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Learning about the world 

28 October 2011 2 Ups and Downs in Pattern Recognition 

Human knowledge grows  
in the debate between 

-those who see the patterns, and 

-those who know the universal laws 
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Popper versus Kuhn 

Karl Popper:  
We generate a conjecture and  
try to refute it by an observation. 
 

Thomas Kuhn: 
Theories and counter examples can coincide  
for a long time until by a paradigm shift  
a new theory is accepted. 
 

Pre-history 
1340 Occam 
1760 Bayes 
1936 Fisher 
1948 Rao 

William of Occam (1284 – 1347) 
One should not increase, beyond what is necessary, 
the number of entities required to explain anything.  
(Occam’s razor: take the most simple solution). 

PR History 
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Rev. Thomas Bayes (1702 – 1761) 
Take the solution that is based on a procedure which 
yields the best result on the average over the set of 
problems of interest.  

R.A. Fisher, 1936,  
The use of multiple measurements  
in taxonomic problems. 
Fisher’s Linear Discriminant 

R.A. Fisher, 1936,  
The use of multiple measurements  
in taxonomic problems. 
Fisher’s Linear Discriminant 

R.A. Fisher, 1936,  
The use of multiple measurements  
in taxonomic problems. 
Fisher’s Linear Discriminant 

1960 1970 1980 1990 2000 2010 1950 

C.R. Rao, 1948,  
The utilization of multiple measurements 
in problems of biological classification. 
Rao’s paradox (Curse of dimensionality) 
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Pattern Recognition System 

Feature Extractor     Classifier Sensor 
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Compactness 

The compactness hypothesis is not 
sufficient for perfect classification 
as dissimilar objects may be close. 
 class overlap 
 probabilities  

Representations of real world similar objects are close.  
There is no ground for any generalization (induction) on representations 
 that do not obey this demand. 
 
(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.) 
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Reduce  
the set of PR problems 
to compact problems 
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True Representations 

 no probabilities needed, domains are sufficient! 

1x

2x

(perimeter) 

(area) 

Similar objects are close  
and  

Dissimilar objects are distant. 
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Distances and Densities 

? to be classified as 

B – because it is most 
      close to an object B 

A – because the local 
      density of A is larger. 
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The right question 
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Fabio Roli (Barcelona, 2000):  
What is the core business of pattern recognition? 

Duin, Roli, de Ridder,  
A note on core research issues for statistical pattern recognition, PRL, 2002 

Finding representations of real world problems  
such that given generalizations work. 

Dissimilarities  True Representation 

Representation Generalization Sensor 
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Dissimilarity Representation 
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Alternatives for the Nearest Neighbor Rule 
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1. Dissimilarity Space 
2. Embedding 

Pekalska, The dissimilarity  
representation for PR. 
World Scientific, 2005. 
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Alternative 1: Dissimilarity Space 
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25 September 2013 Non-Euclidean Representations 

Alternative 2: Embedding 

Training set  

B 

A    Dissimilarity matrix D      X 

Is there a feature space for which Dist(X,X) = D ? 

1x

2x

Position points in a vector space such  
that their Euclidean distances  D 
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(Pseudo-)Euclidean Embedding 
 

mm D is a given, imperfect dissimilarity matrix of training objects.   

Construct inner-product matrix: 

Eigenvalue Decomposition ,  

Select k eigenvectors:                        (problem:  Lk< 0) 

Let k be a k x k diag. matrix, k(i,i) = sign(Lk(i,i)) 

                                                       Lk(i,i) < 0  Pseudo-Euclidean 

nm Dz is the dissimilarity matrix between new objects and the training set. 

The inner-product matrix:  

The embedded objects:  
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PES: Pseudo-Euclidean Space (Krein Space) 

If D is non-Euclidean, B has p positive and q negative eigenvalues. 

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-

degenerate inner product space k = p  q such that: 
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Three Approaches Compared for the Zongker Data 

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule 

16 
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Intrinsicly Non-Euclidean Dissimilarity Measures 
Invariants 

Object space 

Non-metric object distances 
due to invariants 

A 

B 

C 

D(A,C) > D(A,B) + D(B,C) 
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Artificial Example ,Ball Distances 

- Generate sets of balls (classes) 
uniformly, in a (hyper)cube;  
not intersecting. 

- Balls of the same class have the 
same size. 

- Compute all distances between the 
ball surfaces. 

-> Dissimilarity matrix D 

18 



26/09/2013 

4 

26 September 2013 Dissimilarity 

Representation 
Course Review 

19 

Informative 

Extremely Informative 

Not Informative 

+- + - Is the PE Space 
Informative? Bridging structural and statistical PR 
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Horst Bunke (2002): The dissimilarity representation 
may be a good approach for using statistical tools 
In structural problems 

Riesen, Bunke, Graph Classification Based on Vector Space Embedding, IJPRAI, 2009 

Pekalska, Duin, Gunter, Bunke, On not making dissimilarities Euclidean, SSSPR 2006 

……………………………… 

……………………………… 

 Objects are not points, they have a size 
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D = 0.3 
D = 0.3 

D = 1 

David W. Jacobs, Daphna Weinshall and Yoram Gdalyahu, Classification with Nonmetric Distances: Image 

Retrieval and Class Representation, IEEE Trans. Pattern Anal. Mach. Intell, 22(6), pp. 583-600, 2000.  

Man Horse 

Centaur 
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Intrinsicly Non-Euclidean Dissimilarity Measures 

Non-Euclidean human relations 

22 
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Conclusions 

 Real world objects are not points 

 

 Objects have a size 

 

 Relations are non-Euclidean 

 

 Non-Euclidean generalization procedures are needed 
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