10th VIPS Advanced School on Computer Vision and Pattern Recognition

Dissimilarity-based Representation for Pattern Recognition, Final words

Robert P.W. Duin, Delft University of Technology

Pattern Recognition Lab Delft University of Technology The Netherlands

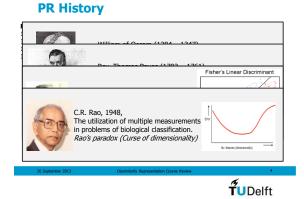
//rduin.nl

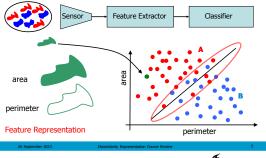
tUDelft

Learning about the world

Human knowledge grows in the debate between -those who see the patterns, and -those who know the universal laws

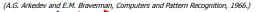
Popper versus Kuhn

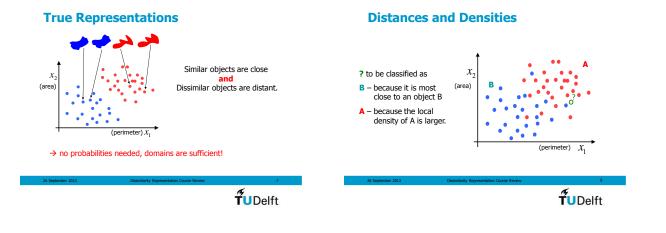

Karl Popper: We generate a **conjecture** and try to **refute** it by an observation.

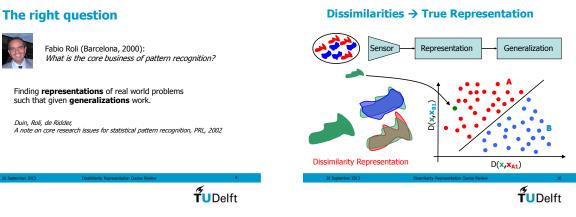

Thomas Kuhn:

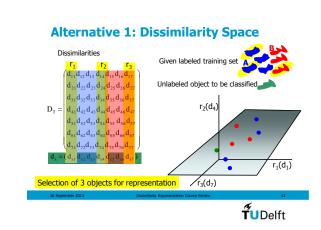
Theories and counter examples can coincide for a long time until by a **paradigm shift** a new theory is accepted.

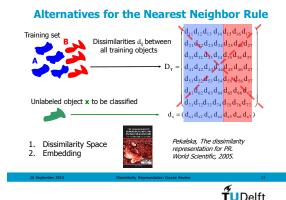
TUDelft


Pattern Recognition System


tUDelft

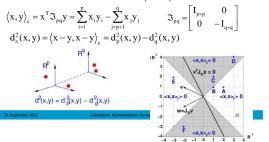

Compactness


Representations of real world similar objects are close. There is no ground for any generalization (induction) on representations that do not obey this demand.

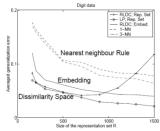


Alternative 2: Embedding f(x) = 0 f(x) = 0f(

TUDelft

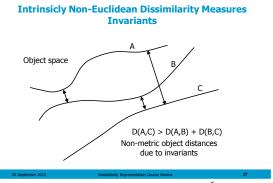


$$\begin{split} & \underset{k = 1}{\overset{\text{mxm}}{\text{D}}} \textbf{b} \textbf{c} a \text{ given, imperfect dissimilarity matrix of training objects.} \\ & \underset{k = 1}{\overset{\text{Construct inner-product matrix: }}{\text{B}} = -\frac{1}{2} J D^{(2)} J \quad J = I - \frac{1}{m} \textbf{11} \\ & \underset{k = 1}{\overset{\text{Eigenvalue Decomposition }}{\text{B}} = Q \Lambda Q^T \\ & \underset{k = 1}{\overset{\text{Select }}{\text{k}}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }}} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \end{matrix} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \end{matrix} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \end{matrix} \textbf{c} \end{matrix} \textbf{c} \end{matrix} \textbf{c} \end{matrix} \textbf{c} \end{matrix} \textbf{c} \\ & \underset{k = 1}{\overset{\text{Construct }}{\text{Select }} \textbf{c} \end{matrix} \textbf{c$$

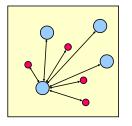


PES: Pseudo-Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and q negative eigenvalues. A pseudo-Euclidean space $\boldsymbol{\mathcal{E}}$ with signature (p,q), k=p+q, is a non-degenerate inner product space $\mathfrak{R}_k=\mathfrak{R}_p\oplus\mathfrak{R}_o$ such that:



Three Approaches Compared for the Zongker Data


Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule

TUDelft

Artificial Example ,Ball Distances

 Generate sets of balls (classes) uniformly, in a (hyper)cube; not intersecting.

- Balls of the same class have the same size.
- Compute all distances between the ball surfaces.
- -> Dissimilarity matrix D

Is the PE Sp Informative		classes	Non-Metric	NEF	Rand Err	Original, D	Positive, D_p^{+}	Native, D _q	ive
Chickenpieces45	446					0.022	0.132	0.175	
Chickenpieces60	446				0.791	0.020	0.067	0.173	$ \rangle$
Chickenpieces90	446				0.791	0.022	0.052	0.148	17
Chickenpieces 20	446					0.034	0.108	0.148	1
FlowCyto	612	- 3	1e-5	0.244	0.598	0.103	0.100	0.327	
WoodyPlants50						0.075		0.442	
CatCortex						0.046	0.077	0.662	
Protein	213	4	0	0.001	0.718	0.0 Ex	tremely	Inforn	native
Balls3D	200	2	3e-4	0.001	0.500	0.470	0.495	0.000	\triangleright
GaussM1	500	2	0	0.262	0.500	0.202	0.202	0.228	ſ
GaussM02						0.204	0.174	0.252	
CoilYork						0.267		0.618	
CoilDelftSame						0.413	0.417	0.597	
CoilDelftDiff						0.3 No	ot Infor	native	
NewsGroups	600	- 4	40-5	0.202	0.733	0.108	8213	0.135	
BrainMRI	124	2	5e-5	0.112	0.499	0.226	0.218	0.556	₽
Pedestrians						0.010	0.015	0.030	

Bridging structural and statistical PR

Horst Bunke (2002): *The dissimilarity representation* may be a good approach for using statistical tools In structural problems

\rightarrow Objects are not points, they have a size

Riesen, Bunke, Graph Classification Based on Vector Space Embedding, IJPRAI, 2009

Pekalska, Duin, Gunter, Bunke, On not making dissimilarities Euclidean, SSSPR 2006

.....

Intrinsicly Non-Euclidean Dissimilarity Measures

David W. Jacobs, Daphna Weinshall and Yoram Gdalyahu, Classification with Nonmetric Distances: Image Retrieval and Class Representation, IEEE Trans. Pattern Anal. Mach. Intell, 22(6), pp. 583-600, 2000.

TUDelft

Non-Euclidean human relations

TUDelft

Conclusions

- Real world objects are not points
- Objects have a size
- Relations are non-Euclidean
- Non-Euclidean generalization procedures are needed

