Non-Euclidean Representations

Feature Representation

Objects → points in a Euclidean Space Features reduce → classes overlap → to be solved by statistics

Dissimilarities → **True Representation**

TUDelft

Alternatives for the Nearest Neighbor Rule

1

Embedding of (non-Euclidean) Dissimilarities

Alternative 2: Embedding

Intrinsicly Non-Euclidean Dissimilarity Measures Single Linkage

Distance(Table,Book) = 0 Distance(Table,Cup) = 0 Distance(Book,Cup) = 1

TUDelft

Pseudo-Euclidean Space

TUDelft

(Pseudo-)Euclidean Embedding

$$\begin{split} & \underset{m\times m}{\text{m}} \text{D is a given, imperfect dissimilarity matrix of training objects.} \\ & \text{Construct inner-product matrix:} \quad B = -\frac{1}{2} J D^{(2)} J \quad J = I - \frac{1}{m} \textbf{11} \\ & \text{Eigenvalue Decomposition ,} \quad B = Q \Lambda Q^T \\ & \text{Select } k \text{ eigenvectors:} \quad X = Q_k \Lambda_k^{\frac{1}{k}} \quad (\text{problem: } \Lambda_k < 0) \\ & \text{Let } \mathfrak{I}_k \text{ be a } k \ x \ k \text{ diag. matrix, } \mathfrak{I}_k(i,i) = \text{sign}(\Lambda_k(i,i)) \\ & \Lambda_k(i,i) < 0 \rightarrow \text{Pseudo-Euclidean} \end{split}$$

 $n \times m \ D_z$ is the dissimilarity matrix between new objects and the training set. The inner-product matrix: $B_z = - \frac{1}{2} (D_z^{(2)} J - \frac{1}{n} \mathbf{11}^T D^{(2)} J)$ The embedded objects: $Z = B_z Q_k \left| A_k \right|^{-\frac{1}{2}} \mathfrak{I}_k$

TUDelft

(Pseudo-)Euclidean Embedding

$$\begin{split} & \underset{\substack{m \neq m}{m}}{m p} \text{ is a given, imperfect dissimilarity matrix of training objects.} \\ & \underset{\substack{m \neq m}{m}}{m p} \text{ construct inner-product matrix: } & \underset{\substack{m = -\frac{1}{2}}{m} J D^{(2)} J \quad J = I - \frac{1}{m} \mathbf{11} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m = Q \land Q^T}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m \neq m}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m \neq m}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m \neq m}{m} \\ & \underset{\substack{m \neq m}{m} \\ & \underset{\substack{m \neq m}{m}}{ligenvalue Decomposition}, \quad & \underset{\substack{m \neq m}{m} \\ & \underset{\substack{m m$$

PES: Pseudo-Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and q negative eigenvalues. A pseudo-Euclidean space $\boldsymbol{\mathcal{E}}$ with signature (p,q), k = p+q, is a non-degenerate inner product space $\mathfrak{R}_{k} = \mathfrak{R}_{n} \oplus \mathfrak{R}_{a}$ such that:

Pseudo Euclidean Space

Euclidean embedding $\mathsf{D} \rightarrow \mathsf{X}$

$$d_{ij}^2 = \left\| \boldsymbol{x}_i - \boldsymbol{x}_j \right\|^2$$

Pseudo Euclidean embedding D \rightarrow {X^p, X^q}

$$d_{ij}^2 = \left\|\boldsymbol{x}_i^p - \boldsymbol{x}_j^p\right\|^2 - \left\|\boldsymbol{x}_i^q - \boldsymbol{x}_j^q\right\|^2$$

'Positive' and 'negative' space, Compare Minkowsky space in relativity theory

TUDelft

Embedding Example

Pseudo-Euclidean Embedding

If $\mathrm D$ is non-Euclidean then $\mathrm B$ has p positive and q negative eigenvalues

Solutions:

- Remove all eigenvectors with small and negative eigenvalues
- or, take absolute values of eigenvalues and proceed
- or, construct a pseudo-Euclidean space

Negative Euclidean Fraction

$$\text{NEF} = \frac{\sum_{\lambda_i < 0} |\lambda_i|}{\sum_{\forall \lambda_i} |\lambda_i|}$$

 $0 \le NEF \le 1$

TUDelft

TUDelft

PE Space $\leftarrow \rightarrow$ Kernels

$$K(x, y) = -\frac{1}{2}JD(x, y)^{(2)}J \qquad J = I - \frac{1}{m}11$$

$$K(x, y) = < L(x), L(y) >$$

- The **kernel trick** may be used: operations defined on inner products in kernel space can be operated directly on K(x,y) **without embedding!**
- True for Mercer kernels (all eigenvalues \geq 0).
- Difficult for indefinite kernels.
- Studying classifiers in **PE space** is studying the indefinite kernel space.
- Dissimilarities are more informative than kernels (due to normalization).

