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Program 

1. Representation and Generalization 
 

2. The Dissimilarity Space 

 

3. Pseudo-Euclidean embedding 

 

4. Applications 
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Daily Schedule 

 

10:00 - 12:00 Lectures 

                     http://www.37steps.com/disrep-course/ 

 

13:30 – 16:30 Lab course 

                     http://www.37steps.com/disrep_exercises/ 

23 September 2013 4 Representation and Generalization 

Pattern Recognition Problems 

Question 
A B 

? 

How to represent real world objects, 
(with a size and a shape)  
given a set of examples 
such that we can generalize? 

A B 
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Real world objects and events 

Images 
Spectra 
Time signals 
Gestures 

shapes 

How to build a representation? 
Features  Structure 
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Blob Recognition 

446 binary images, varying size, e.g.: 100 x 130 
  Andreu, G., Crespo, A., Valiente, J.M.: Selecting the toroidal self-organizing feature 
  maps (TSOFM) best organized to object recogn. In: ICNN. (1997) 1341–1346. 

Shape classification by weighted-edit distances (Bunke) 
  Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape 
  recognition. Pattern recognition 26 (1993) 1797–1812 

BACK 
           
BREAST  
        
DRUMSTICK 
      
THIGH-AND-BACK 
 
WING  
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Colon Tissue Recognition 

normal pathological ??? 
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Volcano / Seismic Signal Classification 

Volcano-Tectonic Long Period 150 000 events (1994 – 2008) 
5 volcanos 
40 stations 
15 classes 

J. Makario,  
     INGEOMINAS, Manizales, Colombia 

M. Orozco-Alzate,  
    Nat. Univ. Colombia, Manizales 

R. Duin, TUDelft 

M. Bicego, Univ. of Verona, Italy 

Cenatav, Havana, Cuba 
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Gesture Recognition 

Is this gesture in the database? 
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Pattern Recognition Problems 
Kimia Dataset

To which class 
belongs an image 

To which class (segment) 
belongs every pixel? 

Where is an object of 
interest (detection); 

What is it (classification)? 
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Pattern Recognition: Shape Recognition 

Pattern Recognition is very often Shape Recognition: 

• Images: B/W, grey value, color, 2D, 3D, 4D 

• Time Signals 

• Spectra 
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Pattern Recognition: Shapes 

Examples of objects for different classes 

Object of unknown class to be classified 

A B ? 
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Vector Representation 
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Pattern Recognition System 

Representation Generalization Sensor 

B 

A 

B 

A 

perimeter 

a
re

a
 

perimeter 

area 

Feature Representation 
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Pattern Recognition System 

Representation Generalization Sensor 

B 

A 

B 

A 

pixel_1 
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Pixel Representation 
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Pattern Recognition System 

Representation Generalization Sensor 

B 

A 

B 

A 

D(x,xA1) 

D
(x

,x
B

1
) 

Dissimilarity Representation 
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Pattern Recognition System 

Representation Generalization Sensor 

B 

A 

B 

A 

Classifier_1 

B 

A 

B 

A 

B 

A 

B 

A 

Combining Classifiers 

C
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Good Representations 

• Class specific 

Different classes should be 
represented in different positions 
in the representation space. 

 

 

• Compact 

Every class should be represented  
in a small set of finite domains. 
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Compactness 

The compactness hypothesis is not 
sufficient for perfect classification 
as dissimilar objects may be close. 
 class overlap 
 probabilities  

Representations of real world similar objects are close.  
There is no ground for any generalization (induction) on representations 
 that do not obey this demand. 
 
(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.) 
 

1x

2x

(perimeter) 

(area) 
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True Representations 

 no probabilities needed, domains are sufficient! 

1x

2x

(perimeter) 

(area) 

Similar objects are close  
and  

Dissimilar objects are distant. 
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Distances and Densities 

? to be classified as 

B – because it is most 
      close to an object B 

A – because the local 
      density of A is larger. 

1x

2x

(perimeter) 

(area) 

A 

B 

? 
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Features Reduce 

1x

2x

B 

A 

B 

A 

(perimeter) 

objects 

Due to reduction essentially different objects are represented identically. 

