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Availability,  licences, copyright, reference

PRTools can be downloaded from the PRTools website.

The use of PRTools is protected by a license. This license is free for non-commercial academic 
research, non-commercial education and for personal inspection and evaluation. For commercial 
usage special licenses are available. 

The PRTools sources are copyright protected.

If PRTools is used for scientific or educational publications, the following reference will be 
appreciated: 

R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D.M.J. Tax, S. Verzakov
PRTools4.1, A Matlab Toolbox for Pattern Recognition, Delft University of Technology, 2007.
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1. Motivation

In statistical pattern recognition one studies techniques for the generalization of examples to decision 
rules to be used for the detection and recognition of patterns in experimental data. This area of 
research has a strong computational character, demanding a flexible use of numerical programs for 
data analysis as well as for the evaluation of the procedures. As still new methods are being proposed 
in the literature a programming platform is needed that enables a fast and flexible implementation. 
Pattern recognition is studied in almost all areas of applied science. Thereby the use of a widely 
available numerical toolset like Matlab may be profitable for both, the use of existing techniques, as 
well as for the study of new algorithms. Moreover, because of its general nature in comparison with 
more specialized statistical environments, it offers an easy integration with the preprocessing of data 
of any nature. This may certainly be facilitated by the large set of toolboxes available in Matlab.

The about 200 pattern recognition routines and the additional 200 support routines offered by 
PRTools in its present state represent a basic set covering largely the area of statistical pattern 
recognition. Many methods and proposals, however, are not yet implemented. Some choices are  
accidental as the routines were programmed by the developers for their own research, sometimes in a 
way that was good for their private purposes. The important field of neural networks has partially been 
skipped as Matlab already includes a very good toolbox in that area. Just an interface to some basic 
routines is offered by PRTools to facilitate a comparison with traditional techniques.

PRTools has a few limitations. Due to the heavy memory demands of Matlab very large problems 
with learning sets of tens of thousands of objects cannot always be handled directly. In version 4.1 of 
the toolbox some tools to use large sets of files on disk are included. In the present version, PRTools4, 
the handling of missing data has been prepared, but hardly any routine has been are implemented. The 
use of symbolic data is not supported. Recently the possibility of soft (and thereby also fuzzy) labels 
has been added, as well as the usage of multiple labels. Just a few routines make use of them now. 
Also multi-dimensional target fields are allowed, but at this moment no procedure makes use of this 
possibility. Finally, support for misclassification costs has been implemented, but this is still on an 
experimental level.

In section 2 we present the basic philosophy about mappings and datasets. Section 3 presents the 
actual implementation, which is illustrated by examples in section 4. In section 5 further details are 
given, focussing on defining and using datasets and mappings. Section 7 lists the most important 
procedures of the toolbox. The examples included in the distribution of PRTools are listed in section 
8, together with their expected results. Finally release notes of the versions 4.0 and 4.1 are given in 
sections 9 and 10. Here a summary of changes can be found that may be important for experienced 
users of PRTools.
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2. Essential concepts

For the automatic recognition of the classes of objects, first some measurements have to be collected, 
e.g. using sensors, then they have to be represented, e.g. in a feature space and after some possible 
feature reduction steps they can be finally mapped by a classifier on the set of class labels. Between 
the initial representation in the feature space and this final mapping on the set of class labels the 
representation may be changed several times: simplified feature spaces (feature selection), 
normalization of features (e.g. by scaling), linear or nonlinear mappings (feature extraction), 
classification by a possible set of classifiers, combining classifiers and the final labelling. In each of 
these steps the data is transformed by some mapping. 

Based on this observation the following two basic concepts of PRTools are defined:

- datasets: matrices in which the rows represent the objects and the columns the features, class 
memberships, or other fixed sets of properties (e.g. distances to a fixed set of other objects). In 
PRTools4.1 an extension of the dataset concept has been defined: datafiles. These refer to datasets to 
be created from directories of files.

- mappings: transformations operating on datasets.

As pattern recognition has two stages, training and execution, mappings have also two types: 
untrained and trained.

An untrained mapping refers just to the concept of a method, e.g. forward feature selection, PCA, or 
Fisher’s linear discriminant. It may have some parameters that are needed for training, e.g. the desired 
number of features or some regularization parameters. If an untrained mapping is applied to a dataset 
it will be trained  (training).

A trained mapping is specific for the training set used to train the mapping. This dataset thereby 
determines the input dimensionality (e.g. the number of input features) as well as the output 
dimensionality (e.g. the number of output features or the number of classes). When a trained mapping 
is applied to a dataset it will transform the dataset according to its definition (execution).

In addition fixed mappings are used. They are almost identical to trained mappings, except that they 
don’t result from a training step, but are directly defined by the user: e.g. the transformation of 
distances by a sigmoid function to the [0,1] interval.

PRTools deals with sets of labeled or unlabeled objects and offers routines for the generalization of 
such sets into functions for mapping and classification. A classifier is thereby a special case of a 
mapping as it maps objects on class labels or on [0,1] intervals that may be interpreted as class 
memberships, soft labels, or posterior probabilities. An object is a k-dimensional vector of feature 
values, distances, (dis)similarities or class memberships. Within PRTools they are usually just called 
features. It is assumed that for all objects in a problem all values of the same set of features are given. 
The space defined by the actual set of features is called the feature space. Objects are represented as 
points or vectors in this space. New objects in a feature space are usually gradually converted to labels 
by a series of mappings followed by a final classifier. 
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Sets of objects may be given externally or may be generated by one of the data generation routines of 
PRTools. Their labels may also be given externally or may be the result of a cluster analysis. By this 
technique similar objects within a larger set are grouped (clustered). The similarity measure is defined 
by the cluster technique in combination with the object representation in the feature space. Some 
clustering procedures do not just generate labels, but also a classifier that classifies new objects in the 
same way.