TUDelft

 p,
 Nearest Neighbour and

 Metric in PE Space.
 Nearest Mean can be properly defined.

 Equidistant points to the origin.
 SVM ? What is the distance to a line?

TUDelft

PE-Space classifiers

- kNN, Parzen, Nearest Mean As object distances can be computed (are known)
- LDA, QDA As PE inner possibly product definitions cancel they can be computed, interpretation ... ?
- SVM May get a result (indefinite kernel), possibly not optimal
- Others ??

SVM in PE Space

- SVM on indefinite kernels may not converge as Mercer's conditions are not fulfilled.
- \bullet However, if it converges the solution is proper: $\mid w^{^{\mathrm{T}}} \Im w \mid$

is minimized.

 See also: B. Haasdonk, Feature Space Interpretation of SVMs with Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005.

Dissimilarity based classifiers compared

TUDelft

Densities in PE Space

- Densities can be defined in a vector space on de basis of volumes, without the need of a metric.
- Density estimates however, often need a metric.
 E.g. the Parzen estimator:

$$\hat{f}(x) = \frac{1}{n} \sum_{y_i} c \exp(-\frac{d(x, y_i)^2}{2h^2})$$

- needs a distance definition d(x,y).
- \bullet There is no problem, however, in case for all objects d(x,y)>0.
- How can Gaussian densities be defined?
- Note that QDA in PES is identical to the QDA in AES as the signature cancels. The relation with a Gaussian distribution, however, is lost.

Dissimilarity based classification procedured compared

Training set

→ Dissimilarity matrix D

Test object x

 \rightarrow Dissimilarities d_x with training set

1. Nearest Neighbour Rule

2. Reduce training set to representation set

 \Rightarrow dissimilarity space

- 3. Embedding:Select large $\Lambda_{ii} > 0 \Rightarrow$ Euclidean space discriminant function
- Select large $|\Lambda_{ii}| > 0 \ \rightarrow$ pseudo-Euclidean space

Examples Dissimilarity Measures

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit using deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391. **T**UDelft

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule

Dissimilarity Based Classification of Polygons

TUDelft

Computational Noise

Even for Euclidean distance matrices zero eigenvalues may show negative, e.g:

- X = N(50,20) : 50 points in 20 dimensions
- D = Dist(X): 50 x 50 distance matrix
- Expected: 49-20 = 29 zero eigenvalues
- Found: 15 negative eigenvalues

Computational Problems

TUDelft

Lack of information

1800:

Crossing the Jostedalsbreen was impossible. Travelling around (200 km) lasted 5 days. Untill the shared point X was found. People could visit each other in 8 hours.

 $\begin{array}{l} D(V,J)=5 \mbox{ days}\\ D(V,X)=4 \mbox{ hours}\\ D(X,J)=4 \mbox{ hours} \end{array}$

Projections - Occlusions

Example: consumer preferences for recommendation systems

TUDelft

Boundary distances

A set of boundary distances may characterize sets of datapoints: Distances \rightarrow features

TUDelft

Objects may have an 'inner life'

In dissimilarity measures the 'inner life' of objects may be taken into account (e.g. invariants).

- → Objects cannot be represented anymore as points
- → Non-Euclidean dissimilarities

Causes of Non-Euclidean Dissimilarities

Computational / Observational Limitations

- numerical accuracy problems
- overestimated large distances (too difficult to compute)
- underestimated small distances (one-sided view of objects)
- Essential non-Euclidean distance definitions .
 - the human distance concept differs from the mathematical one
 - no global framework
 - invariants

Non-Euclidean Representations: Informativeness

Artificial Example , Ball Distances

- Generate sets of balls (classes) uniformly, in a (hyper)cube; not intersecting.
- Balls of the same class have the same size.
- Compute all distances between the ball surfaces.
- -> Dissimilarity matrix D

