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Feature Representation 

Objects  points in a Euclidean Space 

Features reduce  classes overlap 

 to be solved by statistics 
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Compactness 

The compactness hypothesis is not 
sufficient for perfect classification 
as dissimilar objects may be close. 
 class overlap 
 probabilities  

Representations of real world similar objects are close.  
There is no ground for any generalization (induction) on representations 
 that do not obey this demand. 
 

1x

2x

(perimeter) 

(area) 

A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966. 
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True Representations 

 no probabilities needed, domains are sufficient! 

1x

2x

(perimeter) 

(area) 

Similar objects are close  
and  

Dissimilar objects are distant. 
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Dissimilarities  True Representation 

Representation Generalization Sensor 

B 

A 

B 

A 

D(x,xA1) 

D
(x

,x
B

1
) 

Dissimilarity Representation 
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Alternatives for the Nearest Neighbor Rule 
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1. Dissimilarity Space 
2. Embedding 

Pekalska, The dissimilarity  
representation for PR. 
World Scientific, 2005. 
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Embedding of (non-Euclidean) Dissimilarities 

25 September 2013 Non-Euclidean Representations 

Alternative 2: Embedding 

Training set  

B 

A    Dissimilarity matrix D      X 

Is there a feature space for which Dist(X,X) = D ? 

1x

2x

Position points in a vector space such  
that their Euclidean distances  D 
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Embedding 
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Embedding of non-metric measurements 

If the dissimilarity matrix cannot be explained from a vector space, 

(e.g. for Hausdorff and Hamming distance of images) 

or if dij > dik + dkj  (triangle inequality not satisfied) 

embedding in Euclidean space not possible  

 Pseudo-Euclidean embedding 
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   Dissimilarity matrix D      X 
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  Euclidean  -  Non Euclidean  -  Non Metric 
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Non-metric distances 

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

A B–

x

A B
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Weighted-edit distance for strings Single-linkage clustering 
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Intrinsicly Non-Euclidean Dissimilarity Measures 
Single Linkage 

Distance(Table,Book) = 0 

Distance(Table,Cup) = 0 

Distance(Book,Cup) = 1 

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

Single-linkage clustering 

Pseudo-Euclidean Space 
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(Pseudo-)Euclidean Embedding 
 

mm D is a given, imperfect dissimilarity matrix of training objects.   

Construct inner-product matrix: 

Eigenvalue Decomposition ,  

Select k eigenvectors:                        (problem:  Lk< 0) 

Let k be a k x k diag. matrix, k(i,i) = sign(Lk(i,i)) 

                                                       Lk(i,i) < 0  Pseudo-Euclidean 

nm Dz is the dissimilarity matrix between new objects and the training set. 

The inner-product matrix:  

The embedded objects:  
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(Pseudo-)Euclidean Embedding 
 

mm D is a given, imperfect dissimilarity matrix of training objects.   

Construct inner-product matrix: 

Eigenvalue Decomposition ,  
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nm Dz is the dissimilarity matrix between new objects and the training set. 
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PES: Pseudo-Euclidean Space (Krein Space) 

If D is non-Euclidean, B has p positive and q negative eigenvalues. 

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-

degenerate inner product space k = p  q such that: 
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Distances in PES 

O 

0)A,O(d2 

0)E,O(d2 

0)B,O(d2 

0)D,O(d2 

All points in the grey area  
are closer to O than O itself !? 

Any point has a negative square 
distance to some points on the  
line vTJx=0.  
Can it be used as a classifier? 
Can we define a margin as in  
the SVM? 

