PRTools contents

PRTools manual

ffnc

FFNC

Feed-forward neural net classifier back-end

    [W,HIST] = FFNC (ALG,A,UNITS,ITER,W_INI,T,FID)

Input
 ALG Training algorithm: 'bpxnc' for back-propagation (default), 'lmnc'  for Levenberg-Marquardt
 A Training dataset
 UNITS Array indicating number of units in each hidden layer (default: [5])
 ITER Number of iterations to train (default: inf)
 W_INI Weight initialisation network mapping (default: [], meaning  initialisation by Matlab's neural network toolbox)
 T Tuning set (default: [], meaning use A)
 FID File ID to write progress to (default [], see PRPROGRESS)

Output
 W Trained feed-forward neural network mapping
 HIST Progress report (see below)

Description

This function should not be called directly, but through one of its  front-ends, BPXNC or LMNC. Uses the Mathworks' Neural Network toolbox.

See also

mappings, datasets, bpxnc, lmnc, neurc, rnnc, rbnc, prprogress,

PRTools contents

PRTools manual