A fundamental problem is to find a good distance measure that agrees with the dissimilarity of the 
objects represented by the feature vectors. Throughout PRTools the Euclidean distance is used as 
default. However, scaling the features and transforming the feature spaces by different types of 
mapings effectively changes the distance measure.

The dimensionality of the feature space may be reduced by the selection of subsets of good features. 
Several strategies and criteria are possible for searching good subsets. Feature selection is important 
because it decreases the amount of features that have to be measured and processed. In addition to the 
improved computational speed in lower dimensional feature spaces there might also be an increase in 
the accuracy of the classification algorithms.

Another way to reduce the dimensionality is to map the data on a linear or nonlinear subspace. This 
is called linear or nonlinear feature extraction. It does not necessarily reduce the number of features 
to be measured, but the advantage of an increased accuracy may still be gained. Moreover, as lower 
dimensional representations yield less complex classifiers better generalizations can be obtained.

Using a training set a classifier can be trained such that it generalizes this set of examples of labeled 
objects into a classification rule. Such a classifier can be linear or nonlinear and can be based on two 
different kinds of strategies. The first strategy minimizes the expected classification error by using 
estimates of the probability density functions. In the second strategy this error is minimized directly 
by optimizing the classification function over its performance over the learning set or a separate 
evaluation set. In this approach it has to be avoided that the classifier becomes entirely adapted to the 
training set, including its noise. This decreases its generalization capability. This ‘overtraining’ can 
be circumvented by several types of regularization (often used in neural network training). Another 
technique is to simplify the classification function afterwards (e.g. the pruning of decision trees).

In PRTools4.1 the possibility of an automatic optimisation has been introduced for parameters 
controlling the complexity or the regularization of the training procedures of mappings and classifiers. 
This is based on a cross validation (see below) over the training set and roughly increases the time 
needed for training by a factor 100.

Constructed classification functions may be evaluated by independent test sets of labeled objects. 
These objects have to be excluded from the training set, otherwise the evaluation becomes 
optimistically biased. If they are added to the training set, however, better classification functions can 
be expected. A solution to this dilemma is the use of cross validation and rotation methods by which 
a small fraction of objects is excluded from training and used for testing. This fraction is rotated over 
the available set of objects and results are averaged. The extreme case is the leave-one-out method for 
which the excluded fraction is as large as one object.
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The performance of classification functions can be improved by the following methods: 
1. A reject option in which the objects close to the decision boundary are not classified. They are re-

jected and might be classified by hand or by another classifier.
2. The selection or averaging of classifiers.
3. A multi-stage classifier for combining classification results of several other classifiers.

For all these methods it is profitable or necessary that a classifier yields some distance measure, 
confidence or posterior probability in addition to the hard, unambiguous assignment of labels.
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3. Implementation

PRTools makes use of the possibility offered by Matlab to define “Classes” and “Objects”. These 
programming concepts should not be confused with the classes and objects as defined in Pattern 
Recognition. The two main “Classes” defined in PRTools are: dataset and mapping. As a child of 
dataset also datafile has been defined, inheriting most properties of dataset. A large number 
of operators (like * or []) and Matlab commands have been overloaded and have thereby a special 
meaning when applied to a dataset and/or a mapping. 

The central data structure of PRTools is the dataset. It primarily consists of a set of objects 
represented by a matrix of feature vectors. Attached to this matrix is a set of labels, one for each object 
and a set of feature names, also called feature labels. Labels can be integer numbers or character 
strings. Moreover, a set of prior probabilities, one for each class, is stored. In most help files of 
PRTools, a dataset is denoted by A. In almost any routine this is one of the inputs. Almost all 
routines can handle multi-class object sets. It is possible that for some objects no label is specified (a 
NaN is used, or an empty string). Such objects are, unless otherwise mentioned, skipped during 
training. It is possible to define more than one set of labels in a dataset. For instance, when the objects 
are pixels in an image, then they may be labelled according their image segment, but also according 
to the image, or to the sensor used, or the place the image has been measured.

Data structures of the “Classes” mapping store data transformations (‘mappings’), classifiers, 
feature extracting results, data scaling definitions, nonlinear projections, etcetera. They are usually 
denoted by W. 

The easiest way to apply a mapping W to a dataset A is by A*W. The matrix multiplication symbol * 
is overloaded to this purpose. It is similar to the pipe (’|’) command in Unix. This operation may 
also be written as map(A,W). Like everywhere else in Matlab, concatenations of operations are 
possible, e.g. A*W1*W2*W3 and are executed from left to right.

A typical example is given below:

A = gendath([50 50]); % Generate Highleyman’s classes, 50 objects / class
% Training set C (20 objects / class)
% Test set D (30 objects / class)

[C,D] = gendat(A,[20 20]);
% Compute classifiers

W1 = ldc(C); % linear
W2 = qdc(C); % quadratic
W3 = parzenc(C); % Parzen
W4 = bpxnc(C,3); % Neural net with 3 hidden units

% Compute and display classification errors
disp([testc(D*W1),testc(D*W2),testc(D*W3),testc(D*W4)]);

% Plot data and classifiers
scatterd(A); % scatter plot

% plot the 4 discriminant functions
plotc({W1,W2,W3,W4});
- 9 -



This command file first generates by gendath two sets of labeled objects, both containing 50 two-
dimensional object vectors, and stores them, their labels and prior probabilities in the dataset A. The 
distribution follows the so-called ‘Highleyman classes’. The next call to gendat takes this dataset 
and splits it at random into a dataset C, further on used for training, and a dataset D, used for testing. 
This training set C contains 20 objects from both classes. The remaining 2 x 30 objects are collected 
in D.

