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Program Daily Schedule
1. Representation and Generalization 10:00 - 12:00 Lectures
2. The Dissimilarity Space http://www.37steps.com/disrep-course/
3. Pseudo-Euclidean embedding 13:30 - 16:30 Lab course i .
http://www.37steps.com/disrep_exercises/
4. Applications
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Question )'\ )\ B

Pattern Recognition Problems How to represent real world objects,

A
SN ? 4
PP
(with a size and a shape)

given a set of examples A » B

such that we can generalize? ' '
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Real world objects and events

Images

Spectra —— > shapes
Time signals

Gestures

How to build a representation?
Features <- Structure

3
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Colon Tissue Recognition
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Gesture Recognition
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Blob Recognition

BACK

BREAST
DRUMSTICK
THIGH-AND-BACK

WING

PRLY
Wi\
AL,
Xl L)
\Né¢

446 binary images, varying size, e.g.: 100 x 130
Andreu, G, Crespo, A, Valiente, J.M.: ing the toroidal self- zing feature
maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341-1346.
Shape classification by welghted -edit distances (Bunke)
Bunke, H,, Buhler; U.: e ir string ing to 2D shape
recognition. Pattern recognition 26 (1993) 1797-1812
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Volcano / Seismic Signal Classification

Volcano-Tectonic  Long Period 150 000 events (1994 — 2008)
5 volcanos

s #""" __+,_ 40 stations
) -l 15 classes
- : o J. Makario,
E ‘°”LJ ! i INGEOMINAS, Manizales, Colombia
. i M. Orozco-Alzate,
& u-‘

Nat. Univ. Colombia, Manizales
R. Duin, TUDelft

M. Bicego, Univ. of Verona, Italy

Cenatav, Havana, Cuba
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Pattern Recognition Problems
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To which class (segment) ~ Where is an object of
belongs every pixel? interest (detection);
What is it (classification)?

To which class
belongs an image
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Pattern Recognition: Shape Recognition

Pattern Recognition is very often Shape Recognition:
- Images: B/W, grey value, color, 2D, 3D, 4D

- Time Signals

« Spectra

w7 roemmosomatn ]
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Vector Representation

Generalization
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Pattern Recognition System

Representation H Generalization
R

Pixel Representation
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Pattern Recognition: Shapes

Examples of objects for different classes

"

A?B

Object of unknown class to be classified
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Pattern Recognition System

Representation H Generalization
o

area )
L]
perimeter

Feature Representation

area

perimeter
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Pattern Recognition System

Representation H Generalization
ah

o A
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Dissimilarity Representation J D(%,Xa1)
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Pattern Recognition System

Representation H Generalization
o

Classifier_2

Combining Classifiers Classifier_1
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Compactness

Representations of real world similar objects are close.

There is no ground for any generalization (induction) on representations
that do not obey this demand.

(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.)

Xp sufficient for perfect classification
(area) as dissimilar objects may be close.
-> class overlap
=2 probabilities

(perimeter) X;
[ msemwmn  oeesememedoe x|
5
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Distances and Densities
° ee A
2 to be classified as X, o0 oo,
o 0 00 o .
B — because it is most (area) | B o % % o o
close to an object B o o 000 e '0?'
A - because the local o 0% '. e
density of A is larger. o o ° : S e
L] L]
0 °
T

(perimeter) Xl

3
TUDelft

The compactness hypothesis is not
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Good Representations
« Class specific

Different classes should be
represented in different positions

in the representation space.

in a small set of finite domains.

« Compact O
Every class should be represented
]

3
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True Representations
. ¢ Similar objects are close
X, . .‘.‘: and
(area) L .'.. ®ete e Dissimilar objects are distant.
! - (perimeter) X;

- no probabilities needed, domains are sufficient!
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Features Reduce

(perimeter) X,

Due to reduction essentially different objects are represented identically.
- The feature space representation needs a statistical, probabilistic generalization
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Classification

Generalization

3
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Bayes error for optimal (Bayes) classifier

p(x|A) p(A)T Tp(x |B)p(B)

X ————

S(x)>0 > Class A S(x)=0 S(x)<0 - Class B

Classification error is minimal, €*, if the decision function is optimal:
S(x)" = p(x| A)p(A) - p(x| B) p(B)
2 :jmin{ p(x] A)p(A).p(x| B) p(B)}dx

Only possible if true distributions are known

[ oo et m ]
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Bayes decision rule, formal

P(Ax) > p(Blx) > AelseB
Bayes: P(X|A) p(A) PXIB)P(B) 5 AelseB
p(x) p(x)

p(x|A) p(A) > p(x|B)p(B) > AeclseB

| 2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) >0 > AelseB

| n-class problems: Class(x) = argmax,(p(x|®) p(®)) |

T -
3
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Classification error

Non-optimal classifier, e.g. based on wrong density estimates

p(x|A) P(A)T TP(XI B)p(B)

X ————

S(x)>0 > Class A S(x)=0 S(x)<0 > Class B
£=p(S(x)>0,B)+ p(S(x) <0,A)
£=p(S() >0 B)p(B) + p(S(x) <0 A)p(A)
s= [p(xIB)p(B)dx+ [ p(x|A)p(A)dx

5(x)>0 S(x)<0

oo T ot 0w ]
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Probabilistic Generalization

x = height measured

T, = height —>

What is the gender of a person with this height?