  The feature space representation needs a statistical, probabilistic generalization   
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Classification 

23 September 2013 Representation 

and 
Generalization 

25 

Classification error 

e 

x 

Non-optimal classifier, e.g. based on wrong density estimates 

)A()A|( pxp )B()B|( pxp

)A()A|0)(()B()B|0)(( pxSppxSp e

dxpxpdxpxp
xSxS

)A()A|()B()B|(
0)(0)(




e

0)( xS Class A 0)( xS  Class B 0)( xS

)A,0)(()B,0)((  xSpxSpe
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Bayes error for optimal (Bayes) classifier 

e* 

x 

Classification error is minimal, e*, if the decision function is optimal: 

Only possible if true distributions are known 

)B()B|()A()A|()( * pxppxpxS 

)A()A|( pxp )B()B|( pxp

dxpxppxp )}B()B|(),A()A|(min{*

e

0)( xS Class A 0)( xS  Class B 0)( xS
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Probabilistic Generalization 

What is the gender of a person with this height? 

x = height measured 

p(x|F) p(x|M) 

x1 = height 

Best guess is to choose the most ’probable’ class ( small error). 

 Good for overlapping classes.  

 Assumes the existence of a probabilistic class 
      distribution and a representative set of examples. 
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Bayes decision rule, formal 

p(A|x)            >    p(B|x)                A else B 

p(x|A) p(A)     >   p(x|B) p(B)         A else B  

Bayes: p(x|A) p(A)           p(x|B) p(B)  
       p(x)                    p(x) 

 

>    A else B 

2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) > 0     A else B    

n-class problems: Class(x) = argmaxw(p(x|w) p(w)) 
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Density estimation 

• The density is defined on the whole feature space. 

• Around object x,  the density is defined as: 

 

 

 

• Given n measured objects, e.g. person’s height (m) 
how can we estimate p(x)? 

 

 

 






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The Gaussian distribution (3) 

 

 

 

 

 

 

 

• 1-dimensional density: 



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• Normal distribution = 
   Gaussian distribution 
 

• Standard normal  
 distribution: 
    = 0,  2 = 1 

•  95% of data between 

 [  - 2,  + 2 ] (in 1D!) 
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Multivariate Gaussians 

 

 

 

 

 

 

 

• k - dimensional density: 


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Quadratic discriminant functions 

(nearly) linear ellipse parabole hyperbole 

QDC assumes that classes are normally 

distributed. Wrong decision boundaries are 
estimated if this does not hold. 

-15 -10 -5 0 5 10 
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10 

Parzen classifier 
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Linear discriminant function 
(summary) [G] 

Normal distributions with equal 
covariance matrices Σ are optimally 
separated by a linear classifier 

Optimal classifier for normal distributions 
with unequal covariance matrices ΣA and 
ΣB can be approximated by: 

constxΣ)μ(μR(x) 1T

BA   constx)p(B)Σ(p(A)Σ)μ(μR(x) 1

BA

T

BA  
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Parzen density estimation (1) 

Fix volume of bin, vary positions of bins, add contribution of each bin 

Define ‘bin’-shape (kernel):  
 
 
 

 

For test object z sum all bins 
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Parzen density estimation (2) 

• With Gaussian kernel: 

)(xp̂

x

Parzen: 

 2

2

h2

x

π2h

1 exp)x(K 
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Parzen: density estimates vs the smoothing parameter 

Small h Large h Optimal h 

Small h 
Optimal h Large h 

2D 

1D 

Increasing smoothing parameter h 
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Parzen classifier performance 

Smoothing parameter 

Classification 
error e 

Small smoothing parameters: 1-NN performance 

Large smoothing parameters: Nearest mean performance 

e1NN 

eNMC 

May be approximated by leave-
one-out optimization of the 
error on of the training set 

parzenc 

knnc 

nmc 

23 September 2013 38 Representation and Generalization 

Nearest neighbor rule (1-NN rule) 

1-NN rule: 

• Often relies on the Euclidean distance. 
Other distance measures can be used. 

• Insensitive to prior probabilities! 

• Scaling dependent. Features should be 
scaled properly. 

There are no errors on the training set. The classifier is overtrained. 

Assign a new object to the class of the nearest neighbor in the training set. 

x1  

x 2
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Nearest neighbor examples 
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Simple Problem

Good for almost separable classes. 
Useful to shape non-linear decision functions. 
No training time. Long execution time.  
All data should be stored. 
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Nearest neighbor error 

The nearest neighbor classifier will not perform worse  
than twice the best possible classifier 

Asymptotically (very large training sets): 
 

* *2 (1 )e e e 

*2ee 
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K-nearest neighbor classifier  

Assign new objects to the class of the majority 
of the k nearest neighbors in the training set. 