In the next lines four classification functions (discriminants) are computed, called W1, W2, W3 and 
W4. The first three are in fact density estimators based on various assumptions (class priors stored in 
C are taken into account). Formally they are just mappings, as E = D*W1 computes the class densities 
for the objects stored in D. E has as many columns as there are classes in the training set for W1 (in 
this case two). As the test routine testc (test classifier) assigns objects (represented by the rows in 
E) to the class corresponding with the highest density (times prior probability) the mappings W1, 
..., W4 can be used as classifiers. The linear classifier W1 (ldc) and quadratic classifier W2 (qdc) 
are both based on the assumption of normally distributed classes. The first assumes equal class 
covariance matrices. The Parzen classifier estimates the class densities by the Parzen density 
estimation and has a built-in optimization for the smoothing parameter. The fourth classifier uses a 
feed forward neural network with three hidden units. It is trained by the back propagation rule using 
a varying stepsize.

Below the results are displayed and plotted. The test dataset D is used in testc  on each of the four 
discriminants. They are combined in a cell array, but individual calls are possible as well. The 
estimated probabilities of error are displayed in the Matlab command window and may look like:

0.1500    0.0333    0.1333    0.0833

Finally the classes are plotted in a scatter diagram together with the discriminants, see below. The plot 
routine plotc draws a vectorized straight line for the linear classifiers and computes the 
discriminant function values in all points of the plot grid (default 30 x 30) for the nonlinear 
discriminants. After that, the zero discriminant values are computed by interpolation and plotted. :
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4. Advanced example

The following, more advanced example is one of the standard examples that comes with PRTools. It 
defines a set of base classifiers and combines them in several ways. They are trained and evaluated 
on a 10-dimensional 2-class problem consisting of just two normal distributions with high 
correlations. This example shows various constructs of PRTools that facilitate the handling of sets of 
classifiers, often desirable for comparative studies:
• The definition of a sequence of untrained mapping like feature selection procedure and a classifier 

(e.g. w2 = featself([],'NN',3)*ldc).
• The simultaneous training of a set of untrained classifiers stored in a cell array (W) by the same 

training set (B) in a single call (V = B*W), resulting in a cell array of trained classifiers (V).
• The construction of a set of combined classifiers stored in a cell array (VC), from the combined set 

of base classifiers (VALL) and a set of possible combining rules stored in a cell array (WC) by a sin-
gle statement (VC = VALL * WC).

• The simultaneous evaluation of a cell array of trained classifiers (V or VC) by the same test set C in 
a single call (testc(C,V) or testc(C,CV)).

PREX_COMBINING   PRTools example on classifier combining
 
  Presents the use of various fixed combiners for some 
  classifiers on the 'difficult data'.

% Generate 10-dimensional data
A = gendatd([100,100],10);

% Select the training set of 40 = 2x20 objects
% and the test set of 160 = 2x80 objects

[B,C] = gendat(A,0.2);

% Define 5 untrained classifiers, (re)set their names
% w1 is a linear discriminant (LDC) in the space reduced by PCA 

w1 = klm([],0.95)*ldc;
w1 = setname(w1,'klm - ldc');

% w2 is an LDC on the best (1-NN leave-one-out error) 3 features 
w2 = featself([],'NN',3)*ldc;
w2 = setname(w2,'NN-FFS - ldc');

% w3 is an LDC on the best (LDC apparent error) 3 features 
w3 = featself([],ldc,3)*ldc;
w3 = setname(w3,'LDC-FFS - ldc');

% w4 is an LDC 
w4 = ldc;
w4 = setname(w4,'ldc');

% w5 is a 1-NN
w5 = knnc([],1);
w5 = setname(w5,'1-NN');

% Store classifiers in a cell
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W = {w1,w2,w3,w4,w5};
% Train them all

V = B*W;
% Test them all

disp([newline 'Errors for individual classifiers'])
testc(C,V);

% Construct combined classifier
VALL = [V{:}];

% Define combiners
WC = {prodc,meanc,medianc,maxc,minc,votec};

% Combine (result is cell array of combined classifiers)
VC = VALL * WC;

% Test them all
disp([newline 'Errors for combining rules'])

testc(C,VC)

This script generates the below output. Note that testc, if called with a cell array of classifiers, lists 
the names of the classifiers and generates a table. 

Errors for individual classifiers

  Test results result for

  clsf_1 : klm - ldc
  clsf_2 : NN-FFS - ldc
  clsf_3 : LDC-FFS - ldc
  clsf_4 : ldc
  clsf_5 : 1-NN

                        clsf_1  clsf_2  clsf_3  clsf_4  clsf_5

  Difficult Dataset      0.094   0.475   0.081   0.081   0.163

Errors for combining rules

  Test results result for

  clsf_1 : Product combiner
  clsf_2 : Mean combiner
  clsf_3 : Median combiner
  clsf_4 : Maximum combiner
  clsf_5 : Minimum combiner
  clsf_6 : Voting combiner

                        clsf_1  clsf_2  clsf_3  clsf_4  clsf_5  clsf_6

  Difficult Dataset      0.094   0.169   0.094   0.163   0.081   0.081
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5. Some Details

The command help files and the examples given below should give sufficient information to use the 
toolbox with a few exceptions. These are discussed in the following sections. They deal with the ways 
classifiers and mappings are represented. As these are the constituting elements of a pattern 
recognition analysis, it is important that the user understands these issues.

