no. 1, Jan 1968, 
pp. 55 - 63 

Hughes' Phenomenon (1968)

number of measurement cells

19 June 2008 9Paradigms

Larger numbers of measurement cells have different priors 
than smaller numbers: Hughes' study does not relate to a unique
well-defined problem.

Still: peaking exists, but is not explained by Hughes.

Paradox solved … , but the wrong one.

no. of symptoms

D
ia

gn
os

tic
 a

cc
ur

ac
y

The diagnostic classification accuracy of a 
group of doctors. Sample size is 100.

F.T de Dombal, Computer-assisted diagnosis, 
in: Principals and practice of medical 
computing, Whitby and Lutz (eds.), Churchill 
Livingstone, London, 1971, pp 179 - 199.

Peaking in a study of human recognizers
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Character recognition classification 
performance as a function of the number of 
n-tuples used.

J.R. Ullmann, 
Experiments with the n-tuple method of 
pattern recognition, 
IEEE Trans. on Comp., 1969, 1135-1136

Ullmann 1969, real world example
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1. single example
2. generalization of 1
3. expectation of 1
4. less samples

S. Raudys, 
On dimensionality, learning, sample size and 
complexity of classification algorithms, Proc. of 
the 3rd Int. Conf. on Pattern Recognition, 
Coronado, California, 1976, 166-169.

Raudys 1976, simulation study
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Classification error as a function of the feature 
size for two overlapping Gaussian 
distributions. Higher features have increasing 
class overlap.
A.K Jain and W.G. Waller, 
On the optimal number of features in the 
classification of multivariate Gaussian data, 
Pattern Recognition, 10, pp 365 - 374, 1978

Jain and Waller, 1978, simulation study
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Resubstitution error (apparent error) for two identical uniform distributions as a function 
of sample size divided by feature size for a set of feature sizes. 
D.H. Foley, Considerations of sample and feature size, 
IEEE Trans on Information Theory, 18, 1972, pp 618 - 626.

Foley, 1972, Rule of thumb on sample size / feature size

Use 5-10 times more samples 
than dimensions (parameters?)
in the problem.
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Trunk's example

G.V. Trunk, A Problem of Dimensionality: A Simple Example, 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, pp. 306-307, 1979

k
1

i =μ

)I,(N:A μ
)I,(N:B μ−

k
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The peaking phenomenon

1978: Accepted and 'understood': 

Use 5-10 times as many samples as features
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Multi-layer classifiers
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Perceptron
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Minsky’s and Papert’s Theorem (1969)
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The XOR problem

A solution for the XOR problem is needed,
but cannot be reached by a simple perceptron
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The Multi-Layer Perceptron
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Zero-Error Multi-Layer Perceptron

Nilsson, Learning Machines, 1965

Each set of N points in RK can be separated by a
two-layer network with K inputs and N-K+1 hidden units.
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Two - Layer Machines
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Multi-Layer Machines
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Preliminary (1970) Conclusions on Multi-Layer Perceptrons

• Linear perceptrons are not powerful enough
• Large two-layer networks can make any separation but 

don’t generalize
• Multi-layer networks are very difficult to train.

How to train a multi-stage classifier?
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Artificial Neuron

0w0ii e1
1)wxw(foutput +•−+

=+= ∑ xw

Sigmoid or logistic function
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Neural Network

19 June 2008 28Paradigms

Back-propagation training rule
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The art of training a neural network
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Overtraining Example – 10 Hidden Units
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Early Neural Network Examples
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Understanding Neural Networks

Conclusion: the effective complexity
of a neural network 
increases during training.
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Neural Network Appreciation in Pattern Recognition

"Artificial Intelligence and Neural Networks have deceived and
spoiled two generations of computer scientists just by these names"
(Azriel Rosenfeld, Oulu 1989)

"Neural Networks has brought new enthusiasm and spirit to the
next generation of young researchers."
(Laveen Kanal, Den Haag 1992)

"Just a short look at the architecture of a Neural Network is
sufficient to see that the thing simply doesn’t have the moral right
to show any reasonable performance"
(Leo Breiman, Edinburgh, 1995)
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Neural Networks as Pattern Recognition Tools

Neural networks offer a way to implement moderately non-linear 
classifiers. They contain many parameters, so training should be done 
carefully, to avoid overtraining. Consequently, they offer a toolbox, 
which result depends on the implementation and/or analyst.

Neural networks are mainly applicable to complex (...) processing 
problems for which a good performance criterion can be given, but 
which cannot easily be divided into subproblems. 
(Dick de Ridder, December 2001)
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Understanding pattern recognition 1993

• Collect a-selectively examples.
• Get a feature set from an application expert.

• Good expert: small set of good features.
• Bad expert: large set of bad features.

Collect more data.
• Reduce features as far as necessary.
• Find a good classifier by cross-validation.
or
• Train a neural network.
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Neural Network Magic

"Neural networks can

[…. do something paradoxial ….]
{learn from a few examples,
learn a complicated task,
become conscious}

because they are so complex."

This is not true.
Let us study the most simple systems.
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Roman architecture

19 June 2008 38Paradigms

Gothic architecture

How many examples
do you need?
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Classifiers in almost empty spaces

• Consider m objects in Rk, m < k
• Find the data subspace, Rm-1

• Compute a classifier in the subspace
• New objects: project and classify

• Let's try Fisher:
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Feature curves  for Fisher on Trunk's Example
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Learning curves  for Fisher on Trunk's Example
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less objects
better classifiers!!!

Select the right objects !!!
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Classifiers in almost empty spaces

• Data in subspaces
• Classes in different subspaces
• Select the right objects
• Density based classifiers out

Different classifiers 
Support Vector Classifier
Based on distances and data structure
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More paradigms

• Regularization
• Kernels
• Indefinite representations
• Sparse classifiers
• Bridging the semantic gap

19 June 2008 44Paradigms

Shifting insights

Densities Distances Structure
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Pattern Recognition: 
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Tutorial
Barcelona, 7 July 2008

Robert P.W. Duin

Pattern Recognition Group
Delft University of Technology

The Netherlands
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Consciousness

• How do you know you are conscious?
• How do you know somebody else is conscious?
• How do you show you are conscious?

• How do you know something?

• How do you recognize pattern?

8 July 2008 3Pattern Recognition: steps in Science and Consciousness

Ways to Prove some Truth

• By Authority

• By Demonstration

• By Reasoning

8 July 2008 4Pattern Recognition: steps in Science and Consciousness

Concepts and Observations

School of Athens Plato and Aristotle

8 July 2008 5Pattern Recognition: steps in Science and Consciousness

Concepts and Observations

Plato:
The concepts live somewhere inside us. We awake them by our observations.
It is our struggle to understand new observations in terms of existing 
concepts.

Aristotle:
We learn the world by observing it. In this process 
we struggle with creating concepts, i.e. the 
generalizations of observations.

8 July 2008 6Pattern Recognition: steps in Science and Consciousness

Structural versus Statistical Pattern Recognition
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The Ways of Science
Reasoning and Observation

The Fields of Science
Introspection Extrospection

8 July 2008 8Pattern Recognition: steps in Science and Consciousness

Occam versus Bayes
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Vapnik versus Fisher
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Mind and Matter
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Consciousness and Pattern Recognition

• Consciousness is an internal ability, (almost) not 
objectively detectable by physical means.

• Pattern recognition is an objective external ability, 
operating in the physical world.

8 July 2008 12Pattern Recognition: steps in Science and Consciousness

Consciouness

• the ability to see meaningful structures in the world

• the ability to relate oneself (feel connected) to 
structures in the world

• the ability to shape and create new structures
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Pattern Recognition

• the ability to detect structures in the physical world

• the ability to learn structures in the physical world

• the ability to develop a procedure for learning structures

8 July 2008 14Pattern Recognition: steps in Science and Consciousness

Consciousness and pattern recognition …

… two ides of the same coin
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Abstract. Statistical inference of sensor-based measurements is inten-
sively studied in pattern recognition. It is usually based on feature repre-
sentations of the objects to be recognized. Such representations, however,
neglect the object structure. Structural pattern recognition, on the con-
trary, focusses on encoding the object structure. As general procedures
are still weakly developed, such object descriptions are often application
dependent. This hampers the usage of a general learning approach.

This paper aims to summarize the problems and possibilities of general
structural inference approaches for the family of sensor-based measure-
ments: images, spectra and time signals, assuming a continuity between
measurement samples. In particular it will be discussed when probabilis-
tic assumptions are needed, leading to a statistically-based inference of
the structure, and when a pure, non-probabilistic structural inference
scheme may be possible.

1 Introduction

Our ability to recognize patterns is based on the capacity to generalize. We
are able to judge new, yet unseen observations given our experience with the
previous ones that are similar in one way or another. Automatic pattern recog-
nition studies the ways which make this ability explicit. We thereby learn more
about it, which is of pure scientific interest, and we construct systems that may
partially take over our pattern recognition tasks in real life: reading documents,
judging microscope images for medical diagnosis, identifying people or inspecting
industrial production.

In this paper we will reconsider the basic principles of generalization, espe-
cially in relation with sensor measurements like images (e.g. taken from some
video or CCD camera), time signals (e.g. sound registered by a microphone), and
spectra and histograms (e.g. the infra-red spectrum of a point on earth measured
from a satellite). These classes of measurements are of particular interest since
they can very often replace the real object in case of human recognition: we can
read a document, identify a person, recognize an object presented on a monitor
screen as well as by a direct observation. So we deal here with registered signals
which contain sufficient information to enable human recognition in an almost
natural way. This is an entirely different approach to study the weather patterns

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 41–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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from a set of temperature and air pressure measurements than taken by a farmer
who observes the clouds and the birds.

The interesting, common aspect of the above defined set of sensor measure-
ments is that they have an observable structure, emerging from a relation be-
tween neighboring pixels or samples. In fact we do not perceive the pixel intensity
values themselves, but we directly see a more global, meaningful structure. This
structure, the unsampled continuous observation in space and/or time consti-
tutes the basis of our recognition. Generalization is based on a direct observation
of the similarity between the new and the previously observed structures.

There is an essential difference between human and automatic pattern recogni-
tion, which will be neglected here, as almost everywhere else. If a human observes
a structure, he may directly relate this to a meaning (function or a concept). By
assigning a word to it, the perceived structure is named, hence recognized. The
word may be different in different languages. The meaning may be the same, but
is richer than just the name as it makes a relation to the context (or other frame
of reference) or the usage of the observed object. On the contrary, in automatic
recognition it is often attempted to map the observations directly to class labels
without recognizing the function or usage.

If we want to simulate or imitate the human ability of pattern recognition it
should be based on object structures and the generalization based on similarities.
This is entirely different from the most successful, mainline research in pattern
recognition, which heavily relies on a feature-based description of objects instead
of their structural representations. Moreover, generalization is also heavily based
on statistics instead of similarities.

We will elaborate on this paradoxical situation and discuss fundamentally the
possibilities of the structural approach to pattern recognition. This discussion is
certainly not the first on this topic. In general, the science of pattern recognition
has already been discussed for a long time, e.g. in a philosophical context by
Sayre [1] or by Watanabe on several occasions, most extensively in his book
on human and mechanical recognition [2]. The possibilities of a more structural
approach to pattern recognition was one of the main concerns of Fu [3], but it
was also clear that, thereby, the powerful tools of statistical approaches [4,5,6,7]
should not be forgotten; see [8,9,10].

Learning from structural observations is the key question of the challenging
and seminal research programme of Goldfarb [10,11,12]. He starts, however, from
a given structural measurement, the result of a ’structural sensor’ [13] and uses
this to construct a very general, hierarchial and abstract structural description
of objects and object classes in terms of primitives, the Evolving Transformation
System (ETS) [11]. Goldfarb emphasizes that a good structural representation
should be able to generate proper structures. We recognize that as a desirable,
but very ambitious direction. Learning structures from examples in the ETS
framework appears still to be very difficult, in spite of various attempts [14].

We think that starting from such a structural representation denies the quan-
titative character of the lowest level of senses and sensors. Thereby, we will again
face the question how to come to structure, how to learn it from examples given
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the numeric outcomes of a physical measurement process, that by its organiza-
tion in time and space respects this structure. This question will not be solved
here, as it is one of the most basic issues in science. However, we hope that
a contribution is made towards the solution by our a summary of problems and
possibilities in this area, presented from a specific point of view.

Our viewpoint, which will be explained in the next sections, is that the feature
vector representation directly reduces the object representation. This causes a
class overlap that can only be solved by a statistical approach. An indirectly
reducing approach based on similarities between objects and proximities of their
representations, may avoid, or at least postpone such a reduction. As a conse-
quence, classes do not overlap intrinsically, by which a statistical class descrip-
tion can be avoided. A topological- or domain-based description of classes may
become possible, in which the structural aspects of objects and object classes
might be preserved. This discussion partially summarizes our previous work on
the dissimilarity approach [15], proximities [16], open issues [17] and the science
of pattern recognition [18].

2 Generalization Principles

The goal of pattern recognition may be phrased as the derivation of a general
truth (e.g. the existence of a specified pattern) from a limited, not exhaustive set
of examples. We may say that we thereby generalize from this set of examples, as
the establishment of a general truth gives the possibility to derive non-observed
properties of objects, similar to those of observed examples.

Another way to phrase the meaning of generalization is to state that the truth
is inferred from the observations. Several types of inference can be distinguished:

Logical inference. This is the original meaning of inference: a truth is derived
from some facts, by logical reasoning, e.g.
1. Socrates is a man.
2. All man are mortal.
3. Consequently, Socrates is mortal.

It is essential that the conclusion was derived before the death of Socrates.
It was already known without having observed it.

Grammatical inference. This refers to the grammar of an artificial language
of symbols, which describes the ”sentences” that are permitted from a set of
observed sequences of such symbols. Such grammars may be inferred from
a set of examples.

Statistical inference. Like above, there are observations and a general, ac-
cepted or assumed, rule of a statistical (probabilistic) nature. When such
a rule is applied to the observations, more becomes known than just the
directly collected facts.

Structural inference. This is frequently used in the sense that structure is
derived from observations and some general law. E.g. in some economical
publications, ”structural inference” deals with finding the structure of a sta-
tistical model (such as the set of dependencies) by statistical means [19]. On
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the contrary, ”structural inference” can also be understood as using struc-
tural (instead of statistical) properties to infer unobserved object properties.

Empirical inference. This term is frequently used by Vapnik, e.g. in his re-
cent revised edition of the book on structural risk minimization [20]. It means
that unnecessary statistical models are avoided if some value, parameter, or
class membership has to be inferred from observational data. It is, however,
still based on a statistical approach, in the sense that probabilities and ex-
pectations play a role. The specific approach of empirical inference avoids
the estimation of statistical functions and models where possible: do not
estimate an entire probability density function if just a decision is needed.