Representation Strategies

Avoiding the PE space		
Dissimilarity Space:	$\mathbf{X} = \mathbf{D}$	
Correcting		~
Associated space	$X = \{ [Xp, Xq], \emptyset \}$	$d_{ij}^2 = d_p^2(x_i, x_j) + d_q^2(x_i, x_j)$
Positive space	$\mathbf{X} = \mathbf{X}_{p}$	$\tilde{d}_{ij}^2 = d_p^2(x_i, x_j)$
Negative space	$\mathbf{X} = \mathbf{X}_{q}$	$\tilde{d}_{ij}^2 = d_q^2(x_i, x_j)$
Additive Correction	$\widetilde{d}_{ij}^2 = d_{ij}^2 + c, i \neq j$	$X = Embedding(\tilde{D})$
As it is		
Pseudo Euclidean Space	$X = {Xp, Xq}$	$d_{ij}^2 = d_p^2(x_i, x_j) - d_q^2(x_i, x_j)$
Classifiers to be developed	l further	

Balls3D

Classifier	PE Sp	Ass Sp	Pos Sp	Neg Sp	Cor Sp
1-NN	47.4 (2.0)	47.4 (2.0)	47.4 (2.0)	44.2 (1.5)	47.4 (2.0)
Parzen	45.7 (1.7)	45.5 (1.6)	45.6(1.7)	35.5 (1.7)	45.7 (1.7)
NM	47.5 (2.0)	47.7 (2.0)	47.6 (1.9)	49.6 (0.2)	48.1 (1.8)
SVM-1	50.7 (2.2)	50.0 (2.7)	50.0(2.5)	62.1 (1.7)	50.1(2.0)
				\sim	
Classifier	PE Dis Sp	Ass Dis Sp	Pos Dis Sp	Xeg Dis Sp	Cor Dis Sp
1-NN	49.8(2.2)	49.8 (2.2)	49.8(2.2)	5.1(0.8)	49.7 (2.2)
Parzen	47.9(2.2)	47.9 (2.2)	47.9(2.2)	4.6(0.5)	47.9 (2.2)
NM	49.8(2.2)	49.8 (2.2)	49.8(2.2)	5.0(0.8)	49.9 (2.2)
SVM-1	50.2(1.6)	50.8(1.7)	50.7(1.7)	1.9(0.5)	49.8(1.5)

10 x (2-fold crossvalidation of 50 objects per class)

TUDelft

		size	classes	Non-Metric	NEF	Rand Err	Original, D	Positive, D_p	Note: D_q
/	Chickenpieces45	446	5	0	0.156	0.791	0.022	0.132	0.175
(Chickenpieces60	446	5	- 0	0.162	0.791	0.020	0.067	0.173
	Chickenpieces90	446	5	- 0	0.152	0.791	0.022	0.052	0.148
	Chickenpieces120	446	5	0	0.130	0.791	0.034	0.108	0.148
	FlowCyto	612	3	1e-5	0.244	0.598	0.103	0.100	0.327
	WoodyPlants50	791	14	5e-4	0.229	0.928	0.075	0.076	0.442
	CatCortex	65	4	2e-3	0.208	0.738	0.046	0.077	0.662
	Protein	213	4	- 0	0.001	0.718	0.00 5 ×	tremely	Informative
(Balls3D 💙	200	2	3e-4	0.001	0.500	0.470	0.495	<u>0.000</u>
	GaussMI	500	2	- 0	0.262	0.500	0.202	0.262	0.228
	GaussM02	500	2	5e-4	0.393	0.500	0.204	0.174	0.252
	CoilYork	288	4	8e-8	0.258	0.750	0.267	0.313	0.618
	CoilDelftSame	288	4	0	0.027	0.750	0.413	0.417	0.597
	CoilDelftDiff	288	4	8e-8	0.128	0.750	0.34Nc	t Inforr	native
	NewsGroups	600	4	4e-5	0.202	0.733	0.198	0.213	0.43560
0	BrainMRI	124	2	5e-5	0.112	0.499	0.226	0.218	0.556
	Pedestrians	689	3	4e-8	0.111	0.348	0.010	0.015	0.030

Representation of non-Euclidean relations

- New objects may not fit into the space
- They should be included in the representation
- → Semi-supervised learning
- \rightarrow Transductive learning
- → Use out-of-data examples
- \rightarrow Generalized dissimilarities

Conclusions

- Pseudo Euclidean Space (PES) is sometimes informative (corrections are not helpful).
- The corresponding problems may be intrinsic non-Euclidean
- Classifiers for non-Euclidean data have to be studied further

TUDelft

TUDelft

Final Words

- Real world objects are not points
- Objects have a size
- Relations are non-Euclidean
- Non-Euclidean generalization procedures are needed

TUDelft