5.1 Datasets

A dataset consists of a set of m objects, each given by k features. In PRTools such a dataset is 
represented by a m by k matrix: m rows, each containing an object vector of k features. Usually 
a dataset is labeled. An example of a definition is:
> A = dataset([1 2 3; 2 3 4; 3 4 5; 4 5 6],[3 3 5 5]’)
> 4 by 3 dataset with 2 classes: [2 2]

The 4 by 3 data matrix (4 objects given by 3 features) is accompanied by a label list of 4 labels, 
connecting each of the objects to one of the two classes, 3 and 5. Class labels can be numbers or strings 
and should always be given as rows in the label list. It is possible that some, or all objects are 
unlabeled. If the label list is not given all objects are unlabeled. In addition it is possible to assign 
labels to the columns (features) of a dataset:
> A = dataset(rand(100,3),genlab([50 50],[3 5]’));
> A = setfeatlab(A,[’r1’;’r2’;’r3’])
> 100 by 3 dataset with 2 classes: [50 50]

The routine genlab generates 50 labels with value 3, followed by 50 labels with value 5. By 
setfeatlab the labels (’r1’,’r2’,’r3’)  for the three features are set. These are just feature 
names. Various other fields can be set as well. One of the ways to see these fields is by converting the 
dataset to a structure: 

> struct(A)
ans = 
        data: [100x3 double]
     lablist: {2x4 cell}
        nlab: [100x1 double]
     labtype: 'crisp'
     targets: []
     featlab: [3x2 char]
     featdom: {[]  []  []}
       prior: []
        cost: []
     objsize: 100
    featsize: 3
       ident: [100x1 struct]
     version: {[1x1 struct]  '21-Jul-2007 15:16:57'}
        name: []
        user: []

They can be inspected individually by various get commands defined for datasets, e.g.
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> getfeatlab(A)
ans =
r1
r2
r3

Important is the possibility to set prior probabilities for each of the classes by the command 
setprior(A,prob,lablist). The prior values in prob should sum to one. If prob is empty or if 
it is not supplied the prior probabilities are computed from the dataset label frequencies. If prob 
equals zero then equal class probabilities are assumed.

More than a single set of labels can be defined for a dataset. E.g. 
> A = addlabels(A,char(’apple’,’pear’,’apple’,’banana’),’fruitnames’)

creates a second set of labels for the same objects. The active one can be selected by the 
changelablist command. The nlab field points into the active label list and is used by PRTools 
to find the real labels:
>> A = changelablist(A,1)
4 by 3 dataset with 2 classes: [2  2]
>> getnlab(A)
ans =
     1
     1
     2
     2
>> getlablist(A)
ans =
     3
     5
>> A = changelablist(A,'fruitnames')
4 by 3 dataset with 3 classes: [2  1  1]
>> getnlab(A)
ans =
     1
     3
     1
     2
>> getlablist(A)
ans =
apple 
banana
pear
> getlabels(A)
ans =
apple
pear  
apple 
banana
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This last command, getlabels, does not refer to a field in the dataset, but retrieves the labels using the 
indices stored in nlab to get the corresponding elements of lablist. So getlabels(A) is equivalent to
> nlab = getnlab(A);
> labels = lablist(nlab,:);

Various others items stored in a dataset can be retrieved by commands like getdata and getsize a 
The size of the dataset can be found by
> [m,k] = size(A);
> [m,k,c] = getsize(A);

in which m is the number of objects, k the number of features and c the number of classes (equal 
to max(nlab)). Datasets can be combined by [A;B] if A and B have equal numbers of features 
and by [A B] if they have equal numbers of objects. Creating subsets of datasets can be done by 
A(I,J) in which I is a set of indices defining the desired objects and J is a set of indices defining 
the desired features.

The original data matrix can be retrieved by getdata(A), double(A) or by +A. 

Be aware  that the order of classes returned by getprob and getlablist is the standard order 
used in PRTools and may differ from the one used in the definition of A.

For more information, type help datasets.

5.2 Datasets help information 
Datasets in PRTools are in the MATLAB language defined as objects of the
class DATASET. Below, the words 'object' and 'class' are used in the 
pattern recognition sense.
 
A dataset is a set consisting of M objects, each described by K features. 
In PRTools, such a dataset is represented by a M x K matrix: M rows, each
containing an object vector of K elements. Usually, a dataset is labeled.
An example of a definition is:
 
DATA = [RAND(3,2) ; RAND(3,2)+0.5];
LABS = ['A';'A';'A';'B';'B';'B'];
 
A = DATASET(DATA,LABS);
which defines a [6 x 2] dataset with 2 classes.
 
The [6 x 2] data matrix (6 objects given by 2 features) is accompanied by
labels, assigning each of the objects to one of the two classes A and B.
Class labels can be numbers or strings and should always be given as rows
in the label list. A lable may also have the value NaN or may be an empty
string, indicating an ulabeled object. If the label list is not given, 
all objects are marked as unlabeled.
 