It should be noted that in logical, statistical and empirical inferences object
properties are inferred by logical, statistical and empirical means, respectively.
In the terms of ”grammatical inference” and ”structural inference”, the adjective
does not refer to the means but to the goal: finding a grammar or a structure.
The means are in these cases usually either logical or statistical. Consequently,
the basic tools for inference are primarily logic and statistics. They correspond
to knowledge and observations. As logic cannot directly be applied to sensor
data, statistical inference is the main way for generalization in this case.

We will discuss whether in addition to logic and statistics, also structure can
be used as a basic means for inference. This would imply that given the structure
of a set of objects and, for instance, the corresponding class labels, the class label
of an unlabeled object can be inferred. As we want to learn from sensor data,
this structure should not be defined by an expert, but should directly be given
from the measurements, e.g. the chain code of an observed contour.

Consider the following example. A professor in archeology wants to teach
a group of students the differences in the styles of A and B of some classical
vases. He presents 20 examples for each style and asks the students to determine
a rule. The first student observes that the vases in group A have either ears or
are red, while those of group B may also have ears, but only if they are blue (a
color that never occurs for A). Moreover, there is a single red vase in group B
without ears, but with a sharp spout. In group A only some vases with ears have
a spout. The rule he presents is: if (ears ∧ not blue) ∨ (red ∧ no ears ∧
no spout) then A else B. The second student measures the sizes (weight and
height) of all vases, plots them on a 2D scatter plot and finds a straight line that
separates the vases with just two errors. The third student manually inspects
the vases from all sides and concludes that the lower part is ball-shaped in group
A and egg-shaped in group B. His rule is thereby: if ball-shaped then A, if
egg-shaped then B.

The professor asked the first student why he did not use characteristic paint-
ings on the vases for their discrimination. The student answered that they were
not needed as the groups could have perfectly been identified by the given prop-
erties. They may, however, be needed if more vases appear. So, this rule works
for the given set of examples, but does it generalize?

The second solution did not seem attractive to the professor as some mea-
surement equipment is needed and, moreover, two errors are made! The student
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responded that these two errors showed in fact that his statistical approach was
likely better than the logical approach of the first student, as it was more gen-
eral (less overtrained). This remark was not appreciated by the professor: very
strange to prove the quality of a solution by the fact that errors are made!

The third student seemed to have a suitable solution. Moreover, the shape
property was in line with other characteristics of the related cultures. Although
it was clear what was meant by the ball-ness and the egg-ness of the vase shapes,
the question remained whether this could be decided by an arbitrary assistant.
The student had a perfect answer. He drew the shapes of two vases, one from
each group, on a glass window in front of the table with vases. To classify a given
vase, he asked the professor to look through each of the two images to this vase
and to walk to and from the window to adjust the size until a match occurs.

We hope that this example makes clear that logic, statistics and structure can
be used to infer a property like a class label. Much more has to be explained
about how to derive the above decision rules by automatic means. In this paper,
we will skip the logical approach as it has little to do with the sensory data we
are interested in.

3 Feature Representation

We will first shortly summarize the feature representation and some of its ad-
vantages and drawbacks. In particular, it will be argued how this representation
necessarily demands a statistical approach. Hence, this has far reaching conse-
quences concerning how learning data should be collected. Features are object
properties that are suitable for their recognition. They are either directly mea-
sured or derived from the raw sensor data. The feature representation represents
objects as vectors in a (Euclidean) feature space. Usually, but not always, the
feature representation is based on a significant reduction. Real world objects
cannot usually be reconstructed from their features. Some examples are:
– Pieces of fruit represented by their color, maximum length and weight.
– Handwritten digits represented by a small set of moments.
– Handwritten digits represented by the pixels (in fact, their intensities) in

images showing the digits.
This last example is special. Using pixel values as features leads to pixel repre-
sentations of the original digits that are reductions: minor digit details may not
be captured by the given pixel resolution. If we treat, however, the digital picture
of a digit as an object, the pixel representation is complete: it represents the ob-
ject in its entirety. This is not strange as in handling mail and money transfers,
data typists often have to recognize text presented on monitor screens. So the
human recognition is based on the same data as used for the feature (pixels)
representation.

Note that different objects may have identical representations, if they are
mapped on the same vector in the feature space. This is possible if the fea-
ture representation reduces the information on objects, which is the main cause
for class overlap, in which objects belonging to different classes are identically
represented.
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The most common and most natural way to solve the problem of class overlap
is by using probability density functions. Objects in the overlap area are assigned
to the class that is the most probable (or likely) for the observed feature vector.
This not only leads to the fully Bayesian approaches, based on the estimation
of class densities and using or estimating class prior probabilities, but also to
procedures like decision trees, neural networks and support vector machines that
use geometrical means to determine a decision boundary between classes such
that some error criterion is minimized.

In order to find a probability density function in the feature space, or in order
to estimate the expected classification performance for any decision function that
is considered in the process of classifier design, a set of objects has to be available
that is representative for the distribution of the future objects to be classified
later by the final classifier. This last demand is very heavy. It requires that the
designer of a pattern recognition system knows exactly the circumstances under
which it will be applied. Moreover, he has to have the possibility to sample
the objects to be classified. There are, however, many applications in which
it is difficult or impossible. Even in the simple problem of handwritten digit
recognition it may happen that writing habits change over time or are location
dependent. In an application like the classification of geological data for mining
purposes, one likes to learn from existing mining sites how to detect new ones.
Class distributions, however, change heavily over the earth.

Another problem related to class overlap is that densities are difficult to es-
timate for more complete and, thereby, in some sense better representations,
as they tend to use more features. Consequently, they have to be determined in
high-dimensional vector spaces. Also the geometrical procedures suffer from this,
as the geometrical variability in such spaces is larger. This results in the paradox
of the feature representation: more complete feature representations need larger
training sets or will deteriorate in performance [21].

There is a fundamental question of how to handle the statistical problem of over-
lapping classes in case no prior information is available about the possible class dis-
tributions. If there is no preference, the No-Free-Lunch-Theorem [22] states that
all classifiers perform similarly to a random class assignment if we look over a set
of problems on average. It is necessary to restrict the set of problems significantly,
e.g. to compact problems in which similar objects have similar representations. It
is, however, still an open issue how to do this [23]. As long as the set of pattern
recognition problems is based on an unrealistic set, studies on the expected perfor-
mance of pattern recognition systems will yield unrealistic results. An example is
the Vapnik-Chervonenkis error bound based on the structural risk minimization
[20]. Although a beautiful theoretical result is obtained, the prescribed training
set sizes for obtaining a desired (test) performance are far from being realistic. The
support vector machine (SVM), which is based on structural risk minimization, is
a powerful classifier for relatively small training sets and classes that have a small
overlap. As a general solution for overlapping classes, as they arise in the feature
space, it is not suitable. We will point this out below.
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We will now introduce the idea of domain-based classifiers [24]. They construct
decision boundaries between classes that are described just by the domains they
cover in the feature space (or in any representation space) and do not depend
on (the estimates of) probability distributions. They are, thereby, insensitive to
ill-sampled training sets, which may even be selectively sampled by an expert.
Such classifiers may be beneficial for non-overlapping, or slightly overlapping
classes and are optimized for distances instead of densities. Consequently, they
are sensitive to outliers. Therefore, outliers should be removed in the firs step.
This is possible as the training set can be sampled in a selective way. Domain-
based classification may be characterized as taking care of the structure of the
classes in the feature space instead of their probability density functions.

If Vapnik’s concept of structural risk minimization [20] is used for optimizing
a separation function between two sets of vectors in a vector space, the resulting
classifier is the maximum margin classifier. In case no linear classifier exists to
make a perfect separation, a kernel approach may be used to construct a non-
linear separation function. Thanks to the reproducing property of kernels, the
SVM becomes then a maximum margin hyperplane in a Hilbert space induced
by the specified kernel [25]. The margin is only determined by support vectors.
These are the boundary objects, i.e. the objects closest to the decision boundary
f(x; θ) [26,25]. As such, the SVM is independent of class density models. Multiple
copies of the same object added to the training set do not contribute to the
construction of the SVM as they do for classifiers based on some probabilistic
model. Moreover, the SVM is also not affected by adding or removing objects of
the same class that lie further away from the decision boundary. This decision
function is, thereby, a truly domain-based classifier, as it optimizes the separation
of class domains and class density functions.

For nonlinear classifiers defined on nonlinear kernels, the SVM has, however, a
similar drawback as the nonlinear neural network. The distances to the decision
boundary are computed in the output Hilbert space defined by the kernel and
not in the input space. A second problem is that the soft-margin formulation [26],
the traditional solution to overlapping classes, is not domain-based. Consider a
two-class problem with the labels y∈{−1, +1}, where y(x) denotes the true label
of x. Assume a training set X = {xi, y(xi)}n

i=1. The optimization problem for
a linear classifier f(x) = wTx + w0 is rewritten into:

minw ||w||2 + C
∑

xi∈X ξ(xi),
s.t. y(xi)f(xi) ≥ 1 − ξ(xi),

ξ(xi) ≥ 0,

(1)

where ξ(xi) are slack variables accounting for possible errors and C is a trade-off
parameter.

∑
xi∈X ξ(xi) is an upper bound of the misclassification error on the

training set, hence it is responsible for minimizing a sum of error contributions.
Adding a copy of an erroneously assigned object will affect this sum and, thereby,
will influence the sought optimum w. The result is, thereby, based on a mixture
of approaches. It is dependent on the distribution of objects (hence statistics)
as well as on their domains (hence geometry).
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A proper domain-based solution should minimize the class overlap in terms of
distances and not in terms of probability densities. Hence, a suitable version of
the SVM should be derived for the case of overlapping domains, resulting in the
negative margin SVM [24]. This means that the distance of the furthest away
misclassified object should be minimized. As the signed distance is negative,
the negative margin is obtained. In the probabilistic approach, this classifier
is unpopular as it will be sensitive to outliers. As explained above, outliers are
neglected in domain-based classification, as they have to be removed beforehand.

Our conclusion is that the use of features yields a reduced representation.
This leads to class overlap for which a probabilistic approach is needed. It relies
on a heavy assumption that data are drawn independently from a fixed (but
unknown) probability distribution. As a result, one demands training sets that
are representative for the probability density functions. An approach based on
distances and class structures may be formulated, but conflicts with the use of
densities if classes overlap.

4 Proximity Representation

Similarity or dissimilarity measures can be used to represent objects by their
proximities to other examples instead of representing them by a preselected set
of features. If such measurements are derived from original objects, or from raw
sensor data describing the objects fully (e.g. images, time signals and spectra
that are as good as the real objects for the human observer), then the reduction in
representation, which causes class overlap in the case of features, is circumvented.
For example, we may demand that the dissimilarity of an object to itself is
zero and that it can only be zero if it is related to an identical object. If it
can be assumed that identical objects belong to the same class, classes do not
overlap. (This is not always the case, e.g. a handwritten ’7’ may be identical to
a handwritten ’1’).

In principle, such proximity representations may avoid class overlap. Hence,
they may offer a possibility to use the structure of the classes in the representa-
tion, i.e. their domains, for building classifiers. This needs a special, not yet well
studied variant of the proximity representation. Before a further explanation, we
will first summarize two variants that have been worked out well. This summary
is an adapted version of what has been published as [16]. See also [15].

Assume we are given a representation set R, i.e. a set of real-world objects that
can be used for building the representation. R={p1, p2, . . . , pn} is, thereby, a set
of prototype examples. We also consider a proximity measure d, which should
incorporate the necessary invariance (such as scale or rotation invariance) for the
given problem. Without loss of generality, let d denote dissimilarity. An object
x is then represented as a vector of dissimilarities computed between x and the
prototypes from R, i.e. d(x, R)= [d(x, p1), d(x, p2), . . . , d(x, pn)]T. If we are also
given an additional labeled training set T = {t1, t2, . . . , tN} of N real-world
objects, our proximity representation becomes an N × n dissimilarity matrix
D(T, R), where D(ti, R) is now a row vector. Usually R is selected out of T (by



Structural Inference of Sensor-Based Measurements 49

various prototype selection procedures) in a way to guarantee a good tradeoff
between the recognition accuracy and the computational complexity. R and T
may also be different sets.

The k-NN rule can directly be applied to such proximity data. Although it
has good asymptotic properties for metric distances, its performance deteriorates
for small training (here: representation) sets. Alternative learning strategies rep-
resent proximity information in suitable representation vector spaces, in which
traditional statistical algorithms can be defined. So, they become more beneficial.
Such vector spaces are usually determined by some local or global embedding
procedures. Two approaches to be discussed here rely on a linear isometric em-
bedding in a pseudo-Euclidean space (where necessarily R ⊆ T ) and the use of
proximity spaces; see [16,15].

Pseudo-Euclidean linear embedding. Given a symmetric dissimilarity ma-
trix D(R, R), a vectorial representation X can be found such that the distances
are preserved. It is usually not possible to determine such an isometric embed-
ding into a Euclidean space, but it is possible into a pseudo-Euclidean space E =
R

(p,q). It is a (p+q)-dimensional non-degenerate indefinite inner product space
such that the inner product 〈·, ·〉E is positive definite on R

p and negative definite
on R

q [10]. Then, 〈x,y〉E =xTJpqy, where Jpq =diag (Ip×p; −Iq×q) and I is the
identity matrix. Consequently, d2

E(x,y)== 〈x−y,x−y〉E =d2
Rp(x,y)−d2

Rq(x,y),
hence d2

E is a difference of square Euclidean distances found in the two subspaces,
R

p and R
q. Since E is a linear space, many properties related to inner products

can be extended from the Euclidean case [10,15].
The (indefinite) Gram matrix G of X can be expressed by the square dis-

tances D�2 = (d2
ij) as G = − 1

2JD�2J , where J = I − 1
n11T [10,27,15]. Hence,

X can be determined by the eigendecomposion of G, such that G = QΛQT =
Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT. |Λ| is a diagonal matrix of first decreasing p′ pos-
itive eigenvalues, then decreasing magnitudes of q′ negative eigenvalues, followed
by zeros. Q is a matrix of the corresponding eigenvectors. X is uncorrelated and
represented in R

k, k = p′+q′, as X = Qk|Λk|1/2 [10,27]. Since only some eigen-
values are significant (in magnitude), the remaining ones can be disregarded as
non-informative. The reduced representation Xr =Qm |Λm|1/2, m=p+q <k, is
determined by the largest p positive and the smallest q negative eigenvalues. New
objects D(Ttest, R) are orthogonally projected onto R

m; see [10,27,15]. Classi-
fiers based on inner products can appropriately be defined in E . A linear classifier
f(x)=vTJpqx+v0 is e.g. constructed by addressing it as f(x)=wTx+v0, where
w=Jpqv in the associated Euclidean space R

(p+q) [10,27,15].