Best guess is to choose the most ‘probable’ class (— small error).
= Good for overlapping classes.

= Assumes the existence of a probabilistic class
distribution and a representative set of examples.

[ oo o moconta w ]
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Density estimation

« The density is defined on the whole feature space.
« Around object x, the density is defined as:

dP(x) _(fraction of objectsj
dx volume

« Given n measured objects, e.g. person’s height (m)
how can we estimate p(x)?

p(x) =

T T
3
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The Gaussian distribution (3)

v u » Normal distribution =
04 Gaussian distribution
o2 ¢ Standard normal
distribution:
0.2 L\ - u= Oy o2=1
o1 » 95% of data between
. [u-20, u+20] (in 1DY)
5 o 5 1 1 (X _ IL’)Z
X) = exp| ———~27
p(x) pyy xp( > o2
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Quadratic discriminant functions

1 N & N 1 ~ 2 -
| RM =-3(x —AA) EN(X—a) + 5= fig) "5 (X —fig) + const |

(nearly) linear . ellipse. parabole hyperbole

QDC assumes that classes are normally
distributed. Wrong decision boundaries are
estimated if this does not hold.
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Parzen density estimation (1)

Fix volume of bin, vary positions of bins, add contribution of each bin
Define ‘bin’-shape (kernel):

K(r)>0
[K(rydr=1 ’
For test object z sum all bins ' *+:'° +
1 Z-Xi e
7)=—> K A . *
P@) hnZ‘ ( h J PR
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Multivariate Gaussians

5

G=|3 1%
1% 2
« k- dimensional density:

1 1
- - _ - _ TG—1 _
0= exp[ 76 #)]
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Linear discriminant function
(Isummary) [G]

I 4

X —— X ——

X2 X3 |

Optimal classifier for normal distributions
Normal distributions with equal with unequal covariance matrices %, and
covariance matrices 2 are optimally > can be approximated by:
separated by a linear classifier

R(¥) = (1, — 1) "Z7x+const R() = (a — 1) (P(AA +P(B)S;) X +const
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Parzen density estimation (2)

2

« With Gaussian kernel:K(X) = h«/lﬂ exp (— ﬁ)

Parzen:

T

p(x)

%
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Parzen: density estimates vs the smoothing parameter

1D
5 o3
og Optimal h Large h
0
015
0.6
o e
o o0
u? 0 H 4 o5 [] E] T
Increasing smoothing parameter h
2D
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Nearest neighbor rule (1-NN rule)

Assign a new object to the class of the nearest neighbor in the training set.

* . - ': . 1-NN rule:

 Often relies on the Euclidean distance.
® Other distance measures can be used.

« Insensitive to prior probabilities!

* Scaling dependent. Features should be
scaled properly.

There are no errors on the training set. The classifier is overtrained.

[ oo ettt » ]
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Nearest neighbor error

Asymptotically (very large training sets):
£<26°(1-¢")

£<2s"

The nearest neighbor classifier will not perform worse
than twice the best possible classifier

3
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Parzen classifier performance

Classification
error ¢

ENMC

May be approximated by leave-

one-out optimization of the
/ error on of the training set

Smoothing parameter ————

Small smoothing parameters: 1-NN performance
Large smoothing parameters: Nearest mean performance

7
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Nearest neighbor examples
Simple Problem Banana Set
3 5
2|
$1 T : o
El " 5
-2|
-10]
4 -2 a4

2
Feature 1

Good for almost separable classes.

Useful to shape non-linear decision functions.
No training time. Long execution time.

All data should be stored.

[ oo reeomoconta e ]
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K-nearest neighbor classifier [kane |

Assign new objects to the class of the majority
of the k nearest neighbors in the training set.

More smooth.
Less local.
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K-nearest-neighbor performance

e = 1-ming{p(w;)}

Classification
error e

|

May be approximated by leave-

one-out optimization of the
/ error on the training set

k———
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Prototype selection (2)

xZT

Condensing:
Removing more objects

may be faster.