More smooth. 
Less local. 

knnc 

x
1
 

x
2  
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K-nearest-neighbor performance 

k 

Classification 
error e e1NN 

e = 1-mini{p(wi)} 

May be approximated by leave-
one-out optimization of the 
error on the training set 
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Prototype selection 

Editting: 
Removing some objects  
may be more accurate. 

edicon 

x1  

x
2
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Prototype selection (2) 

Condensing: 
Removing more objects  
may be faster. 

edicon 

x
1

x
2

*

x
1

x
2

*
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Support vector machine (SVM) 

x
1

x
2

*

x
1

x
2

*

Find for linear separable classes 
the few objects that determine the 
classifier: the support objects. 
 
They have the same distance to 
the classifier: the margin. 
 
Identical to 
 “maximum margin classifier” 


i

T

ii xxxS )()( 

)min(,)( wwxwxS TT

1995-2005 

svc 
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Support vector machine (2) 





Sx

T

ii

i

xxxS )()( 

)min(,)( wwxwxS TT

Depends on support objects S only 

Minimum norm  maximum margin 





Ex

j

TT

j

xwwxwxS )()min(,)(  Allow some errors E 

svc: Linear support vector classifier 

svc 
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Non-linear support vector machine: The kernel trick 


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Non-linear classifier 
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


 Polynomial classifier 

Radial basis SVM (about Parzen) 

         is a non-linear function of an inner product. A linear classifier in 
a high-dimensional ‘kernel space’ is computed, resulting in a non-
linear classifier in the feature space. 

)(K

svc 

svc 

rbsvc parzenc 
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SVM: Examples 
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Support Vector Classifier
Bayes-Normal-1
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Banana Set

Support Vector Classifier
RB Support Vector Classifier

svc versus ldc for classes with 

very different domains 
Linear (svc) versus nonlinear 
support vector classifier (rbsvc) 

svc ldc svc rbsvc 
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Decision trees 

x1 < a ?

x1 < b ?

x2 < d ?x2 < c ?

B

A

A

B

B

yes

yes

yes yes

no

no

no

no
x1

x2

a b

c

d

B

A

Fast. 

Moderate performance 

Implementation of a 
piece-wise linear classifier  

treec 

23 September 2013 50 Representation and Generalization 

Perceptron 

x
1
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2

*

x
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x
1

x
n

.......

y = w  x

1

wnw0 w1

1 2 
3 

xwClassifier outcome 

correct error 

xw 

correction 

Linear classifier. The 
weights are corrected 
for erroneously 
classified objects only 

x),w(www nnn 1

perlc 
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Neural network classifiers 

x1 x2

Weights w12jWeights w11j

Weights w2j

  w1ij xi

oj

-w10j
0

1

  w2j oj

f(x,W)

-w20
0

1

Input units

Hidden units
(hidden layer)

Output unit

1985-1995 

Number of layers with identical 
neurons (simple linear classifiers) 
with non-linear transitions in 
between (sigmoids). Results is a 
moderately non-linear classifier. 

Trained object by object to 
minimize the MSE on the output 
compared with targets (labels). 

Tricky training procedure. 

Slow training and execution, 
unless special hardware is used. 

Good performance, danger of 
overtraining. 

bpxnc lmnc rbnc rnnc neurc 
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Neural network overtraining example 
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Classifier outputs 

What are the possible outcomes of y = classifier(x)? 

• Label, y1 {‘apple’,’banana’}. 

• y2 {0,1} as crisp numeric labels 

• y3  [0,1] for soft labels (confidences) 

• y4  [0,) for distances to a class 

• y5  (- ,+ ) for distances to a classifier 

 

Conversions are often made, e.g.: 

y2 = (y1 == ‘apple’) 

y2 = round(y3) 

y3 = sigm(y5) 

y5 = invsigm(y3) 
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Combining classifiers 

Training set

Classifier 1

Classifier 2

Classifier ..

Classifier n

Combining
Classifier

Base classifiers

Trained combiner

Training set for combiner

base classifiers

Training Set

a
Classifier outputs may be 
used as features for 
training a combining 
classifier. Instead often 
fixed rules like max, sum 
and product are used. 

Compare neural networks 

parallel stacked 
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Evaluation 

Classifier evaluation 

How to estimate 
classifier performance? 

Learning curves 

Feature curves 

Test object  
classified as ’A’ 

Representation Generalization Sensor 

Classification  Feature Space  

1x

2x
B B A 
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Learning Curve 

Size training set 

True classification error e 

Bayes error e* 

Sub-optimal classifier 

Bayes consistent classifier 

cleval 

testc 
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The Apparent Classification Error 

Size training set 

Classification error  True error e 

Apparent error eA  

of training set 

The apparent (or resubstitution error) 
of the training set is positively biased 
(optimistic). 