Proximity spaces. Here, the dissimilarity matrix D(X, R) is interpreted as
a data-dependent mapping D(·, R): X → R

n from some initial representation
X to a vector space defined by the set R. This is the dissimilarity space (or a
similarity space, if similarities are used), in which each dimension D(·, pi) corre-
sponds to a dissimilarity to a prototype pi ∈ R. The property that dissimilarities
should be small for similar objects (belonging to the same class) and large for
distinct objects, gives them a discriminative power. Hence, the vectors D(·, pi)
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can be interpreted as ’features’ and traditional statistical classifiers can be de-
fined [28,15]. Although the classifiers are trained on D(·, R), the weights are still
optimized on the complete set T . Thereby, they can outperform the k-NN rule
as they become more global in their decisions.

Normal density-based classifiers perform well in dissimilarity spaces [27,28,15].
This especially holds for summation-based dissimilarity measures, summing over
a number of components with similar variances. Such dissimilarities are approxi-
mately normally distributed thanks to the central limit theorem (or they approx-
imate the χ2 distribution if some variances are dominant) [15]. For instance, for a
two-class problem, a quadratic normal density based classifier is given by
f(D(x, R)) =

∑2
i=1

(−1)i

2 (D(x, R)−mi)TS−1
i (D(x, R)−mi) + log p1

p2
+ 1

2 log |S1|
|S2| ,

where mi are the mean vectors and Si are the class covariance matrices, all esti-
mated in the dissimilarity space D(·, R). pi are the class prior probabilities. By re-
placing S1 and S2 by the average covariance matrix, a linear classifier is obtained.

The two learning frameworks of pseudo-Euclidean embedding and dissimi-
larity spaces appear to be successful in many problems with various kinds of
dissimilarity measures. They can be more accurate and more efficient than the
nearest neighbor rule, traditionally applied to dissimilarity data. Thereby, they
provide beneficial approaches to learning from structural object descriptions for
which it is more easy to define dissimilarity measures between objects than to
find a good set of features. As long as these approaches are based on a fixed
representation set, however, class overlap may still arise as two different objects
may have the same set of distances to the representation set. Moreover, most
classifiers used in the representation spaces are determined based on the tradi-
tional principle of minimizing the overlap. They do not make a specific use of
principles related to object distances or class domains. So, what is still lacking
are procedures that use class distances to construct a structural description of
classes. The domain-based classifiers, introduced in Section 3, may offer that in
future provided that the representation set is so large that the class overlap is
(almost) avoided. A more fundamental approach is described below.

Topological spaces. The topological foundation of proximity representations
is discussed in [15]. It is argued that if the dissimilarity measure itself is un-
known, but the dissimilarity values are given, the topology cannot, as usual, be
based on the traditional idempotent closures. An attempt has been made to use
neighborhoods instead. This has not resulted yet in a useful generalization over
finite training sets.

Topological approaches will aim to describe the class structures from local
neighborhood relations between objects. The inherent difficulty is that many of
the dissimilarity measures used in structural pattern recognition, like the nor-
malized edit distance, are non-Euclidean, and even sometimes non-metric. It has
been shown in a number of studies that straightforward Euclidean corrections are
counter productive in some applications. This suggests that the non-Euclidean
aspects may be informative. Consequently, a non-Euclidean topology would be
needed. This area is still underdeveloped.
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A better approach may rely on two additional sources of information that are
additionally available. These are the definition of the dissimilarity measure and
the assumption of class compactness. They may together tell us what is really
local or how to handle the non-Euclidean phenomena of the data. This should
result in a topological specification of the class structure as learned from the
training set.

5 Structural Representation

In the previous section we arrived at a structure of a class (or a concept), i.e. the
structural or topological relation of the set of all objects belonging to a partic-
ular class. This structure is influenced by the chosen representation, but is in
fact determined by the class of objects. It reflects, for instance, the set of con-
tinuous transformations of the handwritten digits ’7’ that generate exclusively
all other forms that can be considered as variants of a handwritten ’7’. This
basically reflects the concept used by experts to assign the class label. Note,
however, that this rather abstract structure of the concept should be clearly dis-
tinguished from the structure of individual objects that are the manifestations
of that concept.

The structure of objects, as presented somewhere in sensory data of images,
such as time signals and spectra, is directly related to shape. The shape is a
one- or multi-dimensional set of connected boundary points that may be lo-
cally characterized by curvature and described more globally by morphology
and topology. Note that the object structure is related to an outside border
of objects, the place where the object ends. If the object is a black blob in a
two-dimensional image (e.g. a handwritten digit) then the structure is expressed
by the contour, a one-dimensional closed line. If the grey-value pixel intensities
inside the blob are relevant, then we deal with a three-dimensional blob on a
two-dimensional surface. (As caves cannot exist in this structure it is sometimes
referred to as a 2.5-dimensional object).

It is important to realize that the sensor measurements are characterized by a
sampling structure (units), such as pixels or time samples. This sampling struc-
ture, however, has nothing to do with the object structure. In fact, it disturbs
it. In principle, objects (patterns describing real objects) can lie anywhere in
an image or in a time frame. They can also be rotated in an image and appear
in various scales. Additionally, we may also vary the sampling frequency. If we
analyze the object structure for a given sampling, then the object is “nailed”
to some grid. Similar objects may be nailed in an entirely different way to this
grid. How to construct structural descriptions of objects that are independent of
the sampling grid on which the objects are originally presented is an important
topic of structural pattern recognition.

The problem of structural inference, however, is not the issue of representation
itself. It is the question how we can establish the membership of an object to a given
set of examples based on their structure. Why is it more likely that a new object X
belongs to a set A than a set B? A few possible answers are presented below.
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1. X is an example of A, because the object in A ∪ B that is most similar to
X belongs to A. This decision may depend on the accidental availability of
particular objects. Moreover, similarity should appropriately be defined.

2. X is an example of A, because the object from A ∪ B that is most easily
transformed to X belongs to A. In this case similarity relies on the effort
of transformation. This may be more appropriate if structures need to be
compared. The decision, however, still depends on a single object. The entire
sets or classes simply store examples that may be used when other objects
have to be classified.

3. X is an example of A, because it can more easily be generated by trans-
forming the prototype of set A than by transforming the prototype of set B.
The prototype of a set may be defined as the (hypothetical) object that can
most easily be transformed into any of the objects of the set. In this assign-
ment rule (as well as in the rule above) the definition of transformation is
universal, i.e. independent of the considered class.

4. X is an example of A, because it can more easily be transformed from a (hy-
pothetical) prototype object by the transformations TA that are used to
generate the set A than by the transformations TB that are used to gen-
erate the set B. Note that we now allow that the sets are generated from
possibly the same prototype, but by using different transformations. These
are derived (learnt) from the sets of examples. The transformations TA and
TB may be learnt from a training set.

There is a strong resemblance with the statistical class descriptions: classes may
differ by their means as well as by the shape of their distributions. A very
important difference, however, between structural and statistical inference is
that for an additional example that is identical to a previous one changes the
class distribution, but not the (minimal) set of necessary transformations.

This set of assignment rules can easily be modified or enlarged. We like to em-
phasize, however, that the natural way of comparing objects, i.e. by accounting for
their similarity, may be defined as the effort of transforming one structure into an-
other. Moreover, the set of possible transformations may differ from class to class.
In addition, classes may have the same or different prototypes. E.g. a sphere can
be considered as a basic prototype both for apples as well as for pears. In general,
classes may differ by their prototypes and/or by their set of transformations.

What has been called easiness in transformation can be captured by a measur-
able cost, which is an example of a similarity measure. It is, thereby, related to the
proximity approaches, described above. Proximity representations are naturally
suitable for structural inference. What is different, however, is the use of statis-
tical classifiers in embedded and proximity spaces. In particular, the embedding
approach has to be redefined for structural inference as it makes use of averages
and the minimization of an expected error, both statistical concepts. Also the use
of statistical classifiers in these spaces conflicts with structural inference. In fact,
they should be replaced by domain-based classifiers. The discussed topological ap-
proach, on the other hand, fits to the concept of structural inference.

The idea that transformations may be class-dependent has not been worked
out by us in the proximity-based approach. There is, however, not a fundamental
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objection against the possibility to attribute set of objects, or even individual
objects in the training set with their own proximity measure. This will very likely
lead to non-Euclidean data, but we have shown ways how to handle them. What
is not studied is how to optimize proximity measures (structure transformations)
over the training data. A possibility might be to normalize for differences in class
structure by adapting the proximity measures that determined these structures.

There is, however, an important aspect of learning from structures that cannot
currently be covered by domain-based classifiers built for a proximity represen-
tation. Structures can be considered as assemblies of more primitive structures,
similarly as a house is built from bricks. These primitives may have a finite
size, or may also be infinitesimally small. The corresponding transformations
from one structure into another become thereby continuous. In particular, we
are interested in such transformations as they may constitute the compactness
of classes on which a realistic set of pattern recognition problems can be defined.
It may be economical to allow for locally-defined functions in order to derive (or
learn) transformations between objects. For instance, while comparing dogs and
wolves, or while describing these groups separately, other transformations may
be of interest for the description of ears then for the tails. Such a decomposition
of transformations is not possible in the current proximity framework, as it starts
with relations between entire objects. A further research is needed.

The automatic detection of parts of objects where different transformations
may be useful for the discrimination (or a continuous varying transformation
over the object) seems very challenging, as the characteristics inside an object
are ill-defined as long as classes are not fully established during training. Some
attempts in this direction have been made by Pacĺık [29,30] when he tries to
learn the proximity measure from a training set.

In summary, we see three ways to link structural object descriptions to the
proximity representation:
– Finding or generating prototypical objects that can easily be transformed

into the given training set. They will be used in the representation set.
– Determining specific proximity measures for individual objects or for groups

of objects.
– Learning locally dependent (inside the object) proximity measures.

6 Discussion and Conclusions

In this paper, we presented a discussion of the possibilities of structural inference
as opposed to statistical inference. By using the structural properties of objects
and classes of a given set of examples, knowledge such as class labels is inferred
for new objects. Structural and statistical inference are based on different as-
sumptions with respect to the set of examples needed for training and for the
object representation. In a statistical approach, the training set has to be rep-
resentative for the class distributions as the classifiers have to assign objects to
the most probable class. In a structural approach, classes may be assumed to be
separable. As a consequence, domain-based classifiers may be used [18,24]. Such
classifiers, which are mainly still under development, do not need training sets
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that are representative for the class distributions, but which are representative
for the class domains. This is greatly advantageous as these domains are usually
stable with respect to changes in the context of application. Training sets may
thereby be collected by a selective, instead of unselective sampling.

The below table summarizes the main differences between representations
based on features (F), proximities (P) and structures (S) for the statistical and
structural inference.

Statistical inference Structural inference

F
Features reduce; statistical inference The structural information is lost by
is almost obligatory. representing the aspects of objects by

vectors and/or due to the reduction.

P

Proximity representations can be Transformations between the
derived by comparing pairs of objects structures of objects may be used to
(e.g. initially described by features build proximity representations.
or structures). Statistical classifiers Classes of objects should be separated
are built in proximity spaces or in by domain-based classifiers.
(pseudo-Euclidean) embedded spaces.

S

Statistical learning is only possible Transformations might be learnt by
if a representation vector space is built using a domain-based approach that
(by features or proximities), in which transforms one object into another
density functions can be defined. in an economical way.

This paper summarizes the possibilities of structural inference. In particular,
the possibilities of the proximity representation are emphasized, provided that
domain-based learning procedures follow. More advanced approaches, making
a better usage of the structure of individual objects have to be studied further.
They may be based on the generation of prototypes or on trained, possibly local
transformations, which will separate object classes better. Such transformations
can be used to define proximity measures, which will be further used to construct
a proximity representation. Representations may have to be directly built on
the topology derived from object neighborhoods. These neighborhoods are con-
structed by relating transformations to proximities. The corresponding dissimi-
larity measures will be non-Euclidean, in general. Consequently, non-Euclidean
topology has to be studied to proceed in this direction fundamentally.
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Summary. Automatic pattern recognition is usually considered as an engineer-
ing area which focusses on the development and evaluation of systems that imi-
tate or assist humans in their ability of recognizing patterns. It may, however, also
be considered as a science that studies the faculty of human beings (and possibly
other biological systems) to discover, distinguish, characterize patterns in their en-
vironment and accordingly identify new observations. The engineering approach to
pattern recognition is in this view an attempt to build systems that simulate this
phenomenon. By doing that, scientific understanding is gained of what is needed in
order to recognize patterns, in general.

Like in any science understanding can be built from different, sometimes even
opposite viewpoints. We will therefore introduce the main approaches to the science
of pattern recognition as two dichotomies of complementary scenarios. They give
rise to four different schools, roughly defined under the terms of expert systems,
neural networks, structural pattern recognition and statistical pattern recognition.
We will briefly describe what has been achieved by these schools, what is common
and what is specific, which limitations are encountered and which perspectives arise
for the future. Finally, we will focus on the challenges facing pattern recognition in
the decennia to come. They mainly deal with weaker assumptions of the models to
make the corresponding procedures for learning and recognition wider applicable.
In addition, new formalisms need to be developed.

1 Introduction

We are very familiar with the human ability of pattern recognition. Since
our early years we have been able to recognize voices, faces, animals, fruits
or inanimate objects. Before the speaking faculty is developed, an object like
a ball is recognized, even if it barely resembles the balls seen before. So, except
for the memory, the skills of abstraction and generalization are essential to
find our way in the world. In later years we are able to deal with much more
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complex patterns that may not directly be based on sensorial observations.
For example, we can observe the underlying theme in a discussion or subtle
patterns in human relations. The latter may become apparent, e.g. only by
listening to somebody’s complaints about his personal problems at work that
again occur in a completely new job. Without a direct participation in the
events, we are able to see both analogy and similarity in examples as complex
as social interaction between people. Here, we learn to distinguish the pattern
from just two examples.

The pattern recognition ability may also be found in other biological sys-
tems: the cat knows the way home, the dog recognizes his boss from the
footsteps or the bee finds the delicious flower. In these examples a direct con-
nection can be made to sensory experiences. Memory alone is insufficient; an
important role is that of generalization from observations which are similar,
although not identical to the previous ones. A scientific challenge is to find
out how this may work.