3
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Depends on support objects S only

Support vector machine (2)

S(0 =2 a(xx)

X €S

S(x) =w" x, min(w"w)

S(x) =w' x, min(w"w) + Zg(xj) Allow some errors E

xjeE

Minimum norm - maximum margin

sve: Linear support vector classifier
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X

Prototype selection

23/09/2013

Editting:
Removing some objects
may be more accurate.

] =

Xy

%
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Support vector machine (SVM) [

Find for linear separable classes
the few objects that determine the
classifier: the support objects.

1995-2005

o e o .
@  They have the same distance to
e °° .“ © the classifier: the margin.

(=]
° o e, o
e ©° 0
- :. - Identical to
° ° “maximum margin classifier”
T
". o ® S(X):Zai(xi X)

S(x)= wIT X, min(w' w)

X1—>
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Non-linear support vector machine: The kernel trick

S(X)=Y.a(xx) — S(X)=w'x Linear classifier
X €S

S(¥) =D aK(x %) —
xe$

K (®) is a non-linear function of an inner product. A linear classifier in
a high-dimensional ‘kernel space’ is computed, resulting in a non-

linear classifier in the feature space.
KO x) = (x'x)° Polynomial classifier -
Radial basis SVM (about Parzen)

Non-linear classifier

KO0 = (™)

3
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SVM: Examples

Gaussian Data Banana Set

4
5= Support Vector Classifier
4} — RB Support Vector Classifier [ +
2 . T
. 2
o~ - . o~
2 o rel @ 0
5 . 5
El .§ N 2|
& - &
-2 - -4
- -6
-4 — Support Vector Classifier
— Bayes-Normal- -8|
7
Z 0 T 6 8 10
Feature 1

sve versus ldc for classes with
very different domains

Linear (sve) versus nonlinear
support vector classifier (rbsve)
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Perceptron perlc

y=wex
Linear classifier. The
weights are corrected
for erroneously
classified objects only
W, =W, +AW(W,,X)
correction wo [ W W\
Awe
error correct 1T X eeeenen X
1 n
Classifier outcome W e X
3
TUDelft

Neural network overtraining example

Levenbeg-Harmuec ptestzston, 10 e stz

Zepochs .. . 10 epochs

20 epochs |

3
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Decision trees . treec

Implementation of a ¢
piece-wise linear classifier

Fast.
Moderate performance

oo 7 ot W]
%
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. 1985-1995
Neural network classifiers

Hrxw) W—l

Number of layers with identical .
neurons (simple linear classifiers) Output unit
with non-linear transitions in

between (sigmoids). Results is a Weights wy;
moderately non-linear classifier.

Trained object by object to glii%‘;z: 'f:y'f,)

minimize the MSE on the output
compared with targets (labels).

Tricky training procedure.
ky 9P Weights wyj;

Slow training and execution,
unless special hardware is used. Input units

Good performance, danger of X X2

TS zme s bpme  lme  mbne

%
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Classifier outputs

What are the possible outcomes of y = classifier(x)?
« Label, y; e{"apple’,'banana’}.

* Y, €{0,1} as crisp numeric labels

« yz e [0,1] for soft labels (confidences)

* Y4 € [0,0) for distances to a class

* ¥s € (- ,+ o) for distances to a classifier

Conversions are often made, e.g.:
y2 = (yl == ‘apple’)
y2 = round(y3)
y3 = sigm(y5)
y5 = invsigm(y3)

T T
3
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Combining classifiers [Jeazsiici) EtEall

Base classifiers

Compare neural networks

Training set

base classifiers Trained combiner

Classifier outputs may be
used as features for
training a combining
classifier. Instead often
fixed rules like max, sum
and product are used.

o T oremmosomatn s ]
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Training set for combiner

Classifier evaluation

(4878 e rarmn | o

Feature Space

Classification

Y

Test object
classified as 'A’

How to estimate
classifier performance?

Learning curves

3
TUDelft

The Apparent Classification Error

The apparent (or resubstitution error)
of the training set is positively biased
I (optimistic).

Classification error

s Apparent error g,
.-~ of training set

Size training set —>
An independent test set is needed!

[ omemeas T et e ]
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Evaluation

|
%
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Learning Curve

!

True classification error ¢

Sub-optimal classifier

Bayes consistent classifier
Bayes error g¥[f === ----------------===========-

Size training set —

[ oo e mosotan e
%
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Error Estimation by Test Set  |[Js=a=Ell
Training | teste

Classification Error

Classifier Estimate €

Other training set > other classifier

Design Set Other test set > other error estimate &

N €0.01 003 0.1

. ) efl—g s(l—e) 10 [0031 [0054] 0095
o} = Var(Z | testset size N) :% %=y 1000010 00170003

1000[ 0-003 | 0.005 | 0.009

3
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Training Set Size < Test Set Size

« Training set should be large for good classifiers.
« Test set should be large for a reliable, unbiased error

estimate.
« In practice often just a single design set is given

Same set for training and
testing may give a good
classifier, but will definitely
yield an optimistically biased
error estimate.