Various other types of information can be stored in a dataset. The most
simple way to get an overview is by typing:
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STRUCT(A)
 
which for the above example displays the following:
 
        DATA: [6x2 double]
     LABLIST: {2x4 cell}
        NLAB: [6x1 double]
     LABTYPE: 'crisp'
     TARGETS: []
     FEATLAB: [2x1 double]
     FEATDOM: {1x2 cell  }
       PRIOR: []
        COST: []
     OBJSIZE: 6
    FEATSIZE: 2
       IDENT: [6x1 struct]
     VERSION: {[1x1 struct]  '21-Jul-2007 15:16:57'}
        NAME: []
        USER: []
 
These fields have the following meaning:

DATA     : an array containing the objects (the rows) represented by  
features  (the columns). In the software and help-files, the 
number of objects is usually denoted by M and the number of 
features is denoted by K. So, DATA has the size of [M,K]. 
This is also defined as the size of the entire dataset.

LABLIST  : The names of the classes, can be strings stored in a 
character array. If they are numeric they are stored in a 
column vector. Mixtures of these are not supported. The 
LABLIST field is a structure in which more than a single 
label list and the corresponding priors and costs are 
stored. PRTools keeps automatically track of this. See the 
MULTI_LABELING help file for more details.

NLAB     : an [M x 1] vector of integers between 1 and C, defining for 
each of the M objects its class.

LABTYPE  : 'CRISP', 'SOFT' or 'TARGETS' are the three possible label 
types. In case of 'CRISP' labels, a unique class, defined by 
NLAB, is assigned to each object, pointing to the class 
names given in LABLIST.

           For 'SOFT' labels, each object has a corresponding vector of 
C numbers between 0 and 1 indicating its membership (or 
confidence or posterior probability) of each of the C 
classes. These numbers are stored in TARGETS of the size M x 
C. They don't necessarily sum to one for individual row 
vectors. Labels of type 'TARGETS' are in fact no labels, but 
merely target vectors of length C. The values are again 
stored in TARGETS and are not restricted in value.

TARGETS  : [M,C] array storing the values of the soft labels or 
targets.
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FEATLAB  : A label list (like LABLIST) of K rows storing the names of 
the features.

FEATDOM  : A cell array describing for each feature its domain.
PRIOR    : Vector of length C storing the class prior probabilities. 

They should sum to one. If PRIOR is empty ([]) it is assumed 
that the class prior probabilities correspond to the class 
frequencies.

COST     : Classification cost matrix. COST(I,J) are the costs of 
classifying an object from class I as class J. Column C+1 
generates an alternative reject class and may be omitted, 
yielding a size of [C,C]. An empty cost matrix, COST = [] 
(default) is interpreted as COST = ONES(C) - EYE(C) 
(identical    costs of misclassification).

OBJSIZE  : The number of objects, M. In case the objects are related to 
a   n-dimensional structure, OBJSIZE is a vector of length 
n, storing   the size of this structure. For instance, if 
the objects are pixels   in a [20 x 16] image, then OBJSIZE 
= [20,16] and M = 320.

FEATSIZE : The number of features, K. In case the features are related 
to    an n-dimensional structure, FEATSIZE is a vector of 
length n,    storing the size of this structure. For 
instance, if the features   are pixels in a [20 x 16] image, 
then FEATSIZE = [20,16] and    K = 320.

IDENT    : A structure array of M elements storing user defined fields 
giving   additional information on each of the objects. See 
SETIDENT.

VERSION  : Some information related to the version of PRTools used for   
defining the dataset.

NAME     : A character string naming the dataset, possibly used to 
annotate   related graphics.

USER     : A structure with user defined fields not used by PRTools.       
See DATASET/SETUSER

 
 
The fields can be set in the following ways:
 
1.In the DATASET construction command after DATA and LABELS using the 

form of {field name, value pairs}, e.g. 
A = DATASET(DATA,LABELS,'PRIOR',[0.4 0.6],'FEATLIST',['AA';'BB']);
Note that the elements in PRIOR refer to classes as they are ordered 
in LABLIST.

2.For a given dataset A, the fields may be changed similarly by the SET 
command:

  A = SET(A,'PRIOR',[0.4 0.6],'FEATLIST',['AA';'BB']);
3.By the commands
  SETDATA, SETFEATLAB, SETFEATDOM, SETFEATSIZE, SETIDENT, SETLABELS,
  SETLABLIST, SETLABTYPE, SETNAME, SETNLAB, SETOBJSIZE, SETPRIOR,
  SETTARGETS, SETUSER.
4.By using the dot extension as for structures, e.g. 
  A.PRIOR = [0.4 0.6];
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  A.FEATLIST = ['AA';'BB'];
Note that there is no field LABELS in the DATASET definition. Labels 
are converted to NLAB and LABLIST. Commands like SETLABELS and 
A.LABELS, however, exist and take care of the conversion.

 
The data and information stored in a dataset can be retrieved as follows:
 
1.By DOUBLE(A) and by +A, the content of the A.DATA is returned.
  [N,LABLIST] = CLASSSIZES(A); 
  It returns the numbers of objects per class and  the class names stored 
  in LABLIST.
  By DISPLAY(A), it writes the size of the dataset, the number of classes 
  and the label type on the terminal screen.
  By SIZE(A), it returns the size of A.DATA: numbers of objects and

features.
  By SCATTERD(A), it makes a scatter plot of a dataset.
  By SHOW(A), it may be used to display images that are stored as 

features 
  or as objects in a dataset. 
2.By the GET command, e.g: [PRIOR,FEATLIST] = GET(A,'PRIOR','FEATLIST');
3.By the commands:
  GETDATA, GETFEATLAB, GETFEATSIZE, GETIDENT, GETLABELS, GETLABLIST, 
  GETLABTYPE, GETNAME, GETNLAB, GETOBJSIZE, GETPRIOR, GETCOST, GETSIZE, 

GETTARGETS, GETTARGETS, GETUSER, GETVERSION.
Note that GETSIZE(A) does not refer to a single field, but it returns 
[M,K,C].