Scientific questions may be approached by building models and, more
explicitly, by creating simulators, i.e. artificial systems that roughly exhibit
the same phenomenon as the object under study. Understanding will be gained
while constructing such a system and evaluating it with respect to the real
object. Such systems may be used to replace the original ones and may even
improve some of their properties. On the other hand, they may also perform
worse in other aspects. For instance, planes fly faster than birds but are far
from being autonomous. We should realize, however, that what is studied in
this case may not be the bird itself, but more importantly, the ability to fly.
Much can be learned about flying in an attempt to imitate the bird, but also
when differentiating from its exact behavior or appearance. By constructing
fixed wings instead of freely movable ones, the insight in how to fly grows.
Finally, there are engineering aspects that may gradually deviate from the
original scientific question. These are concerned with how to fly for a long
time, with heavy loads, or by making less noise, and slowly shift the point of
attention to other domains of knowledge.

The above shows that a distinction can be made between the scientific
study of pattern recognition as the ability to abstract and generalize from
observations and the applied technical area of the design of artificial pattern
recognition devices without neglecting the fact that they may highly profit
from each other. Note that patterns can be distinguished on many levels,
starting from simple characteristics of structural elements like strokes, through
features of an individual towards a set of qualities in a group of individuals,
to a composite of traits of concepts and their possible generalizations. A pat-
tern may also denote a single individual as a representative for its population,
model or concept. Pattern recognition deals, therefore, with patterns, regular-
ities, characteristics or qualities that can be discussed on a low level of sensory
measurements (such as pixels in an image) as well as on a high level of the
derived and meaningful concepts (such as faces in images). In this work, we
will focus on the scientific aspects, i.e. what we know about the way pattern
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recognition works and, especially, what can be learned from our attempts to
build artificial recognition devices.

A number of authors have already discussed the science of pattern recog-
nition based on their simulation and modeling attempts. One of the first, in
the beginning of the sixties, was Sayre [64], who presented a philosophical
study on perception, pattern recognition and classification. He made clear
that classification is a task that can be fulfilled with some success, but recog-
nition either happens or not. We can stimulate the recognition by focussing
on some aspects of the question. Although we cannot set out to fully recog-
nize an individual, we can at least start to classify objects on demand. The
way Sayre distinguishes between recognition and classification is related to
the two subfields discussed in traditional texts on pattern recognition, namely
unsupervised and supervised learning. They fulfill two complementary tasks.
They act as automatic tools in the hand of a scientist who sets out to find the
regularities in nature.

Unsupervised learning (also related to exploratory analysis or cluster
analysis) gives the scientist an automatic system to indicate the presence of
yet unspecified patterns (regularities) in the observations. They have to be
confirmed (verified) by him. Here, in the terms of Sayre, a pattern is recog-
nized. Supervised learning is an automatic system that verifies (confirms)
the patterns described by the scientist based on a representation defined by
him. This is done by an automatic classification followed by an evaluation.

In spite of Sayre’s discussion, the concepts of pattern recognition and
classification are still frequently mixed up. In our discussion, classification
is a significant component of the pattern recognition system, but unsuper-
vised learning may also play a role there. Typically, such a system is first
presented with a set of known objects, the training set, in some convenient
representation. Learning relies on finding the data descriptions such that the
system can correctly characterize, identify or classify novel examples. After
appropriate preprocessing and adaptations, various mechanisms are employed
to train the entire system well. Numerous models and techniques are used and
their performances are evaluated and compared by suitable criteria. If the fi-
nal goal is prediction, the findings are validated by applying the best model
to unseen data. If the final goal is characterization, the findings may be vali-
dated by complexity of organization (relations between objects) as well as by
interpretability of the results.

Fig. 1 shows the three main stages of pattern recognition systems: Repre-
sentation, Generalization and Evaluation, and an intermediate stage of Adap-
tation [20]. The system is trained and evaluated by a set of examples, the
Design Set. The components are:

• Design Set. It is used both for training and validating the system. Given
the background knowledge, this set has to be chosen such that it is repre-
sentative for the set of objects to be recognized by the trained system.
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Background knowledge
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Sensor Representation Adaptation Generalization
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Fig. 1. Components of a pattern recognition system

There are various approaches how to split it into suitable subsets for train-
ing, validation and testing. See e.g. [22, 32, 62, 77] for details.

• Representation. Real world objects have to be represented in a formal
way in order to be analyzed and compared by mechanical means such as
a computer. Moreover, the observations derived from the sensors or other
formal representations have to be integrated with the existing, explicitly
formulated knowledge either on the objects themselves or on the class
they may belong to. The issue of representation is an essential aspect of
pattern recognition and is different from classification. It largely influences
the success of the stages to come.

• Adaptation. It is an intermediate stage between Representation and Gen-
eralization, in which representations, learning methodology or problem
statement are adapted or extended in order to enhance the final recogni-
tion. This step may be neglected as being transparent, but its role is essen-
tial. It may reduce or simplify the representation, or it may enrich it by em-
phasizing particular aspects, e.g. by a nonlinear transformation of features
that simplifies the next stage. Background knowledge may appropriately
be (re)formulated and incorporated into a representation. If needed, ad-
ditional representations may be considered to reflect other aspects of the
problem. Exploratory data analysis (unsupervised learning) may be used
to guide the choice of suitable learning strategies.

• Generalization or Inference. In this stage we learn a concept from a
training set, the set of known and appropriately represented examples, in
such a way that predictions can be made on some unknown properties of
new examples. We either generalize towards a concept or infer a set of
general rules that describe the qualities of the training data. The most
common property is the class or pattern it belongs to, which is the above
mentioned classification task.

• Evaluation. In this stage we estimate how our system performs on known
training and validation data while training the entire system. If the results
are unsatisfactory, then the previous steps have to be reconsidered.

Different disciplines emphasize or just exclusively study different parts of
this system. For instance, perception and computer vision deal mainly with
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the representation aspects [21], while books on artificial neural networks [62],
machine learning [4, 53] and pattern classification [15] are usually restricted
to generalization. It should be noted that these and other studies with the
words “pattern” and “recognition” in the title often almost entirely neglect
the issue of representation. We think, however, that the main goal of the field
of pattern recognition is to study generalization in relation to representation
[20].

In the context of representations, and especially images, generalization
has been thoroughly studied by Grenander [36]. What is very specific and
worthwhile is that he deals with infinite representations (say, unsampled im-
ages), thereby avoiding the frequently returning discussions on dimensionality
and directly focussing on a high, abstract level of pattern learning. We like
to mention two other scientists that present very general discussions on the
pattern recognition system: Watanabe [75] and Goldfarb [31, 32]. They both
emphasize the structural approach to pattern recognition that we will discuss
later on. Here objects are represented in a form that focusses on their struc-
ture. A generalization over such structural representations is very difficult if
one aims to learn the concept, i.e. the underlying, often implicit definition
of a pattern class that is able to generate possible realizations. Goldfarb ar-
gues that traditionally used numeric representations are inadequate and that
an entirely new, structural representation is necessary. We judge his research
program as very ambitious, as he wants to learn the (generalized) structure
of the concept from the structures of the examples. He thereby aims to make
explicit what usually stays implicit. We admit that a way like his has to be
followed if one ever wishes to reach more in concept learning than the ability
to name the right class with a high probability, without having built a proper
understanding.

In the next section we will discuss and relate well-known general scientific
approaches to the specific field of pattern recognition. In particular, we like
to point out how these approaches differ due to fundamental differences in
the scientific points of view from which they arise. As a consequence, they
are often studied in different traditions based on different paradigms. We will
try to clarify the underlying cause for the pattern recognition field. In the
following sections we sketch some perspectives for pattern recognition and
define a number of specific challenges.

2 Four Approaches to Pattern Recognition

In science, new knowledge is phrased in terms of existing knowledge. The
starting point of this process is set by generally accepted evident views, or
observations and facts that cannot be explained further. These foundations,
however, are not the same for all researchers. Different types of approaches
may be distinguished originating from different starting positions. It is almost
a type of taste from which perspective a particular researcher begins. As a
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consequence, different ‘schools’ may arise. The point of view, however, deter-
mines what we see. In other words, staying within a particular framework of
thought we cannot achieve more than what is derived as a consequence of
the corresponding assumptions and constraints. To create more complete and
objective methods, we may try to integrate scientific results originating from
different approaches into a single pattern recognition model. It is possible that
confusion arises on how these results may be combined and where they essen-
tially differ. But the combination of results of different approaches may also
appear to be fruitful, not only for some applications, but also for the scientific
understanding of the researcher that broadens the horizon of allowable start-
ing points. This step towards a unified or integrated view is very important
in science as only then a more complete understanding is gained or a whole
theory is built.

Below we will describe four approaches to pattern recognition which arise
from two different dichotomies of the starting points. Next, we will present
some examples illustrating the difficulties of their possible interactions. This
discussion is based on earlier publications [16, 17].

2.1 Platonic and Aristotelian Viewpoints

Two principally different approaches to almost any scientific field rely on the
so-called Platonic and Aristotelian viewpoints. In a first attempt they may
be understood as top-down and bottom-up ways of building knowledge. They
are also related to deductive (or holistic) and inductive (or reductionistic)
principles. These aspects will be discussed in Section 4.

The Platonic approach starts from generally accepted concepts and global
ideas of the world. They constitute a coherent picture in which many details
are undefined. The primary task of the Platonic researcher is to recognize in
his3 observations the underlying concepts and ideas that are already accepted
by him. Many theories of the creation of the universe or the world rely on
this scenario. An example is the drifts of the continents or the extinction of
the mammoths. These theories do not result from a reasoning based on obser-
vations, but merely from a more or less convincing global theory (depending
on the listener!) that seems to extrapolate far beyond the hard facts. For
the Platonic researcher, however, it is not an extrapolation, but an adapta-
tion of previous formulations of the theory to new facts. That is the way this
approach works: existing ideas that have been used for a long time are grad-
ually adapted to new incoming observations. The change does not rely on an
essential paradigm shift in the concept, but on finding better, more appro-
priate relations with the observed world in definitions and explanations. The
essence of the theory has been constant for a long time. So, in practise the

3 For simplicity, we refer to researchers in a male form; we mean both women and
men.
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Platonic researcher starts from a theory which can be stratified into to a num-
ber of hypotheses that can be tested. Observations are collected to test these
hypotheses and, finally, if the results are positive, the theory is confirmed.

The observations are of primary interest in the Aristotelian approach. Sci-
entific reasoning stays as closely as possible to them. It is avoided to speculate
on large, global theories that go beyond the facts. The observations are always
the foundation on which the researcher builds his knowledge. Based on them,
patterns and regularities are detected or discovered, which are used to formu-
late some tentative hypotheses. These are further explored in order to arrive
at general conclusions or theories. As such, the theories are not global, nor
do they constitute high level descriptions. A famous guideline here is the so-
called Occam’s razor principle that urges one to avoid theories that are more
complex than strictly needed for explaining the observations. Arguments may
arise, however, since the definition of complexity depends, e.g. on the mathe-
matical formalism that is used.

The choice for a particular approach may be a matter of preference or
determined by non-scientific grounds, such as upbringing. Nobody can judge
what the basic truth is for somebody else. Against the Aristotelians may be
held that they do not see the overall picture. The Platonic researchers, on
the other hand, may be blamed for building castles in the air. Discussions
between followers of these two approaches can be painful as well as fruitful.
They may not see that their ground truths are different, leading to pointless
debates. What is more important is the fact that they may become inspired
by each other’s views. One may finally see real world examples of his concepts,
while the other may embrace a concept that summarizes, or constitutes an
abstraction of his observations.

2.2 Internal and the External Observations

In the contemporary view science is ‘the observation, identification, descrip-
tion, experimental investigation, and theoretical explanation of phenomena’ 4

or ‘any system of knowledge that is concerned with the physical world and its
phenomena and that entails unbiased observations and systematic experimen-
tation.5 So, the aspect of observation that leads to a possible formation of a
concept or theory is very important. Consequently, the research topic of the
science of pattern recognition, which aims at the generalization from observa-
tions for knowledge building, is indeed scientific. Science is in the end a brief
explanation summarizing the observations achieved through abstraction and
their generalization.

Such an explanation may primarily be observed by the researcher in
his own thinking. Pattern recognition research can thereby be performed
by introspection. The researcher inspects himself how he generalizes from

4 http://dictionary.reference.com/
5 http://www.britannica.com/
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observations. The basis of this generalization is constituted by the primary
observations. This may be an entire object (‘I just see that it is an apple’)
or its attributes (‘it is an apple because of its color and shape’). We can
also observe pattern recognition in action by observing other human beings
(or animals) while they perform a pattern recognition task, e.g. when they
recognize an apple. Now the researcher tries to find out by experiments and
measurements how the subject decides for an apple on the basis of the stimuli
presented to the senses. He thereby builds a model of the subject, from senses
to decision making.

Both approaches result into a model. In the external approach, however,
the senses may be included in the model. In the internal approach, this is either
not possible or just very partially. We are usually not aware of what happens
in our senses. Introspection thereby starts by what they offer to our thinking
(and reasoning). As a consequence, models based on the internal approach
have to be externally equipped with (artificial) senses, i.e. with sensors.

2.3 The Four Approaches

The following four approaches can be distinguished by combining the two
dichotomies presented above:

(1) Introspection by a Platonic viewpoint: object modeling.
(2) Introspection by an Aristotelian viewpoint: generalization.
(3) Extrospection by an Aristotelian viewpoint: system modeling.
(4) Extrospection by a Platonic viewpoint: concept modeling.

