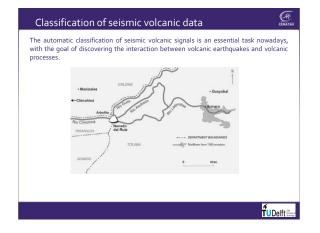
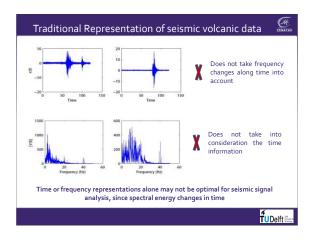
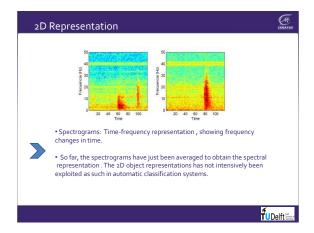
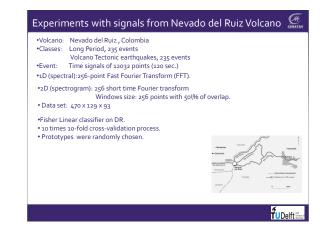
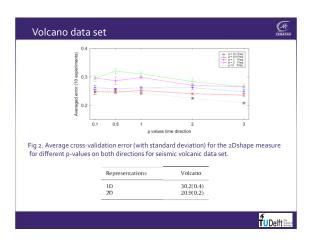

		ERNAT
Definition 1. Let \underline{Y} be a n-way data set data set. The dissimilarity between $\underline{Y_a}$ and		from this
$d_G(\underline{Y_a},\underline{Y_b}) = \left\ \sum_{i=1}^f \underline{Y_a} \ast G_\sigma \right.$	$*H_i - \underline{Y}_b * \underline{G}_\sigma * \underline{H}_i \bigg\ _F$	(1)
where $\ \cdot\ _{F}$ is the Frobenius norm for te kernel to smooth the data first, \underline{H}_{i} is a amount of partial derivatives in the diffe gradient. f(a + h) - f(a)	partial derivative kernel and	f is the btain the
$\begin{split} f'(a) &= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \\ m &= \frac{\Delta f(x)}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - (x)} = \frac{f(x+h) - f(x)}{h}. \end{split}$		
The Prewitt and other defined gradient operators are b a by computing the slope of the line that fits the previou derivative.		
orro-Muñoz, D., Duin, R.P.W., Orozoo-Alzate M., Talavera, I.: Continuous. Multi-way Shape Measi eroamerican Congress on Pattern Recognition CLARP 2012. Volume 7441 of LNCS, 430–437.	ure for Dissimilarity Representation. In: Proceedings of the 17	TUDelft


Gradient Polynomial-Based Kernel for the CMS Measure


We propose to approximate each partial derivative in point a as the derivative of the polynomial of degree t, which is obtained by interpolating a and its t nearest points in the direction of the derivative.







Colon cancer (100 Quality process (Age of Parma hai	323 × 15	excitation x 1	5 emis	sion autoflu	orescen			s
	CMS						No shape	
Data	Prew.	Prew.(4d)	Sob.	Sob.(4d)	Polyn.	2Dshape	Frob	Yang
Colon cancer	11.0	11.5	11.2	12.0	9.5	12.7	13.3	13.3
Volcano	28.0	25.6	28.2	23.4	23.4	20.9	40.0	28.7
Enzyme	9.4	5.7	9.4	9.4	9.4	13.2	9.4	9.4
Parma ham	3.7	2.4	3.7	2.5	3.7	2.9	4.5	4.3
Carrot juice	7.2	6.0	7.2	6.3	7.1	8.3	9.8	10.7

Future Perspectives

- Towards the application in other research areas
- Clustering for multi-way dataDissimilarity Representation for Regression
- Dissimilarity Representation for non-continuous multi-way data

TUDelft intern