  The following commands do not return the data itself, instead they 
return indices to objects that have specific identifiers, labels or 
class indices:

  FINDIDENT, FINDLABELS, FINDNLAB.
4.Using the dot extension as for structures, e.g. 
  PRIOR = A.PRIOR;
  FEATLIST = A.FEATLIST;
 
Many standard MATLAB operations and a number of general MATLAB commands 
have been overloaded for variables of the DATASET type.

5.3 Datafiles

Datafiles are constructed to solve the memory problem connected with datasets. The latter are always 
in core and their size is thereby restricted to the size of the computer memory. As in processing 
datasets often (temporarily) copies are created, it is in practice advisable to keep datasets under 10 
million elements (objectsize x featuresize). A number of operations handle datasets sequentially, or 
can be written like that, e.g. fixed mappings, testing and the training of some simple classifiers. So 
there is no problem to have such data stored on disk and have it read when needed. The datafile 
construct enables this is in fact an administration to keep track of the data and to have all additional 
information ready to reshape the desired pieces of data into a dataset when it has to be processed.
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In understanding the handling of datafiles it is important to keep this characteristic in mind: they are 
just administration and the real processing is postponed untill it is needed. PRTools makes use of this 
characteristic to integrate in the datafile concept raw preprocessing of, for instance images and 
signals. Arbitrary preprocessing of images can be defined for datafiles. It is the responsibility of the 
user that a preprocessing sequence ends in a format that can be straightforwardly transformed into a 
dataset. E.g., after preprocessing all images have to be of the same size or generate feature vectors of 
the same length.

Datafiles are formally children of the ’class’ dataset. Consequently they inherit the properties of 
datasets and ideally every operation that can be performed on a dataset can also be performed on a 
datafile. As can be understood from the above, this cannot always be true due to memory restrictions. 
There is a general routine, prmemory, by which the user can define what the maximum dataset sizes 
are that can be allowed. PRTools makes use of this to split datafiles into datasets of feasible sizes. An 
error is generated when this is not possible.

Routines that don’t accept datafiles should return an understandable error messages if called with a 
datafile. In most help text is included when routines accept datafiles.

The use of datafiles starts by the datafile construct that points to a directory in which each file is 
interpreted as an object. There is a savedatafile command that executes all processing defined for 
a datafile and stores the data on disk, ready to be used for defining a new datafile. This is the only 
place where PRTools writes data to disk. For more details, read the next section,

5.4 Datafiles help information 
Datafiles in PRTools are in the MATLAB language defined as objects of the 
class DATAFILE. They inherit most of their properties of the class 
DATASET. They are a generalisation of this class allowing for large 
datasets  distributed over a set of files. Before conversion to a dataset  
preprocessing can be defined. There are four types of datafiles:
raw : Every file is interpreted as a single object in the dataset. These       

files may, for instance, be images of different size.
pre-cooked : In this case the user should supply a command that reads a       

file and converts it to a dataset.
half-baked : All files should be mat-files, containing a single dataset. 
mature : This is a datafile by PRTools, using the SAVEDATAFILE command 

after execution of all preprocessing defined for the datafile. 
 
A datafile is, like a dataset, a set consisting of M objects, each 
described by K features. K might be unknown, in which case it is set to 
zero, K=0. Datafiles store an administration about the files or 
directories in which the objects are stored. In addition they can store 
commands to preprocess the files before they are converted to a dataset 
and postprocessing commands, to be executed after conversion to a 
dataset.
 
Datafiles are mainly an administration. Operations on datafiles are 
possible as long as they can be stored (e.g. filtering of images for raw 
datafiles, or object selection by GENDAT). Commands that are able to 
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process objects sequentially, like NMC and TESTC can be executed on 
datafiles.
 
Whenever a raw datafile is sufficiently defined by pre- and 
postprocessing it can be converted into a dataset. If this is still a 
large dataset, not suitable for the available memory, it should be stored 
by the SAVEDATAFILE command and is ready for later use. If the dataset is 
sufficiently small it can be directly converted into a dataset by 
DATASET.
 
The main commands specific for datafiles are:
  DATAFILE      - constructor. It defines a datafile on a directory.
  ADDPREPROC    - adds preprocessing commands (low level command)
  ADDPOSTPROC   - adds postprocessing commands (low level command)
  FILTM         - user interface to add preprocessing to a datafile.
  SAVEDATAFILE  - executes all defined pre- and postprocessing and stores
                  the result as a dataset in a set of matfiles.
  DATASET       - conversion to dataset
 
  Datafiles have the following fields, in addition to all dataset fields.
  ROOTPATH      - Absolute path of the datafile
  FILES         - names of directories (for raw datafiles) or mat-files
                  (for converted datafiles)
  TYPE          - datafile type
  PREPROC       - preprocessing commands in a struct array
  POSTPROC      - postprocessing commands as mappings
  DATASET       - stores all dataset fields. Note that the DATA field as
                  well as the target field are empty and that the
                  IDENT.FILE_INDEX field is used to store for every 
                  object a pointer to a file or directory in FILES.
 