These four approaches will now be discussed separately. We will identify some
known procedures and techniques that may be related to these. See also Fig. 2.
Object modeling. This is based on introspection from a Platonic viewpoint.
The researcher thereby starts from global ideas on how pattern recognition
systems may work and tries to verify them in his own thinking and reasoning.
He thereby may find, for instance, that particular color and shape descriptions
of an object are sufficient for him to classify it as an apple. More generally, he
may discover that he uses particular reasoning rules operating on a fixed set
of possible observations. The so-called syntactic and structural approaches to
pattern recognition [26] thereby belong to this area, as well as the case-based
reasoning [3]. There are two important problems in this domain: how to con-
stitute the general concept of a class from individual object descriptions and
how to connect particular human qualitative observations such as ‘sharp edge’
or ‘egg shaped’ with physical sensor measurements.
Generalization. Let us leave the Platonic viewpoint and consider a
researcher who starts from observations, but still relies on introspection. He
wonders what he should do with just a set of observations without any frame-
work. An important point is the nature of observations. Qualitative observa-
tions such as ‘round’, ‘egg-shaped’ or ‘gold colored’ can be judged as recog-
nitions in themselves based on low-level outcomes of senses. It is difficult to



The Science of Pattern Recognition. Achievements and Perspectives 229

E
xt

er
n

al
 P

la
tf

o
rm

In
tern

al P
latfo

rm

Platonic Viewpoint
(top down)

Aristotelean Viewpoint
(bottom up)

Concept modelling Object modelling

System modelling Generalization

Expert Systems
Belief Networks

Probabilistic Networks

Neural Networks
Vision

Grammatical Inference
Statistical Pattern Recognition

Syntactic Pattern Recognition
Structural Pattern Recognition

Case Based Reasoning

Fig. 2. Four approaches to Pattern Recognition

neglect them and to access the outcomes of senses directly. One possibility
for him is to use artificial senses, i.e. of sensors, which will produce quantita-
tive descriptions. The next problem, however, is how to generalize from such
numerical outcomes. The physiological process is internally unaccessible. A
researcher who wonders how he himself generalizes from low level observa-
tions given by numbers may rely on statistics. This approach thereby includes
the area of statistical pattern recognition.

If we consider low-level inputs that are not numerical, but expressed in
attributed observations as ‘red, egg-shaped’, then the generalization may be
based on logical or grammatical inference. As soon, however, as the structure
of objects or attributes is not generated from the observations, but derived
(postulated) from a formal global description of the application knowledge,
e.g. by using graph matching, the approach is effectively top-down and thereby
starts from object or concept modeling.

System modeling. We now leave the internal platform and concentrate on
research that is based on the external study of the pattern recognition abil-
ities of humans and animals or their brains and senses. If this is done in a
bottom-up way, the Aristotelian approach, then we are in the area of low-
level modeling of senses, nerves and possibly brains. These models are based
on the physical and physiological knowledge of cells and the proteins and
minerals that constitute them. Senses themselves usually do not directly gen-
eralize from observations. They may be constructed, however, in such a way
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that this process is strongly favored on a higher level. For instance, the way
the eye (and the retina, in particular) is constructed, is advantageous for the
detection of edges and movements as well as for finding interesting details in a
global, overall picture. The area of vision thereby profits from this approach.
It is studied how nerves process the signals they receive from the senses on a
level close to the brain. Somehow this is combined towards a generalization of
what is observed by the senses. Models of systems of multiple nerves are called
neural networks. They appeared to have a good generalization ability and are
thereby also used in technical pattern recognition applications in which the
physiological origin is not relevant [4, 62].

Concept modeling. In the external platform, the observations in the start-
ing point are replaced by ideas and concepts. Here one still tries to externally
model the given pattern recognition systems, but now in a top-down manner.
An example is the field of expert systems: by interviewing experts in a partic-
ular pattern recognition task, it is attempted to investigate what rules they
use and in what way they are using observations. Also belief networks and
probabilistic networks belong to this area as far as they are defined by experts
and not learned from observations. This approach can be distinguished from
the above system modeling by the fact that it is in no way attempted to model
a physical or physiological system in a realistic way. The building blocks are
the ideas, concepts and rules, as they live in the mind of the researcher. They
are adapted to the application by external inspection of an expert, e.g. by
interviewing him. If this is done by the researcher internally by introspection,
we have closed the circle and are back to what we have called object modeling,
as the individual observations are our internal starting point. We admit that
the difference between the two Platonic approaches is minor here (in contrast
to the physiological level) as we can also try to interview ourselves to create
an objective (!) model of our own concept definitions.

2.4 Examples of Interaction

The four presented approaches are four ways to study the science of pattern
recognition. Resulting knowledge is valid for those who share the same start-
ing point. If the results are used for building artificial pattern recognition
devices, then there is, of course, no reason to restrict oneself to a particular
approach. Any model that works well may be considered. There are, however,
certain difficulties in combining different approaches. These may be caused by
differences in culture, assumptions or targets. We will present two examples,
one for each of the two dichotomies.

Artificial neural networks constitute an alternative technique to be used
for generalization within the area of statistical pattern recognition. It has
taken, however, almost ten years since their introduction around 1985 before
neural networks were fully acknowledged in this field. In that period, the
neural network community suffered from lack of knowledge on the competing
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classification procedures. One of the basic misunderstandings in the pattern
recognition field was caused by its dominating paradigm stating that learning
systems should never be larger than strictly necessary, following the Occam’s
razor principle. It could have not been understood how largely oversized sys-
tems such as neural networks would have ever been able to generalize without
adapting to peculiarities in the data (the so-called overtraining). At the same
time, it was evident in the neural network community that the larger neural
network the larger its flexibility, following the analogy that a brain with many
neurons would perform better in learning than a brain with a few ones. When
this contradiction was finally solved (an example of Kuhn’s paradigm shifts
[48]), the area of statistical pattern recognition was enriched with a new set
of tools. Moreover, some principles were formulated towards understanding
of pattern recognition that otherwise would have only been found with great
difficulties.

In general, it may be expected that the internal approach profits from the
results in the external world. It is possible that thinking, the way we generalize
from observations, changes after it is established how this works in nature.
For instance, once we have learned how a specific expert solves his problems,
this may be used more generally and thereby becomes a rule in structural
pattern recognition. The external platform may thereby be used to enrich the
internal one.

A direct formal fertilization between the Platonic and Aristotelian appr-
oaches is more difficult to achieve. Individual researchers may build some
understanding from studying each other’s insights, and thereby become mu-
tually inspired. The Platonist may become aware of realizations of his ideas
and concepts. The Aristotelian may see some possible generalizations of the
observations he collected. It is, however, still one of the major challenges in
science to formalize this process.

How should existing knowledge be formulated such that it can be enriched
by new observations? Everybody who tries to do this directly encounters the
problem that observations may be used to reduce uncertainty (e.g. by the
parameter estimation in a model), but that it is very difficult to formalize
uncertainty in existing knowledge. Here we encounter a fundamental ‘para-
dox’ for a researcher summarizing his findings after years of observations and
studies: he has found some answers, but almost always he has also gener-
ated more new questions. Growing knowledge comes with more questions. In
any formal system, however, in which we manage to incorporate uncertainty
(which is already very difficult), this uncertainty will be reduced after having
incorporating some observations. We need an automatic hypothesis generation
in order to generate new questions. How should the most likely ones be deter-
mined? We need to look from different perspectives in order to stimulate the
creative process and bring sufficient inspiration and novelty to hypothesis gen-
eration. This is necessary in order to make a step towards building a complete
theory. This, however, results in the computational complexity mentioned
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in the literature [60] when the Platonic structural approach to pattern recog-
nition has to be integrated with the Aristotelian statistical approach.

The same problem may also be phrased differently: how can we express the
uncertainty in higher level knowledge in such a way that it may be changed
(upgraded) by low level observations? Knowledge is very often structural and
has thereby a qualitative nature. On the lowest level, however, observations
are often treated as quantities, certainly in automatic systems equipped with
physical sensors. And here the Platonic – Aristotelian polarity meets the inter-
nal – external polarity: by crossing the border between concepts and observa-
tions we also encounter the border between qualitative symbolic descriptions
and quantitative measurements.

3 Achievements

In this section we will sketch in broad terms the state of the art in building
systems for generalization and recognition. In practical applications it is not
the primary goal to study the way of bridging the gap between observations
and concepts in a scientific perspective. Still, we can learn a lot from the
heuristic solutions that are created to assist the human analyst performing
a recognition task. There are many systems that directly try to imitate the
decision making process of a human expert, such as an operator guarding a
chemical process, an inspector supervising the quality of industrial production
or a medical doctor deriving a diagnosis from a series of medical tests. On the
basis of systematic interviews the decision making can become explicit and
imitated by a computer program: an expert system [54]. The possibility to
improve such a system by learning from examples is usually very limited and
restricted to logical inference that makes the rules as general as possible, and
the estimation of the thresholds on observations. The latter is needed as the
human expert is not always able to define exactly what he means, e.g. by ‘an
unusually high temperature’.

In order to relate knowledge to observations, which are measurements in
automatic systems, it is often needed to relate knowledge uncertainty to
imprecise, noisy, or generally invalid measurements. Several frameworks have
been developed to this end, e.g. fuzzy systems [74], Bayesian belief networks
[42] and reasoning under uncertainty [82]. Characteristic for these approaches
is that the given knowledge is already structured and needs explicitly defined
parameters of uncertainty. New observations may adapt these parameters by
relating them to observational frequencies. The knowledge structure is not
learned; it has to be given and is hard to modify. An essential problem is
that the variability of the external observations may be probabilistic, but the
uncertainty in knowledge is based on ‘belief’ or ‘fuzzy’ definitions. Combining
them in a single mathematical framework is disputable [39].

In the above approaches either the general knowledge or the concept un-
derlying a class of observations is directly modeled. In structural pattern
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recognition [26, 65] the starting point is the description of the structure of
a single object. This can be done in several ways, e.g. by strings, contour
descriptions, time sequences or other order-dependent data. Grammars that
are inferred from a collection of strings are the basis of a syntactical approach
to pattern recognition [26]. The incorporation of probabilities, e.g. needed for
modeling the measurement noise, is not straightforward. Another possibility
is the use of graphs. This is in fact already a reduction since objects are de-
composed into highlights or landmarks, possibly given by attributes and also
their relations, which may be attributed as well. Inferring a language from
graphs is already much more difficult than from strings. Consequently, the
generalization from a set of objects to a class is usually done by finding typ-
ical examples, prototypes, followed by graph matching [5, 78] for classifying
new objects.

Generalization in structural pattern recognition is not straightforward. It
is often based on the comparison of object descriptions using the entire avail-
able training set (the nearest neighbor rule) or a selected subset (the nearest
prototype rule). Application knowledge is needed for defining the representa-
tion (strings, graphs) as well as for the dissimilarity measure to perform graph
matching [51, 7]. The generalization may rely on an analysis of the matrix of
dissimilarities, used to determine prototypes. More advanced techniques using
the dissimilarity matrix will be described later.

The 1-Nearest-Neighbor Rule (1-NN) is the simplest and most natural
classification rule. It should always be used as a reference. It has a good
asymptotic performance for metric measures [10, 14], not worse than twice the
Bayes error, i.e. the lowest error possible. It works well in practice for finite
training sets. Fig. 3 shows how it performs on the Iris data set in comparison
to the linear and quadratic classifiers based on the assumption of normal
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distributions [27]. The k-NN rule, based on a class majority vote over the
k nearest neighbors in the training set, is, like the Parzen classifier, even
Bayes consistent. These classifiers approximate the Bayes error for increasing
training sets [14, 27].

However, such results heavily rely on the assumption that the training
examples are identically and independently drawn (iid) from the same dis-
tribution as the future objects to be tested. This assumption of a fixed and
stationary distribution is very strong, but it yields the best possible classi-
fier. There are, however, other reasons, why it cannot be claimed that pattern
recognition is solved by these statistical tools. The 1-NN and k-NN rules have
to store the entire training set. The solution is thereby based on a comparison
with all possible examples, including ones that are very similar, and asymp-
totically identical to the new objects to be recognized. By this, a class or
a concept is not learned, as the decision relies on memorizing all possible
instances. There is simply no generalization.

Other classification procedures, giving rise to two learning curves shown
in Fig. 3, are based on specific model assumptions. The classifiers may perform
well when the assumptions hold and may entirely fail, otherwise. An important
observation is that models used in statistical learning procedures have almost
necessarily a statistical formulation. Human knowledge, however, certainly in
daily life, has almost nothing to do with statistics. Perhaps it is hidden in
the human learning process, but it is not explicitly available in the context
of human recognition. As a result, there is a need to look for effective model
assumptions that are not phrased in statistical terms.

In Fig. 3 we can see that a more complex quadratic classifier performs ini-
tially worse than the other ones, but it behaves similarly to a simple linear
classifier for large training sets. In general, complex problems may be bet-
ter solved by complex procedures. This is illustrated in Fig. 4, in which the
resulting error curves are shown as functions of complexity and training size.
Like in Fig. 3, small training sets require simple classifiers. Larger training
sets may be used to train more complex classifiers, but the error will increase,
if pushed too far. This is a well-known and frequently studied phenomenon in

Classifier complexity

E
xp

ec
te

d 
cl

as
si

fic
at

io
n 

er
ro

r

sample size
∞

Fig. 4. Curse of dimensionality



The Science of Pattern Recognition. Achievements and Perspectives 235

Background
knowledge

Predicted
outputs

Test
examples

Reasoning based on
the current knowledge

Test
examples

Training
data

Reasoning based on
the learned concept

Predicted
outputs

Model or dependence
estimated globally

Dependence estimated
for the given test data

Transductive learning

Training
data

Traditional inductive learning

Background
knowledge

Fig. 5. Inductive (left) and transductive (right) learning paradigms; see also [8].
Background knowledge is here understood in terms of properties of the represen-
tations and the specified assumptions on a set of learning algorithms and related
parameters

relation to the dimensionality (complexity) of the problem. Objects described
by many features often rely on complex classifiers, which may thereby lead
to worse results if the number of training examples is insufficient. This is the
curse of dimensionality, also known as the Rao’s paradox or the peaking
phenomenon [44, 45]. It is caused by the fact that the classifiers badly gener-
alize, due to a poor estimation of their parameters or their focus/adaptation
to the noisy information or irrelevant details in the data. The same phenom-
enon can be observed while training complex neural networks without taking
proper precautions. As a result, they will adapt to accidental data configura-
tions, hence they will overtrain. This phenomenon is also well known outside
the pattern recognition field. For instance, it is one of the reasons one has to
be careful with extensive mass screening in health care: the more diseases and
their relations are considered (the more complex the task), the more people
will we be unnecessarily sent to hospitals for further examinations.

An important conclusion from this research is that the cardinality of the
set of examples from which we want to infer a pattern concept bounds the
complexity of the procedure used for generalization. Such a method should
be simple if there are just a few examples. A somewhat complicated concept
can only be learnt if sufficient prior knowledge is available and incorporated
in such a way that the simple procedure is able to benefit from it.

