PRTools contents

PRTools manual

adaboostc

ADABOOSTC

  [W,V,ALF] = ADABOOSTC(A,CLASSF,N,RULE,VERBOSE);

Input
 A Dataset
 CLASSF Untrained weak classifier
 N Number of classifiers to be trained
 RULE Combining rule (default: weighted voting)
 VERBOSE Suppress progress report if 0 (default)

Output
 W Combined trained classifier
 V Cell array of all classifiers  Use VC = stacked(V) for combining
 ALF Weights

Description

Computation of a combined classifier according to adaboost.

In total N weighted versions of the training set A are generated  iteratevely and used for the training of the specified classifier.  Weights, to be used for the probabilities of the objects in the training  set to be selected, are updated according to the Adaboost rule.

The entire set of generated classifiers is given in V.  The set of classifier weigths, according to Adaboost is returned in ALF

Various aggregating possibilities can be given in  the final parameter rule

 []: WVOTEC, weighted voting.
 VOTEC voting
 MEANC sum rule
 AVERAGEC averaging of coeffients (for linear combiners)
 PRODC product rule
 MAXC maximum rule
 MINC minimum rule
 MEDIANC median rule

 REFERENCE   Ji Zhu, Saharon Rosset, Hui Zhou and Trevor Hastie,  Multiclass Adaboost. A multiclass generalization of the Adaboost  algorithm, based on a generalization of the exponential loss.  http://www-stat.stanford.edu/~hastie/Papers/samme.pdf

See also

mappings, datasets,

PRTools contents

PRTools manual