18 
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Pseudo Euclidean Space 

22
ij i jd  x x

2 2
2 p p q q
ij i j i jd    x x x x

Pseudo Euclidean embedding D  {Xp,Xq} 

Euclidean embedding D  X 

‘Positive’ and ‘negative’ space, 
Compare Minkowsky space in relativity theory  

Embedding Example 

Table  Book Cup 

Table 0 0 0 

Book 0 0 1 

Cup 0 1 0 

Floor 0 1 1 
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• Embed table, book, cup in a 2D PE space 
• Project the floor 
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Pseudo-Euclidean Embedding 
 

Solutions: 

 Remove all eigenvectors with small and negative eigenvalues 

 or, take absolute values of eigenvalues and proceed 

 or, construct a pseudo-Euclidean space 

If D is non-Euclidean then B has p positive and q negative eigenvalues 
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Negative Euclidean Fraction 
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PE Space  Kernels 

may be considered as a kernel. If 

 

Jy)JD(x,)y,x(K (2)
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• The kernel trick may be used: operations defined on inner products  
in kernel space can be operated directly on K(x,y) without embedding!  

• True for Mercer kernels (all eigenvalues ≥ 0). 

• Difficult for indefinite kernels. 

• Studying classifiers in PE space is studying the indefinite kernel space. 

• Dissimilarities are more informative than kernels (due to normalization). 

23 

Classifiers in Pseudo-Euclidean Space 
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Distance based classifiers in PE Space 

Nearest Neighbour and 

Nearest Mean can be properly defined. 

SVM ? What is the distance to a line? 

p 

q 

A 

B 

X 
0),x(d 

0),x(d 

Metric in PE Space. 
Equidistant points to the origin. 

X assigned to B 
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PE-Space classifiers 

26 

• kNN, Parzen, Nearest Mean 
As object distances can be computed (are known) 
 

• LDA, QDA 
As PE inner possibly product definitions cancel they can be computed, 
interpretation … ? 

 
• SVM 

May get a result (indefinite kernel), possibly not optimal 
 

• Others ?? 
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SVM in PE Space 

SVM on indefinite kernels may not converge as Mercer’s 
conditions are not fulfilled. 
 

However, if it converges the solution is proper:  
 
 
is minimized. 
 

 See also: B. Haasdonk, Feature Space Interpretation of SVMs with 
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005. 

|ww| T
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Densities in PE Space 

 Densities can be defined in a vector space on de basis of 
volumes, without the need of a metric. 

 Density estimates however, often need a metric. 
E.g. the Parzen estimator: 
 
 
 
needs a distance definition d(x,y). 

 There is no problem, however, in case for all objects d(x,y) > 0. 

 How can Gaussian densities be defined? 

 Note that QDA in PES is identical to the QDA in AES as the 
signature cancels. The relation with a Gaussian distribution, 
however, is lost. 
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Dissimilarity based classifiers compared 
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Dissimilarity based classification procedured compared 

1. Nearest Neighbour Rule 

2. Reduce training set to representation set  

 dissimilarity space 

3. Embedding:Select large Lii > 0  Euclidean space 

Select large |Lii| > 0   pseudo-Euclidean space 
} 

B 

A 
Training set 

Test object x 

 Dissimilarity matrix D 

 Dissimilarities dx with training set 

discriminant function 

30 



6 

25 September 2013 31 Non-Euclidean Representations 31 

Examples Dissimilarity Measures 

Matching new objects to various templates: 
class(x) = class(argminy(D(x,y))) 
 
Dissimilarity measure appears to be non-metric. 

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit   
using deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391. 
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Three Approaches Compared for the Zongker Data 

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule 

32 
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Polygon Data 

Convex 
Pentagons 

Heptagons 

Minimum edge length: 0.1 of maximum edge length no class overlap 
zero error 

Find the largest of the  
smallest vertex distances 

Distance measures:  Hausdorff  D = max { maxi(minj(dij)) ,  maxj(mini(dij)) }. 

                Modified Hausdorff  D = max {meani(minj(dij)), meanj(mini(dij)) }. (no metric!) 

dij = distance between vertex i of polygon_1 and vertex j of polygon_2. 

Polygons are scaled and centered.  
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Dissimilarity Based Classification of Polygons 

Zero error difficult to reach! 