An extreme consequence of the lack of prior knowledge is given by Watan-
abe as the Ugly Duckling Theorem [75]. Assume that objects are described
by a set of atomic properties and we consider predicates consisting of all pos-
sible logic combinations of these properties in order to train a pattern recog-
nition system. Then, all pairs of objects are equally similar in terms of the
number of predicates they share. This is caused by the fact that all atomic
properties, their presence as well as their absence, have initially equal weights.
As a result, the training set is of no use. Summarized briefly, if we do not know
anything about the problem we cannot learn (generalize and/or infer) from
observations.
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An entirely different reasoning pointing to the same phenomenon is the
No-Free-Lunch Theorem formulated by Wolpert [81]. It states that all
classifiers perform equally well if averaged over all possible classification prob-
lems. This also includes a random assignment of objects to classes. In order
to understand this theorem it should be realized that the considered set of
all possible classification problems includes all possible ways a given data set
can be distributed over a set of classes. This again emphasizes that learning
cannot be successful without any preference or knowledge.

In essence, it has been established that without prior or background knowl-
edge, no learning, no generalization from examples is possible. Concerning
specific applications based on strong models for the classes, it has been shown
that additional observations may lower the specified gaps or solve uncertainties
in these models. In addition, if these uncertainties are formulated in statisti-
cal terms, it will be well possible to diminish their influence by a statistical
analysis of the training set. It is, however, unclear what the minimum prior
knowledge is that is necessary to make the learning from examples possible.
This is of interest if we want to uncover the roots of concept formation, such
as learning of a class from examples. There exists one principle, formulated at
the very beginning of the study of automatic pattern recognition, which may
point to a promising direction. This is the principle of compactness [1], also
phrased as a compactness hypothesis. It states that we can only learn from
examples or phenomena if their representation is such that small variations
in these examples cause small deviations in the representation. This demands
that the representation is based on a continuous transformation of the real
world objects or phenomena. Consequently, it is assumed that a sufficiently
small variation in the original object will not cause the change of its class
membership. It will still be a realization of the same concept. Consequently,
we may learn the class of objects that belong to the same concept by studying
the domain of their corresponding representations.

The Ugly Duckling Theorem deals with discrete logical representations.
These cannot be solved by the compactness hypothesis unless some metric is
assumed that replaces the similarity measured by counting differences in pred-
icates. The No-Free-Lunch Theorem clearly violates the compactness assump-
tion as it makes object representations with contradictory labelings equally
probable. In practice, however, we encounter only specific types of problems.

Building proper representations has become an important issue in pat-
tern recognition [20]. For a long time this idea has been restricted to the
reduction of overly large feature sets to the sizes for which generalization pro-
cedures can produce significant results, given the cardinality of the training
set. Several procedures have been studied based on feature selection as well
as linear and nonlinear feature extraction [45]. A pessimistic result was found
that about any hierarchical ordering of (sub)space separability that fulfills the
necessary monotonicity constraints can be constructed by an example based
on normal distributions only [11]. Very advanced procedures are needed to
find such ‘hidden’ subspaces in which classes are well separable [61]. It has to
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be doubted, however, whether such problems arise in practice, and whether
such feature selection procedures are really necessary in problems with finite
sample sizes. This doubt is further supported by an insight that feature re-
duction procedures should rely on global and not very detailed criteria if their
purpose is to reduce the high dimensionality to a size which is in agreement
with the given training set.

Feed-forward neural networks are a very general tool that, among
others, offer the possibility to train a single system built between sensor and
classification [4, 41, 62]. They thereby cover the representation step in the
input layer(s) and the generalization step in the output layer(s). These layers
are simultaneously optimized. The number of neurons in the network should
be sufficiently large to make the interesting optima tractable. This, however,
brings the danger of overtraining. There exist several ways to prevent that by
incorporating some regularization steps in the optimization process. This re-
places the adaptation step in Fig. 1. A difficult point here, however, is that it is
not sufficiently clear how to choose regularization of an appropriate strength.
The other important application of neural networks is that the use of various
regularization techniques enables one to control the nonlinearity of the result-
ing classifier. This gives also a possibility to use not only complex, but also
moderately nonlinear functions. Neural networks are thereby one of the most
general tools for building pattern recognition systems.

In statistical learning, Vapnik has rigorously studied the problem of adapt-
ing the complexity of the generalization procedure to a finite training set
[72, 73]. The resulting Vapnik-Chervonenkis (VC) dimension, a complex-
ity measure for a family of classification functions, gives a good insight into
the mechanisms that determine the final performance (which depends on the
training error and the VC dimension). The resulting error bounds, however,
are too general for a direct use. One of the reasons is that, like in the No-Free-
Lunch Theorem, the set of classification problems (positions and labeling of
the data examples) is not restricted to the ones that obey the compactness
assumption.

One of the insights gained by studying the complexity measures of poly-
nomial functions is that they have to be as simple as possible in terms of the
number of their free parameters to be optimized. This was already realized
by Cover in 1965 [9]. Vapnik extended this finding around 1994 to arbitrary
non-linear classifiers [73]. In that case, however, the number of free parameters
is not necessarily indicative for the complexity of a given family of functions,
but the VC dimension is. In Vapnik’s terms, the VC dimension reflects the
flexibility of a family of functions (such as polynomials or radial basis func-
tions) to separate arbitrarily labeled and positioned n-element data in a vector
space of a fixed dimension. This VC dimension should be finite and small to
guarantee the good performance of the generalization function.

This idea was elegantly incorporated to the Support Vector Machine
(SVM) [73], in which the number of parameters is as small as a suitably
determined subset of the training objects (the support vectors) and into
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independent of the dimensionality of the vector space. One way to phrase
this principle is that the structure of the classifier itself is simplified as far
as possible (following the Occam’s razor principle). So, after a detor along
huge neural networks possibly having many more parameters than training
examples, pattern recognition was back to the small-is-beautiful principle, but
now better understood and elegantly formulated.

The use of kernels largely enriched the applicability of the SVM to non-
linear decision functions [66, 67, 73]. The kernel approach virtually generates
nonlinear transformations of the combinations of the existing features. By us-
ing the representer theorem, a linear classifier in this nonlinear feature space
can be constructed, because the kernel encodes generalized inner products of
the original vectors only. Consequently, well-performing nonlinear classifiers
built on training sets of almost any size in almost any feature space can be
computed by using the SVM in combination with the ‘kernel trick’ [66].

This method has still a few limitations, however. It was originally designed
for separable classes, hence it suffers when high overlap occurs. The use of slack
variables, necessary for handling such an overlap, leads to a large number of
support vectors and, consequently, to a large VC dimension. In such cases,
other learning procedures have to be preferred. Another difficulty is that the
class of admissible kernels is very narrow to guarantee the optimal solution.
A kernel K has to be (conditionally) positive semidefinite (cpd) functions of
two variables as only then it can be interpreted as a generalized inner product
in reproducing kernel Hilbert space induced by K. Kernels were first consid-
ered as functions in Euclidean vector spaces, but they are now also designed to
handle more general representations. Special-purpose kernels are defined
in a number of applications such as text processing and shape recognition, in
which good features are difficult to obtain. They use background knowledge
from the application in which similarities between objects are defined in such
a way that a proper kernel can be constructed. The difficulty is, again, the
strong requirement of kernels as being cpd.

The next step is the so-called dissimilarity representation [56] in which
general proximity measures between objects can be used for their represen-
tation. The measure itself may be arbitrary, provided that it is meaningful
for the problem. Proximity plays a key role in the quest for an integrated
structural and statistical learning model, since it is a natural bridge between
these two approaches [6, 56]. Proximity is the basic quality to capture the
characteristics of a set objects forming a group. It can be defined in various
ways and contexts, based on sensory measurements, numerical descriptions,
sequences, graphs, relations and other non-vectorial representations, as well
as their combinations. A representation based on proximities is, therefore,
universal.

Although some foundations are laid down [56], the ways for effective learn-
ing from general proximity representations are still to be developed. Since
measures may not belong to the class of permissable kernels, the traditional
SVM, as such, cannot be used. There exist alternative interpretations of
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indefinite kernels and their relation to pseudo-Euclidean and Krein spaces
[38, 50, 55, 56, 58], in which learning is possible for non-Euclidean repre-
sentations. In general, proximity representations are embedded into suitable
vector spaces equipped with a generalized inner product or norm, in which
numerical techniques can either be developed or adapted from the existing
ones. It has been experimentally shown that many classification techniques
may perform well for general dissimilarity representations.

4 Perspectives

Pattern recognition deals with discovering, distinguishing, detecting or char-
acterizing patterns present in the surrounding world. It relies on extrac-
tion and representation of information from the observed data, such that after
integration with background knowledge, it ultimately leads to a formulation
of new knowledge and concepts. The result of learning is that the knowledge
already captured in some formal terms is used to describe the present inter-
dependencies such that the relations between patterns are better understood
(interpreted) or used for generalization. The latter means that a concept,
e.g. of a class of objects, is formalized such that it can be applied to unseen
examples of the same domain, inducing new information, e.g. the class label
of a new object. In this process new examples should obey the same deduction
process as applied to the original examples.

In the next subsections we will first recapitulate the elements of logical
reasoning that contribute to learning. Next, this will be related to the Platonic
and Aristotelian scientific approaches discussed in Section 2. Finally, two novel
pattern recognition paradigms are placed in this view.

4.1 Learning by Logical Reasoning

Learning from examples is an active process of concept formation that
relies on abstraction (focus on important characteristics or reduction of detail)
and analogy (comparison between different entities or relations focussing on
some aspect of their similarity). Learning often requires dynamical, multi-
level (seeing the details leading to unified concepts, which further build higher
level concepts) and possibly multi-strategy actions (e.g. in order to support
good predictive power as well as interpretability). A learning task is basically
defined by input data (design set), background knowledge or problem context
and a learning goal [52]. Many inferential strategies need to be synergetically
integrated to be successful in reaching this goal. The most important ones
are inductive, deductive and abductive principles, which are briefly presented
next. More formal definitions can be sought in the literature on formal logic,
philosophy or e.g. in [23, 40, 52, 83].

Inductive reasoning is the synthetic inference process of arriving at a
conclusion or a general rule from a limited set of observations. This relies on
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a formation of a concept or a model, given the data. Although such a derived
inductive conclusion cannot be proved, its reliability is supported by empiri-
cal observations. As along as the related deductions are not in contradiction
with experiments, the inductive conclusion remains valid. If, however, future
observations lead to contradiction, either an adaption or a new inference is
necessary to find a better rule. To make it more formal, induction learns a
general rule R (concerning A and B) from numerous examples of A and B. In
practice, induction is often realized in a quantitative way. Its strength relies
then on probability theory and the law of large numbers, in which given a
large number of cases, one can describe their properties in the limit and the
corresponding rate of convergence.

Deductive reasoning is the analytic inference process in which existing
knowledge of known facts or agreed-upon rules is used to derive a conclusion.
Such a conclusion does not yield ‘new’ knowledge since it is a logical conse-
quence of what has already been known, but implicitly (it is not of a greater
generality than the premises). Deduction, therefore, uses a logical argument
to make explicit what has been hidden. It is also a valid form of proof provided
that one starts from true premises. It has a predictive power, which makes it
complementary to induction. In a pattern recognition system, both evaluation
and prediction rely on deductive reasoning. To make it more formal, let us
assume that A is a set of observations, B is a conclusion and R is a general
rule. Let B be a logical consequence of A and R, i.e. (A ∧ R) |= B, where |=
denotes entailment. In a deductive reasoning, given A and using the rule R,
the consequence B is derived.

Abductive reasoning is the constructive process of deriving the most
likely or best explanations of known facts. This is a creative process, in which
possible and feasible hypotheses are generated for a further evaluation. Since
both abduction and induction deal with incomplete information, induction
may be viewed in some aspects as abduction and vice versa, which leads to
some confusion between these two [23, 52]. Here, we assume they are different.
Concerning the entailment (A ∧R) |= B, having observed the consequence B
in the context of the rule R, A is derived to explain B.

In all learning paradigms there is an interplay between inductive, abduc-
tive and deductive principles. Both deduction and abduction make possible
to conceptually understand a phenomenon, while induction verifies it. More
precisely, abduction generates or reformulates new (feasible) ideas or hypothe-
ses, induction justifies the validity of these hypothesis with observed data and
deduction evaluates and tests them. Concerning pattern recognition systems,
abduction explores data, transforms the representation and suggests feasible
classifiers for the given problem. It also generates new classifiers or reformu-
lates the old ones. Abduction is present in an initial exploratory step or in
the Adaptation stage; see Fig. 1. Induction trains the classifier in the Gener-
alization stage, while deduction predicts the final outcome (such as label) for
the test data by applying the trained classifier in the Evaluation stage.
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Since abduction is hardly emphasized in learning, we will give some more
insights. In abduction, a peculiarity or an artifact is observed and a hypoth-
esis is then created to explain it. Such a hypothesis is suggested based on
existing knowledge or may extend it, e.g. by using analogy. So, the abduc-
tive process is creative and works towards new discovery. In data analysis,
visualization facilitates the abductive process. In response to visual observa-
tions of irregularities or bizarre patterns, a researcher is inspired to look for
clues that can be used to explain such an unexpected behavior. Mistakes and
errors can therefore serve the purpose of discovery when strange results are
inquired with a critical mind. Note, however, that this process is very hard
to implement into automatic recognition systems as it would require to en-
code not only the detailed domain knowledge, but also techniques that are
able to detect ‘surprises’ as well as strategies for their possible use. In fact,
this requires a conscious interaction. Ultimately, only a human analyst can
interactively respond in such cases, so abduction can be incorporated into
semi-automatic systems well. In traditional pattern recognition systems, ab-
duction is usually defined in the terms of data and works over pre-specified
set of transformations, models or classifiers.

4.2 Logical Reasoning Related to Scientific Approaches

If pattern recognition (learning from examples) is merely understood as a
process of concept formation from a set of observations, the inductive principle
is the most appealing for this task. Indeed, it is the most widely emphasized
in the literature, in which ‘learning’ is implicitly understood as ‘inductive
learning’. Such a reasoning leads to inferring new knowledge (rule or model)
which is hopefully valid not only for the known examples, but also for novel,
unseen objects. Various validation measures or adaptation steps are taken to
support the applicability of the determined model. Additionally, care has to
be taken that the unseen objects obey the same assumptions as the original
objects used in training. If this does not hold, such an empirical generaliza-
tion becomes invalid. One should therefore exercise in critical thinking while
designing a complete learning system. It means that one has to be conscious
which assumptions are made and be able to quantify their sensibility, usability
and validity with the learning goal.