Almost all operations defined for datasets are also defined for
datafiles, with a few exceptions. Also fixed and trained mappings can
handle datafiles, as they process objects sequentially. The use of
untrained mappings in combination with datafiles is a problem, as they
have to be adapted to the sequential use of the objects. Mappings that
can handle datafiles are indicated in the Contents file.
 
The possibility to define preprocessing of objects (e.g. images) with
different sizes makes datafiles useful for handling raw data and
measurements of features.

5.5 Classifiers and mappings

There are many commands to train  and use mappings between spaces of different (or equal) 
dimensionalities. For example:
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if A is a m by k dataset (m objects in a k-dimensional space)
and   W  is a k by n mapping (map from k to n dimensions)
then A*W is a m by n dataset (m objects in a n-dimensional space)

Mappings can be linear or affine (e.g. a rotation and a shift) as well as nonlinear (e.g. a neural 
network). Typically they can be used as classifiers. In that case a k by n mapping maps a k-feature 
data vector on the output space of a n-class classifier (exception: 2-class classifiers like discriminant 
functions may be implemented by a mapping to a 1-dimensional space like the distance to the 
discriminant, n = 1).

Mappings are of the data type 'mapping' (class(W) is 'mapping'), have a size of [k,n] if they map 
from k to n dimensions. Mappings can be instructed to assign labels to the output columns, e.g. the 
class names. These labels can be retrieved by

labels = getlabels(W); before the mapping, or
labels = getlabels(A*W); after the dataset A is mapped by W.

Mappings can be learned from examples, (labeled) objects stored in a dataset A, for instance by 
training a classifier:

W1 = ldc(A);the normal densities based linear classifier
W2 = knnc(A,3); the 3-nearest neighbor rule
W3 = svc(A,’p’,2);the support vector classifier based on a 2-nd order
polynomial kernel

Untrained or empty mappings are supported. They may be very useful. In this case the dataset is  
replaced by an empty set or entirely skipped: 

V1 = ldc; V2 = knnc([],a); V3 = svc([],’p’,2); 

Such mappings can be trained later by 
W1 = A*V1; W2 = A*V2; W3 = A*V3; 

(which is equivalent to the statements a few lines above) or by using cell arrays
V = {ldc, knnc([],a), svc([],’p’,2)}; W = A*V;

The mapping of a test set B by B*W1 is now equivalent to B*(A*V1). Note that expressions are 
evaluated from left to right, so B*A*V1 will result in an error as the multiplication of the two datasets 
(B*A) is executed first.

Some trainable mappings do not depend on class labels and can be interpreted as finding a feature 
space that approximates as good as possible the original dataset given some conditions and measures. 
Examples are the Karhunen-Loève Mapping (klm), principle component analysis (pca) and kernel 
mapping (kernelm) by which nonlinear, kernel PCA mappings can be computed.

In addition to trainable mappings, there are fixed mappings, which operation is not computed from a 
training set but defined by just a few parameters. A number of them can be set by cmapm. Other ones 
are sigm and invsigm.
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The result D of mapping a test set on a trained classifier, D = B*W1 is again a dataset, storing for 
each object in B the output values of the classifier. For discriminants they are sigmoids of distances, 
mapped on the [0,1] interval, for neural networks their unnormalized outputs and for density based 
classifiers the densities. For all of them holds: the larger, the more similar with the corresponding 
class. The values in a single row (object) don’t necessarily sum to one. This can be achieved by the 
fixed mapping classc:    
D = B*W1*classc 

The values in D can be interpreted as posterior probability estimates or classification confidences. 
Such a classification dataset has column labels (feature labels) for the classes and row labels for the 
objects. The class labels of the maximum values in each object row can be retrieved by 

labels = D*labeld; or labels = labeld(D);

A global classification error follows from 

e = D*testc; or e = testc(D);

Mappings can be combined in the following ways:

sequential: W = W1 * W2 * W3 (equal inner dimensions) 
stacked: W = [W1, W2, W3] (equal numbers of 'rows' (input dimensions)) 
parallel: W = [W1; W2; W3] (unrestricted)

The output size of the parallel mapping is irregularly equal to (k1+k2+k3) by (n1+n2+n3) as the 
output combining of columns is undefined. In a stacked or parallel mapping columns having the same 
label can be combined by various combiners like maxc, meanc and prodc. If the classifiers W1, 
W2 and W3 are trained for the same n classes, their output labels are the same and may be combined 
by W = prodc([W1;W2;W3]) into a (k1+k2+k3) by n classifier.

The above combinations can also be defined for untrained mappings and can be trained afterwards. 
This may be useful if they have to be trained for a series of datasets.

W for itself, or display(W) lists the size and type of a classifier as well as the routine used for 
computing a mapping A*W. The construction of a combined mapping may be inspected by 
parsc(W). 

Affine mappings (e.g. constructed by klm) may be transposed. This is useful for back projection of 
data into the original space. For instance: 

W = klm(A,3); % computes 3-dimensional KL transform

B = A*W;      % maps A on W, resulting in B.

C = B*W’;     % back-projection of B in the original space.

A mapping may be given an output selection by W = W(:,J), in which J is a set of indices pointing 
to the desired classes. 

B = A*W(:,J); is equivalent to B = A*W; B = B(:,J);

Input selection is not possible for a mapping.
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For more information, type help mappings.