A small, independent test set
yields an unbiased, but
unreliable (large variance)
error estimate for a well
trained classifier.

A large, independent test set
yields an unbiased and
reliable (small variance) error
estimate for a badly trained
classifier.

50-50 is an often used
standard solution for the sizes
for training and testing. Is it
really good?

There are better alternatives.

3
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Leave-one-out Procedure

Training

Rotate

n times Classification Error

GEssiian Estimate &; €{0,1}

Test single object

Crossvalidation in which n is total number of objects.
One object tested at a time.

n classifiers to be computed.

In general unfeasible for large n.

Doable for k-NN classifier (needs no training).

3
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Averaged Learning Curve
Learning curve on Highleyman Dataset

—— Bayes-Normal-1

o
N
&

o
N

For obtaining ‘theoretically
expected’ curves many
repetitions are needed.

o
o

Averaged error (500 experiments)
1) )
= [
& o

o

5 10 15 20

a = gendath([200 200]);
e = cleval(a,1dc, [2,3,5,7,10,15,20] ,500) ;
plote(e) ;

omemean T et e ]
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Crossvalidation

Training

Rotate

n times Classification Error

Estimate g;

Classifier_i

Size test set 1/n of design set.

Size training set is (- 1)/n of design set.

Train and test n test times. Average errors. (Good choice: 7 = 10)

All objects are tested ones > most reliable test result that is possible.
Final classifier: trained by all objects - best possible classifier.

Error estimate is slightly pessimistically biased.

%
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Expected Learning Curves by Estimated Errors

Classification error

€1 Leave-one-out (n-1) error estimate
\\ \\
\
* &, Crossvalidation error estimate (rotation method)

-7 ipparent ErTor &,
- of training set

Size training set —>

[ oo eeomoconta e
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Repeated Learning Curves

Learning curve on Highleyman Dataset

— Bayes-Normal-1

Small sample sizes have
a very large variability.

Error

a = gendath([200 200]);
for j=1:10
e = cleval(a,1dc, [2,3,5,7,10,15,20],1) ;
hold on; plote(e);
end

[ e et s
3
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Learning Curves for Different Classifier Complexity

Classification error

complexity

Bayes errorf-=============-==-=----=== -

Size training set —>

More complex classifiers are better in case of large training sets
and worse in case of small training sets

o T oot @]
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Example Overtraining, Polynomial Classifier

Banana Set Banana Set

Feaure 2

B3 3 3 3 ENd
Feauwre 1 Feaure 1 Feaure 1

% G 5 o
Feawre 1 Feature 1

23/09/2013

Peaking Phenomenon, Overtraining
Curse of Dimensionality, Rao’s Paradox

Classification error training set size

feature set size (dimensionality) ——
classifier complexity

oo T ot e ]
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Example Overtraining (2)

0.25

0.2 b

Classification error
(=]
I
a
-

(¢} 2 4 6
Degree Polynomial Classifier
Complexity ———»

[ oo om0
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Example Overtraining (4)

0.25

0.2

0.15

0.1

Classification error

0.05

2 4 6
log(h)
<+——— Complexity

[ e ettt ]
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Neural Network Understanding Overtraining <- Increasing Bias

Small sample size theory Neural network observations

4 test error
test errg)

regularization

sample size apparent error

Classification error

p—
training time

Neural network weight space

Linear System

Wn‘g

Threshold L T==STl T
System —=

mse

feature set size (dimensionality) ——

° W — classifier complexity
T T
3 3
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Example Curse of Dimensionality Conclusions on Evaluation
Feature curve for Sonar « Larger training sets yield better classifiers.

705 « Independent test sets are needed for obtaining unbiased error

E estimates.

E04 Fisher classifier for « Larger test sets yield more accurate error estimates.

g Various feature rankings + Leave-one-out crossvalidation seems to be an optimal

S g3l compromise, but might be computationally infeasible.

2 » 10-fold cross-validation is a good practice.

5 0.2} « More complex classifiers need larger training sets to avoid

s overtraining.

T ——original feature ranking « This holds in particular for larger feature sizes, due to the curse

? 0.1r | —feature ranking 1 of dimensionality.

%’ —feature ranking 2 « For too small training sets, more imple classifiers or smaller

05 T feature sets are needed.
10 10
Feature size
L meeweas  seesedcwstsm 5| L msewems  sewsieeom %
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