On the other hand, deductive reasoning plays a significant role in the Pla-
tonic approach. This top-down scenario starts from a set of rules derived from
expert knowledge on problem domain or from a degree of belief in a hypoth-
esis. The existing prior knowledge is first formulated in appropriate terms.
These are further used to generate inductive inferences regarding the validity
of the hypotheses in the presence of observed examples. So, deductive formal-
ism (description of the object’s structure) or deductive predictions (based on
the Bayes rule) precede inductive principles. A simple example in the Bayesian
inference is the well-known Expectation-Maximization (EM) algorithm used
in problems with incomplete data [13]. The EM algorithm iterates between the
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E-step and M-step until convergence. In the E-step, given a current (or initial)
estimate of the unknown variable, a conditional expectation is found, which
is maximized in the M-step and derives a new estimate. The E-step is based
on deduction, while the M-step relies on induction. In the case of Bayesian
nets, which model a set of concepts (provided by an expert) through a net-
work of conditional dependencies, predictions (deductions) are made from the
(initial) hypotheses (beliefs over conditional dependencies) using the Bayes
theorem. Then, inductive inferences regarding the hypotheses are drawn from
the data. Note also that if the existing prior knowledge is captured in some
rules, learning may become a simplification of these rules such that their log-
ical combinations describe the problem.

In the Aristotelian approach to pattern recognition, observation of par-
ticulars and their explanation are essential for deriving a concept. As we al-
ready know, abduction plays a role here, especially for data exploration and
characterization to explain or suggest a modification of the representation
or an adaptation of the given classifier. Aristotelian learning often relies on
the Occam’s razor principle which advocates to choose the simplest model
or hypothesis among otherwise equivalent ones and can be implemented in a
number of ways [8].

In summary, the Platonic scenario is dominantly inductive-deductive,
while the Aristotelian scenario is dominantly inductive-abductive. Both frame-
works have different merits and shortcomings. The strength of the Platonic
approach lies in the proper formulation and use of subjective beliefs, expert
knowledge and possibility to encode internal structural organization of ob-
jects. It is model-driven. In this way, however, the inductive generalization
becomes limited, as there may be little freedom in the description to explore
and discovery of new knowledge. The strength of the Aristotelian approach lies
in a numerical induction and a well-developed mathematical theory of vector
spaces in which the actual learning takes place. It is data-driven. The weak-
ness, however, lies in the difficulty to incorporate the expert or background
knowledge about the problem. Moreover, in many practical applications, it is
known that the implicit assumptions of representative training sets, identical
and identically distributed (iid) samples as well as stationary distributions do
not hold.

4.3 Two New Pattern Recognition Paradigms

Two far-reaching novel paradigms have been proposed that deal with the
drawbacks of the Platonic and Aristotelian approaches. In the Aristotelian
scenario, Vapnik has introduced transductive learning [73], while in the Pla-
tonic scenario, Goldfarb has advocated a new structural learning paradigm
[31, 32]. We think these are two major perspectives of the science of pattern
recognition.

Vapnik [73] formulated the main learning principle as: ‘If you posses a
restricted amount of information for solving some problem, try to solve the
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problem directly and never solve a more general problem as an intermediate
step.’ In the traditional Aristotelian scenario, the learning task is often trans-
formed to the problem of function estimation, in which a decision function
is determined globally for the entire domain (e.g. for all possible examples
in a feature vector space). This is, however, a solution to a more general
problem than necessary to arrive at a conclusion (output) for specific input
data. Consequently, the application of this common-sense principle requires
a reformulation of the learning problem such that novel (unlabeled) exam-
ples are considered in the context of the given training set. This leads to the
transductive principle which aims at estimating the output for a given input
only when required and may differ from an instance to instance. The train-
ing sample, considered either globally, or in the local neighborhoods of test
examples, is actively used to determine the output. As a result, this leads to
confidence measures of single predictions instead of globally estimated classi-
fiers. It provides ways to overcome the difficulty of iid samples and stationary
distributions. More formally, in a transductive reasoning, given an entailment
A |= (B ∪ C), if the consequence B is observed as the result of A, then the
consequence C becomes more likely.

The truly transductive principle requires an active synergy of inductive,
deductive and abductive principles in a conscious decision process. We believe
it is practised by people who analyze complex situations, deduce and validate
possible solutions and make decisions in novel ways. Examples are medical
doctors, financial advisers, strategy planners or leaders of large organizations.
In the context of automatic learning, transduction has applications to learn-
ing from partially labeled sets and otherwise missing information, information
retrieval, active learning and all types of diagnostics. Some proposals can be
found e.g. in [34, 46, 47, 73]. Although many researchers recognize the impor-
tance of this principle, many remain also reluctant. This may be caused by
unfamiliarity with this idea, few existing procedures, or by the accompany-
ing computational costs as a complete decision process has to be constantly
inferred anew.

In the Platonic scenario, Goldfarb and his colleagues have developed struc-
tural inductive learning, realized by the so-called evolving transformation sys-
tems (ETS) [31, 32]. Goldfarb first noticed the intrinsic and impossible to
overcome inadequacy of vector spaces to truly learn from examples [30]. The
reason is that such quantitative representations loose all information on ob-
ject structure; there is no way an object can be generated given its numeric
encoding. The second crucial observation was that all objects in the universe
have a formative history. This led Goldfarb to the conclusion that an object
representation should capture the object’s formative evolution, i.e. the way
the object is created through a sequence of suitable transformations in time.
The creation process is only possible through structural operations. So, ‘the
resulting representation embodies temporal structural information in the form
of a formative, or generative, history’ [31]. Consequently, objects are treated
as evolving structural processes and a class is defined by structural processes,
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which are ‘similar’. This is an inductive structural/symbolic class represen-
tation, the central concept in ETS. This representation is learnable from a
(small) set of examples and has the capability to generate objects from the
class.

The generative history of a class starts from a single progenitor and is
encoded as a multi-level hierarchical system. On a given level, the basic struc-
tural elements are defined together with their structural transformations, such
that both are used to constitute a new structural element on a higher level.
This new element becomes meaningful on that level. Similarity plays an im-
portant role, as it is used as a basic quality for a class representation as a
set of similar structural processes. Similarity measure is learned in training
to induce the optimal finite set of weighted structural transformations that
are necessary on the given level, such that the similarity of an object to the
class representation is large. ‘This mathematical structure allows one to cap-
ture dynamically, during the learning process, the compositional structure of
objects/events within a given inductive, or evolutionary, environment’ [31].

Goldfarb’s ideas bear some similarity to the ones of Wolfram, presented
in his book on ‘a new kind of science’ [80]. Wolfram considers computation
as the primary concept in nature; all processes are the results of cellular-
automata6 type of computational processes, and thereby inherently numerical.
He observes that repetitive use of simple computational transformations can
cause very complex phenomena, especially if computational mechanisms are
used at different levels. Goldfarb also discusses dynamical systems, in which
complexity is built from simpler structures, through hierarchical folding up
(or enrichment). The major difference is that he considers structure of pri-
mary interest, which leads to evolving temporal structural processes instead
of computational ones.

In summary, Goldfarb proposes a revolutionary paradigm: an ontological
model of a class representation in an epistemological context, as it is learn-
able from examples. This is a truly unique unification. We think it is the
most complete and challenging approach to pattern recognition to this date,
a breakthrough. By including the formative history of objects into their rep-
resentation, Goldfarb attributes them some aspects of human consciousness.
The far reaching consequence of his ideas is a generalized measurement process
that will be one day present in sensors. Such sensors will be able to measure
‘in structural units’ instead of numerical units (say, meters) as it is currently
done. The inductive process over a set of structural units lies at the founda-
tion of new inductive informatics. The difficulty, however, is that the current
formalism in mathematics and related fields is not yet prepared for adopting
these far-reaching ideas. We, however, believe, they will pave the road and be
found anew or rediscovered in the next decennia.

6 Cellular automata are discrete dynamical systems that operate on a regular lattice
in space and time, and are characterized by ‘local’ interactions.
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5 Challenges

A lot of research effort is needed before the two novel and far-reaching para-
digms are ready for practical applications. So, this section focuses on several
challenges that naturally come in the current context and will be summa-
rized for the design of automatic pattern recognition procedures. A number of
fundamental problems, related to the various approaches, have already been
identified in the previous sections and some will return here on a more techni-
cal level. Many of the points raised in this section have been more extensively
discussed in [17]. We will emphasize these which have only been touched or
are not treated in the standard books [15, 71, 76] or in the review by Jain
et al. [45]. The issues to be described are just a selection of the many which
are not yet entirely understood. Some of them may be solved in the future
by the development of novel procedures or by gaining an additional under-
standing. Others may remain an issue of concern to be dealt with in each
application separately. We will be systematically describe them, following the
line of advancement of a pattern recognition system; see also Fig. 1:
• Representation and background knowledge. This is the way in which

individual real world objects and phenomena are numerically described or
encoded such that they can be related to each other in some meaningful
mathematical framework. This framework has to allow the generalization
to take place.

• Design set. This is the set of objects available or selected to develop the
recognition system.

• Adaptation. This is usually a transformation of the representation such
that it becomes more suitable for the generalization step.

• Generalization. This is the step in which objects of the design set are
related such that classes of objects can be distinguished and new objects
can be accurately classified.

• Evaluation. This is an estimate of the performance of a developed recog-
nition system.

5.1 Representation and Background Knowledge

The problem of representation is a core issue for pattern recognition [18, 20].
Representation encodes the real world objects by some numerical description,
handled by computers in such a way that the individual object representations
can be interrelated. Based on that, later a generalization is achieved, establish-
ing descriptions or discriminations between classes of objects. Originally, the
issue of representation was almost neglected, as it was reduced to the demand
of having discriminative features provided by some expert. Statistical learning
is often believed to start in a given feature vector space. Indeed, many books on
pattern recognition disregard the topic of representation, simply by assuming
that objects are somehow already represented [4, 62]. A systematic study on
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representation [20, 56] is not easy, as it is application or domain-dependent
(where the word domain refers to the nature or character of problems and
the resulting type of data). For instance, the representations of a time sig-
nal, an image of an isolated 2D object, an image of a set of objects on some
background, a 3D object reconstruction or the collected set of outcomes of a
medical examination are entirely different observations that need individual
approaches to find good representations. Anyway, if the starting point of a
pattern recognition problem is not well defined, this cannot be improved later
in the process of learning. It is, therefore, of crucial importance to study the
representation issues seriously. Some of them are phrased in the subsequent
sections.

The use of vector spaces. Traditionally, objects are represented by vectors
in a feature vector space. This representation makes it feasible to perform some
generalization (with respect to this linear space), e.g. by estimating density
functions for classes of objects. The object structure is, however, lost in such a
description. If objects contain an inherent, identifiable structure or organiza-
tion, then relations between their elements, like relations between neighboring
pixels in an image, are entirely neglected. This also holds for spatial properties
encoded by Fourier coefficients or wavelets weights. These original structures
may be partially rediscovered by deriving statistics over a set of vectors rep-
resenting objects, but these are not included in the representation itself. One
may wonder whether the representation of objects as vectors in a space is
not oversimplified to be able to reflect the nature of objects in a proper way.
Perhaps objects might be better represented by convex bodies, curves or by
other structures in a metric vector space. The generalization over sets of vec-
tors, however, is heavily studied and mathematically well developed. How to
generalize over a set of other structures is still an open question.

The essential problem of the use of vector spaces for object representation
is originally pointed out by Goldfarb [30, 33]. He prefers a structural repre-
sentation in which the original object organization (connectedness of building
structural elements) is preserved. However, as a generalization procedure for
structural representations does not exist yet, Goldfarb starts from the evolv-
ing transformation systems [29] to develop a novel system [31]. As already
indicated in Sec. 4.3 we see this as a possible direction for a future break-
through.

Compactness. An important, but seldom explicitly identified property of
representations is compactness [1]. In order to consider classes, which are
bounded in their domains, the representation should be constrained: objects
that are similar in reality should be close in their representations (where the
closeness is captured by an appropriate relation, possibly a proximity mea-
sure). If this demand is not satisfied, objects may be described capriciously
and, as a result, no generalization is possible. This compactness assumption
puts some restriction on the possible probability density functions used to
describe classes in a representation vector space. This, thereby, also narrows
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the set of possible classification problems. A formal description of the prob-
ability distribution of this set may be of interest to estimate the expected
performance of classification procedures for an arbitrary problem.

In Sec. 3, we pointed out that the lack of a formal restriction of pattern
recognition problems to those with a compact representation was the basis
of pessimistic results like the No-Free-Lunch Theorem [81] and the classifi-
cation error bounds resulting from the VC complexity measure [72, 73]. One
of the main challenges for pattern recognition to find a formal description of
compactness that can be used in error estimators the average over the set of
possible pattern recognition problems.

Representation types. There exists numerous ways in which representa-
tions can be derived. The basic ‘numerical’ types are now distinguished as:
• Features. Objects are described by characteristic attributes. If these at-

tributes are continuous, the representation is usually compact in the cor-
responding feature vector space. Nominal, categorical or ordinal attributes
may cause problems. Since a description by features is a reduction of ob-
jects to vectors, different objects may have identical representations, which
may lead to class overlap.

• Pixels or other samples. A complete representation of an object may be
approximated by its sampling. For images, these are pixels, for time signals,
these are time samples and for spectra, these are wavelengths. A pixel
representation is a specific, boundary case of a feature representation, as
it describes the object properties in each point of observation.

• Probability models. Object characteristics may be reflected by some prob-
abilistic model. Such models may be based on expert knowledge or trained
from examples. Mixtures of knowledge and probability estimates are diffi-
cult, especially for large models.

• Dissimilarities, similarities or proximities. Instead of an absolute descrip-
tion by features, objects are relatively described by their dissimilarities to
a collection of specified objects. These may be carefully optimized pro-
totypes or representatives for the problem, but also random subsets may
work well [56]. The dissimilarities may be derived from raw data, such as
images, spectra or time samples, from original feature representations or
from structural representations such as strings or relational graphs. If the
dissimilarity measure is nonnegative and zero only for two identical ob-
jects, always belonging to the same class, the class overlap may be avoided
by dissimilarity representations.

• Conceptual representations. Objects may be related to classes in various
ways, e.g. by a set of classifiers, each based on a different representation,
training set or model. The combined set of these initial classifications or
clusterings constitute a new representation [56]. This is used in the area
of combining clusterings [24, 25] or combining classifiers [49].
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In the structural approaches, objects are represented in qualitative ways. The
most important are strings or sequences, graphs and their collections and
hierarchical representations in the form of ontological trees or semantic nets.

Vectorial object descriptions and proximity representations provide a good
way for generalization in some appropriately determined spaces. It is, however,
difficult to integrate them with the detailed prior or background knowledge
that one has on the problem. On the other hand, probabilistic models and,
especially, structural models are well suited for such an integration. The later,
however, constitute a weak basis for training general classification schemes.
Usually, they are limited to assigning objects to the class model that fits
best, e.g. by the nearest neighbor rule. Other statistical learning techniques
are applied to these if given an appropriate proximity measure or a vectorial
representation space found by graph embeddings [79].