34 

Non-Euclidean Representations: Causes 
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Computational Noise 

Even for Euclidean distance matrices zero eigenvalues 
may show negative, e.g: 

- X = N(50,20) : 50 points in 20 dimensions 

- D = Dist(X):     50 x 50 distance matrix 

- Expected: 49-20 = 29 zero eigenvalues 

- Found: 15 negative eigenvalues 

36 
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Computational Problems 

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

Weighted edit distance for strings 

Large distances are overestimated 
due to computational problems 
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Lack of information 

1800:  

Crossing the Jostedalsbreen was impossible. 

Travelling around (200 km) lasted 5 days. 

Untill the shared point X was found. 

People could visit each other in 8 hours. 

 

D(V,J) = 5 days 

D(V,X) = 4 hours  

D(X,J) = 4 hours 
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Projections - Occlusions 

Small distances are underestimated  

non-metric data due to 
partially observed projections  

? 

39 25 September 2013 Non-Euclidean Representations 

Projections - Occlusions 

Example: consumer preferences for recommendation systems 

40 
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Intrinsicly Non-Euclidean Dissimilarity Measures 
Invariants 

Object space 

Non-metric object distances 
due to invariants 

A 

B 

C 

D(A,C) > D(A,B) + D(B,C) 
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Boundary distances 

A set of boundary distances may characterize sets of datapoints: 
Distances  features 

42 
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Intrinsicly Non-Euclidean Dissimilarity Measures 
Mahalanobis 

Pairwise comparison between  
differently shaped data distributions 

Different pairs  different comparison frameworks 
                      non-Euclidean 

43 25 September 2013 Non-Euclidean Representations 

Objects may have an ‘inner life’ 

In dissimilarity measures the ‘inner life’ of objects may be 
taken into account (e.g. invariants). 

 

 Objects cannot be represented anymore as points 
 

 Non-Euclidean dissimilarities 

44 

25 September 2013 Non-Euclidean Representations 

Causes of Non-Euclidean Dissimilarities 

 Computational / Observational Limitations 
 
- numerical accuracy problems 
 
- overestimated large distances (too difficult to compute) 
 
- underestimated small distances (one-sided view of objects)  
 

 Essential non-Euclidean distance definitions 
 
- the human distance concept differs from the mathematical one 
 
- no global framework 
 
- invariants 
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Non-Euclidean Representations: Informativeness 
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Artificial Example ,Ball Distances 

- Generate sets of balls (classes) 
uniformly, in a (hyper)cube;  
not intersecting. 

- Balls of the same class have the 
same size. 

- Compute all distances between the 
ball surfaces. 

-> Dissimilarity matrix D 

47 25 September 2013 Non-Euclidean Representations 

Representation Strategies 

 Avoiding the PE space   

2 2

ij p i jd d (x , x )

X {[Xp,Xq], } 
2 2 2

ij p i j q i jd d (x ,x ) d (x ,x ) 

As it is 

Correcting 

Associated space 

Dissimilarity Space:             X = D 

 

Positive space 

Negative space 
2 2

ij q i jd d (x , x )

pX X

qX X

2 2 2

ij p i j q i jd d (x ,x ) d (x ,x ) Pseudo Euclidean Space X {Xp,Xq}

Additive Correction 
2 2

ij ijd d c,i j   X Embedding(D)

Classifiers to be developed further 
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Balls3D 

10 x ( 2-fold crossvalidation of 50 objects per class ) 
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Informative 

Extremely Informative 

Not Informative 
50 

Representation of non-Euclidean relations 

 New objects may not fit into the space 

 They should be included in the representation 

  Semi-supervised learning 

  Transductive learning 

  Use out-of-data examples 

  Generalized dissimilarities 
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Conclusions 

 Pseudo Euclidean Space (PES) is sometimes informative 
(corrections are not helpful). 

 

 The corresponding problems may be intrinsic non-Euclidean 

 

 Classifiers for non-Euclidean data have to be studied further 
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Final Words 

 Real world objects are not points 

 

 Objects have a size 

 

 Relations are non-Euclidean 

 

 Non-Euclidean generalization procedures are needed 


