PRTools contents |
NLFISHERM
W = NLFISHERM(A,N)
Input | |
A | Dataset |
N | Number of dimensions (optional; default: MIN(K,C)-1, where |
K | is the dimensionality of A and C is the number of classes) |
Output | |
W | Non-linear Fisher mapping |
Finds a mapping of the labeled dataset A to a N-dimensional linear subspace emphasizing the class separability for neighboring classes.
1. R. Duin, M. Loog and R. Haeb-Umbach, Multi-Class Linear Feature Extraction by Nonlinear PCA, in: ICPR15, 15th Int. Conf. on Pattern Recognition, vol.2, IEEE Computer Society Press, 2000, 398-401.
2. M. Loog, R.P.W. Duin and R. Haeb-Umbach, Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.23, no.7, 2001, 762-766.
mappings, datasets, fisherm, klm, pca,
PRTools contents |