It is a challenge to find representations that constitute a good basis for
modeling object structure and which can also be used for generalizing from
examples. The next step is to find representations not only based on back-
ground knowledge or given by the expert, but to learn or optimize them from
examples.

5.2 Design Set

A pattern recognition problem is not only specified by a representation, but
also by the set of examples given for training and evaluating a classifier in
various stages. The selection of this set and its usage strongly influence the
overall performance of the final system. We will discuss some related issues.

Multiple use of the training set. The entire design set or its parts are
used in several stages during the development of a recognition system. Usually,
one starts from some exploration, which may lead to the removal of wrongly
represented or erroneously labeled objects. After gaining some insights into
the problem, the analyst may select a classification procedure based on the
observations. Next, the set of objects may go through some preprocessing and
normalization. Additionally, the representation has to be optimized, e.g. by
a feature/object selection or extraction. Then, a series of classifiers has to
be trained and the best ones need to be selected or combined. An overall
evaluation may result in a re-iteration of some steps and different choices.

In this complete process the same objects may be used a number of times
for the estimation, training, validation, selection and evaluation. Usually, an
expected error estimation is obtained by a cross-validation or hold-out method
[32, 77]. It is well known that the multiple use of objects should be avoided
as it biases the results and decisions. Re-using objects, however, is almost
unavoidable in practice. A general theory does not exist yet, that predicts
how much a training set is ‘worn-out’ by its repetitive use and which suggests
corrections that can diminish such effects.
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Representativeness of the training set. Training sets should be repre-
sentative for the objects to be classified by the final system. It is common to
take a randomly selected subset of the latter for training. Intuitively, it seems
to be useless to collect many objects represented in the regions where classes
do not overlap. On the contrary, in the proximity of the decision boundary, a
higher sampling rate seems to be advantageous. This depends on the complex-
ity of the decision function and the expected class overlap, and is, of course,
inherently related to the chosen procedure.

Another problem are the unstable, unknown or undetermined class distrib-
utions. Examples are the impossibility to characterize the class of non-faces in
the face detection problem, or in machine diagnostics, the probability distrib-
ution of all casual events if the machine is used for undetermined production
purposes. A training set that is representative for the class distributions can-
not be found in such cases. An alternative may be to sample the domain of
the classes such that all possible object occurrences are approximately cov-
ered. This means that for any object that could be encountered in practice
there exists a sufficiently similar object in the training set, defined in relation
to the specified class differences. Moreover, as class density estimates can-
not be derived for such a training set, class posterior probabilities cannot be
estimated. For this reason such a type of domain based sampling is only ap-
propriate for non-overlapping classes. In particular, this problem is of interest
for non-overlapping (dis)similarity based representations [18].

Consequently, we wonder whether it is possible to use a more general type
of sampling than the classical iid sampling, namely the domain sampling. If
so, the open questions refer to the verification of dense samplings and types
of new classifiers that are explicitly built on such domains.

5.3 Adaptation

Once a recognition problem has been formulated by a set of example ob-
jects in a convenient representation, the generalization over this set may be
considered, finally leading to a recognition system. The selection of a proper
generalization procedure may not be evident, or several disagreements may
exist between the realized and preferred procedures. This occurs e.g. when
the chosen representation needs a non-linear classifier and only linear decision
functions are computationally feasible, or when the space dimensionality is
high with respect to the size of the training set, or the representation cannot
be perfectly embedded in a Euclidean space, while most classifiers demand
that. For reasons like these, various adaptations of the representation may
be considered. When class differences are explicitly preserved or emphasized,
such an adaptation may be considered as a part of the generalization pro-
cedure. Some adaptation issues that are less connected to classification are
discussed below.

Problem complexity. In order to determine which classification proce-
dures might be beneficial for a given problem, Ho and Basu [43] proposed
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to investigate its complexity. This is an ill-defined concept. Some of its as-
pects include data organization, sampling, irreducibility (or redundancy) and
the interplay between the local and global character of the representation
and/or of the classifier. Perhaps several other attributes are needed to define
complexity such that it can be used to indicate a suitable pattern recognition
solution to a given problem; see also [2].

Selection or combining. Representations may be complex, e.g. if objects
are represented by a large amount of features or if they are related to a large
set of prototypes. A collection of classifiers can be designed to make use of
this fact and later combined. Additionally, also a number of representations
may be considered simultaneously. In all these situations, the question arises
on which should be preferred: a selection from the various sources of infor-
mation or some type of combination. A selection may be random or based on
a systematic search for which many strategies and criteria are possible [49].
Combinations may sometimes be fixed, e.g. by taking an average, or a type of
a parameterized combination like a weighted linear combination as a principal
component analysis; see also [12, 56, 59].

The choice favoring either a selection or combining procedure may also be
dictated by economical arguments, or by minimizing the amount of necessary
measurements, or computation. If this is unimportant, the decision has to
be made according to the accuracy arguments. Selection neglects some infor-
mation, while combination tries to use everything. The latter, however, may
suffer from overtraining as weights or other parameters have to be estimated
and may be adapted to the noise or irrelevant details in the data. The sparse
solutions offered by support vector machines [67] and sparse linear program-
ming approaches [28, 35] constitute a way of compromise. How to optimize
them efficiently is still a question.

Nonlinear transformations and kernels. If a representation demands or
allows for a complicated, nonlinear solution, a way to proceed is to transform
the representation appropriately such that linear aspects are emphasized. A
simple (e.g. linear) classifier may then perform well. The use of kernels, see
Sec. 3, is a general possibility. In some applications, indefinite kernels are pro-
posed as being consistent with the background knowledge. They may result in
non-Euclidean dissimilarity representations, which are challenging to handle;
see [57] for a discussion.

5.4 Generalization

The generalization over sets of vectors leading to class descriptions or discrim-
inants was extensively studied in pattern recognition in the 60’s and 70’s of
the previous century. Many classifiers were designed, based on the assumption
of normal distributions, kernels or potential functions, nearest neighbor rules,
multi-layer perceptrons, and so on [15, 45, 62, 76]. These types of studies were
later extended by the fields of multivariate statistics, artificial neural networks
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and machine learning. However, in the pattern recognition community, there
is still a high interest in the classification problem, especially in relation to
practical questions concerning issues of combining classifiers, novelty detection
or the handling of ill-sampled classes.

Handling multiple solutions. Classifier selection or classifier combi-
nation. Almost any more complicated pattern recognition problem can be
solved in multiple ways. Various choices can be made for the representation,
the adaptation and the classification. Such solutions usually do not only differ
in the total classification performance, they may also make different errors.
Some type of combining classifiers will thereby be advantageous [49]. It is to
be expected that in the future most pattern recognition systems for real world
problems are constituted of a set of classifiers. In spite of the fact that this
area is heavily studied, a general approach on how to select, train and combine
solutions is still not available. As training sets have to be used for optimizing
several subsystems, the problem how to design complex systems is strongly
related to the above issue of multiple use of the training set.

Classifier typology. Any classification procedure has its own explicit or
built-in assumptions with respect to data inherent characteristics and the
class distributions. This implies that a procedure will lead to relatively good
performance if a problem fulfils its exact assumptions. Consequently, any clas-
sification approach has its problem for which it is the best. In some cases such
a problem might be far from practical application. The construction of such
problems may reveal which typical characteristics of a particular procedure
are. Moreover, when new proposals are to be evaluated, it may be demanded
that some examples of its corresponding typical classification problem are
published, making clear what the area of application may be; see [19].

Generalization principles. The two basic generalization principles, see Sec-
tion 4, are probabilistic inference, using the Bayes-rule [63] and the minimum
description length principle that determines the most simple model in agree-
ment with the observations (based on Occam’s razor) [37]. These two princi-
ples are essentially different7. The first one is sensitive to multiple copies of an
existing object in the training set, while the second one is not. Consequently,
the latter is not based on densities, but just on object differences or distances.
An important issue is to find in which situations each of these principle should
be recommended and whether the choice should be made in the beginning, in
the selection of the design set and the way of building a representation, or it
should be postpone until a later stage.

The use of unlabeled objects and active learning. The above mentioned
principles are examples of statistical inductive learning, where a classifier is

7 Note that Bayesian inference is also believed to implement the Occam’s razor [8]
in which preference for simpler models is encoded by encouraging particular prior
distributions. This is, however, not the primary point as it is in the minimum
description length principle.
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induced based on the design set and it is later applied to unknown objects. The
disadvantage of such approach is that a decision function is in fact designed for
all possible representations, whether valid or not. Transductive learning, see
Section 4.3, is an appealing alternative as it determines the class membership
only for the objects in question, while relying on the collected design set or
its suitable subset [73]. The use of unlabeled objects, not just the one to be
classified, is a general principle that may be applied in many situations. It may
improve a classifier based on just a labeled training set. If this is understood
properly, the classification of an entire test set may yield better results than
the classification of individuals.

Classification or class detection. Two-class problems constitute the tra-
ditional basic line in pattern recognition, which reduces to finding a discrim-
inant or a binary decision function. Multi-class problems can be formulated
as a series of two-class problems. This can be done in various ways, none of
them is entirely satisfactory. An entirely different approach is the description
of individual classes by so-called one-class classifiers [69, 70]. In this way the
focuss is given to class description instead of to class separation. This brings
us to the issue of the structure of a class.

Traditionally classes are defined by a distribution in the representation
space. However, the better such a representation, the higher its dimensionality,
the more difficult it is to estimate a probability density function. Moreover,
as we have seen above, it is for some applications questionable whether such
a distribution exist. A class is then a part of a possible non-linear manifold in
a high-dimensional space. It has a structure instead of a density distribution.
It is a challenge to use this approach for building entire pattern recognition
systems.

5.5 Evaluation

Two questions are always apparent in the development of recognition systems.
The first refers to the overall performance of a particular system once it is
trained, and has sometimes a definite answer. The second question is more
open and asks which good recognition procedures are in general.

Recognition system performance. Suitable criteria should be used to
evaluate the overall performance of the entire system. Different measures with
different characteristics can be applied, however, usually, only a single criterion
is used. The basic ones are the average accuracy computed over all validation
objects or the accuracy determined by the worst-case scenario. In the first
case, we again assume that the set of objects to be recognized is well defined
(in terms of distributions). Then, it can be sampled and the accuracy of the
entire system is estimated based on the evaluation set. In this case, however,
we neglect the issue that after having used this evaluation set together with
the training set, a better system could have been found. A more interesting
point is how to judge the performance of a system if the distribution of objects
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is ill-defined or if a domain based classification system is used as discussed
above. Now, the largest mistake that is made becomes a crucial factor for this
type of judgements. One needs to be careful, however, as this may refer to an
unimportant outlier (resulting e.g. from invalid measurements).

Practice shows that a single criterion, like the final accuracy, is insufficient
to judge the overall performance of the whole system. As a result, multiple
performance measures should be taken into account, possibly at each stage.
These measures should not only reflect the correctness of the system, but also
its flexibility to cope with unusual situations in which e.g. specific examples
should be rejected or misclassification costs incorporated.

Prior probability of problems. As argued above, any procedure has a
problem for which it performs well. So, we may wonder how large the class of
such problems is. We cannot state that any classifier is better than any other
classifier, unless the distribution of problems to which these classifiers will
be applied is defined. Such distributions are hardly studied. What is done at
most is that classifiers are compared over a collection of benchmark problems.
Such sets are usually defined ad hoc and just serve as an illustration. The
collection of problems to which a classification procedure will be applied is
not defined. As argued in Section 3, it may be as large as all problems with a
compact representation, but preferably not larger.

6 Discussion and Conclusions

Recognition of patterns and inference skills lie at the core of human learning.
It is a human activity that we try to imitate by mechanical means. There
are no physical laws that assign observations to classes. It is the human con-
sciousness that groups observations together. Although their connections and
interrelations are often hidden, some understanding may be gained in the at-
tempt of imitating this process. The human process of learning patterns from
examples may follow along the lines of trial and error. By freeing our minds
of fixed beliefs and petty details we may not only understand single obser-
vations but also induce principles and formulate concepts that lie behind the
observed facts. New ideas can be born then. These processes of abstraction
and concept formation are necessary for development and survival. In practice,
(semi-)automatic learning systems are built by imitating such abilities in or-
der to gain understanding of the problem, explain the underlying phenomena
and develop good predictive models.

It has, however, to be strongly doubted whether statistics play an impor-
tant role in the human learning process. Estimation of probabilities, especially
in multivariate situations is not very intuitive for majority of people. More-
over, the amount of examples needed to build a reliable classifier by statistical
means is much larger than it is available for humans. In human recognition,
proximity based on relations between objects seems to come before features
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are searched and may be, thereby, more fundamental. For this reason and
the above observation, we think that the study of proximities, distances and
domain based classifiers are of great interest. This is further encouraged by
the fact that such representations offer a bridge between the possibilities of
learning in vector spaces and the structural description of objects that pre-
serve relations between objects inherent structure. We think that the use of
proximities for representation, generalization and evaluation constitute the
most intriguing issues in pattern recognition.

The existing gap between structural and statistical pattern recognition
partially coincides with the gap between knowledge and observations. Prior
knowledge and observations are both needed in a subtle interplay to gain new
knowledge. The existing knowledge is needed to guide the deduction process
and to generate the models and possible hypotheses needed by induction,
transduction and abduction. But, above all, it is needed to select relevant
examples and a proper representation. If and only if the prior knowledge is
made sufficiently explicit to set this environment, new observations can be
processed to gain new knowledge. If this is not properly done, some results
may be obtained in purely statistical terms, but these cannot be integrated
with what was already known and have thereby to stay in the domain of obser-
vations. The study of automatic pattern recognition systems makes perfectly
clear that learning is possible, only if the Platonic and Aristotelian scientific
approaches cooperate closely. This is what we aim for.
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mation for support vector classification. In Multiple Classifier Systems,
pages 102–111. Springer-Verlag, 2004.

[13] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[14] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer-Verlag, 1996.

[15] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John
Wiley & Sons, Inc., 2nd edition, 2001.

[16] R.P.W. Duin. Four scientific approaches to pattern recognition. In Fourth
Quinquennial Review 1996-2001. Dutch Society for Pattern Recognition
and Image Processing, pages 331–337. NVPHBV, Delft, 2001.

[17] R.P.W. Duin and E. P ↪ekalska. Open issues in pattern recognition. In
Computer Recognition Systems, pages 27–42. Springer, Berlin, 2005.

[18] R.P.W. Duin, E. P ↪ekalska, P. Pacĺık, and D.M.J. Tax. The dissimilarity
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