An independent test set is needed! 

bias 
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Error Estimation by Test Set 

Training 

Classifier Testing 

Design Set 

Classification Error  
Estimate  ê

Other training set  other classifier 
Other test set  other error estimate  ê

N

)1(
ˆ

ee
e

N
N

)1(
) sizeset test |ˆVar(2

ˆ

ee
ee

0.031 0.054 0.095 

0.010 0.017 0.003 

0.003 0.005 0.009 

10 

100 

1000 

0.01     0.03     0.1 eN 

gendat 

testc 
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Training Set Size  Test Set Size 

• Training set should be large for good classifiers. 

• Test set should be large for a reliable, unbiased error 
estimate. 

• In practice often just a single design set is given 

Same set for training and 
testing may give a good 
classifier, but will definitely 
yield an optimistically biased 
error estimate. 

A small, independent test set 
yields an unbiased, but 
unreliable (large variance) 
error estimate for a well 
trained classifier. 

A large, independent test set 
yields an unbiased and 
reliable (small variance) error 
estimate for a badly trained 
classifier. 

50-50 is an often used 
standard solution for the sizes 
for training and testing. Is it 
really good? 
There are better alternatives. 

gendat 
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Crossvalidation 

iê

Training 

Classifier_i 
Testing Classification Error  

Estimate  

Rotate 
n times 

Size test set 1/n of design set. 

Size training set is (n - 1)/n of design set. 

Train and test n test times. Average errors. (Good choice: n = 10) 

All objects are tested ones  most reliable test result that is possible. 

Final classifier: trained by all objects  best possible classifier.  

Error estimate is slightly pessimistically biased. 

crossval 
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Leave-one-out Procedure 

Training 

Classifier_i 

Test single object 

Classification Error  
Estimate  }1,0{ˆ ei

Rotate 
n times 

Crossvalidation in which n is total number of objects.  

One object tested at a time. 
n classifiers to be computed. 
In general unfeasible for large n. 
Doable for k-NN classifier (needs no training). 

crossval 

testk 
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Expected Learning Curves by Estimated Errors 

Size training set 

Classification error  

True error e 

Apparent error eA  

of training set 

1en

e Crossvalidation error estimate (rotation method) 

Leave-one-out (n-1) error estimate 

cleval 
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Averaged Learning Curve 

a = gendath([200 200]);  

e = cleval(a,ldc,[2,3,5,7,10,15,20],500);  

plote(e); 
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Learning curve on Highleyman Dataset

Bayes-Normal-1

For obtaining ‘theoretically 
expected’ curves many 
repetitions are needed. 

cleval 
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Repeated Learning Curves 

a = gendath([200 200]);  

for j=1:10 

  e = cleval(a,ldc,[2,3,5,7,10,15,20],1);  

  hold on; plote(e); 

end 

5 10 15 20
0

0.2

0.4

E
rr

o
r

Learning curve on Highleyman Dataset

Bayes-Normal-1

Small sample sizes have  
a very large variability. 

cleval 

plote 
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Learning Curves for Different Classifier Complexity 

Size training set 

Classification error  

complexity 

Bayes error 

More complex classifiers are better in case of large training sets 
                                   and worse in case of small training sets 

cleval 
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Peaking Phenomenon, Overtraining 
Curse of Dimensionality, Rao’s Paradox 

feature set size (dimensionality) 
classifier complexity 

Classification error  training set size 



clevalf 
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Example Overtraining, Polynomial Classifier 
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Example Overtraining (2) 
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testc 
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Example Overtraining (3) 
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Run smoothing parameter in Parzen classifier from small to large 
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Example Overtraining (4) 
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Neural Network Understanding 

Conclusion:  the effective complexity 

increases during training.

of a neural network
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Overtraining  Increasing Bias 

feature set size (dimensionality) 
classifier complexity 

Classification error  True error 

Apparent error 

Bias 
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Example Curse of Dimensionality 
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Conclusions on Evaluation 

• Larger training sets yield better classifiers. 

• Independent test sets are needed for obtaining unbiased error 
estimates. 

• Larger test sets yield more accurate error estimates. 

• Leave-one-out crossvalidation seems to be an optimal 
compromise, but might be computationally infeasible. 

• 10-fold cross-validation is a good practice. 

• More complex classifiers need larger training sets to avoid 
overtraining. 

• This holds in particular for larger feature sizes, due to the curse 
of dimensionality. 

• For too small training sets, more imple classifiers or smaller 
feature sets are needed. 
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