5.6 Mappings help information

Mappings in PRTools are in the MATLAB language defined as objects of the 
class MAPPING. In the text below, the words ’object’ and ’class’ are used 
in the pattern recognition sense.

In the Pattern Recognition Toolbox PRTools, there are many commands to 
define, train and use mappings between spaces of different (or equal) 
dimensionalities. Mappings operate mainly on datasets, i.e. variables of 
the type DATASET (see also DATASETS) and generate datasets and/or other 
mappings. For example:
 
if A   is an M x K dataset (M objects in a K-dimensional space)
and  W   is a  K x N mapping (a map from K to N dimensions)
then A*W is an M x N dataset (M objects in a N-dimensional space)

This is enabled by overloading the *-operator for the MAPPING variables. 
A*W is executed by MAP(A,W) and may also be called as such.

Mappings can be linear (e.g. a rotation) as well as nonlinear (e.g. a 
neural network). Typically they are used to represent classifiers. In 
that case, a K x C mapping maps a K-feature data vector on the output 
space of a C-class classifier (an exception: some 2-class classifiers, 
like the discriminant functions may be implemented by a mapping onto a 1-
dimensional  space determined by the distance to the discriminant).

Mappings are of the data-type MAPPING (CLASS(W) is a MAPPING), have a 
size of K x C if they map from K to C dimensions. Four types of mapping 
are  defined:

- untrained, V = A*W

Trains the untrained mapping W, resulting in the trained mapping V. W has 
to be defined by W = MAPPING(MAPPING_FILE,{PAR1, PAR2}), in which 
MAPPING_FILE is the name of the routine that executes the training and 
PAR1, and PAR2 are two parameters that have to be included into the 
call to THE MAPPING_FILE. Consequently, A*W is executed by PRTools as 
MAPPING_FILE(A,PAR1,PAR2).

  Example: train the 3-NN classifier on the generated data
  W = knnc([],3);        % untrained classifier
  V = gendatd([50 50])*W; % trained classifier

- trained, D = B*V

  Maps the dataset B on the trained mapping or classifier V, e.g. as 
trained above. The resulting dataset D has as many objects (rows) as 
A, but its feature size is now C if V is a K x C mapping. Typically, C 
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is the number of classes in the training set A or a reduced number of 
features determined by the the training of V. V is defined by V = 
MAPPING(MAPPING_FILE,’trained’,DATA,LABELS,SIZE_IN,SIZE_OUT), in which 
the MAPPING_FILE is the name of the routine that executes the mapping, 
DATA is a field in which the parameters are stored (e.g. weights) for 
the mapping execution, LABELS are the feature labels to be assigned to 
the resulting dataset D = B*V (e.g. the class names) and SIZE_IN and 
SIZE_OUT are the dimensionalities of the input and output spaces. They 
are used for error checking only. D = B*V is executed by PRTools as 
MAPPING_FILE(B,W).

  Example: 
  A = gendatd([50 50],10);% generate random 10D datasets
  B = gendatd([50 50],10);
  W = klm([],0.9);  % untrained mapping, Karhunen-Loeve projection
  V = A*W; % trained mapping V
  D = B*V; % the result of the projection of B onto V

- fixed, D = A*W 

  Maps the dataset A by the fixed mapping W, resulting into a transformed 
dataset D. Examples are scaling and normalization, e.g. 
W = MAPPING(’SIGM’,’fixed’,S) defines a fixed mapping by the sigmoid 
function  SIGM a scaling parameter S. A*W is executed by PRTools as 
SIGM(A,S).

  Example: normalize the distances of all objects in A such that their 
city block distances to the origin are one.

  A = gendatb([50 50]);
  W = normm;
  D = A*W;

- combiner, U = V*W 

  Combines two mappings. The mapping W is able to combine itself with V 
and produces a single mapping U. A combiner is defined by W = 
MAPPING(MAPPING_FILE,’combiner’,{PAR1,PAR2}) in which MAPPING_FILE is 
the name of the routine that executes the combining and PAR1, and PAR2 
are the parameters that have to be included into the call to the 
MAPPING_FILE. Consequently, V*W is executed by PRTools as 
MAPPING_FILE(V,PAR1,PAR2). In a call as D = A*V*W, first B = A*V is 
resolved and may result in a dataset B. Consequently, W should be able 
to handle datasets, and MAPPING_FILE is now called by 
MAPPING_FILE(B,PAR1,PAR2) Remark: the combiner construction is not 
necessary, since PRTools stores U = V*W as a SEQUENTIAL mapping (see 
below) if W is not a combiner. The construction of combiners, however, 
may increase the transparency for the user and efficiency in 
computations.

  Example: 
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  A = gendatd([50 50],10);% generate random 10D datasets
  B = gendatd([50 50],10);
  V = klm([],0.9); % untrained Karhunen-Loeve (KL) projection
  W = ldc;  % untrained linear classifier LDC
  U = V*W; % untrained combiner
  T = A*U; % trained combiner
  D = B*T; % apply the combiner (first KL projection, 
                    %   then LDC) to B

Differences between the four types of mappings are now summarized for
a dataset A and a mapping W:
  A*W -  untrained : results in a mapping
  -  trained   : results in a dataset, size checking

  -  fixed     : results in a dataset, no size checking
-  combiner  : treated as fixed      

Suppose V is a fixed mapping, then for the various possibilities of the 
mapping W, the following holds:
  A*(V*W) -  untrained : evaluated as V*(A*V*W), resulting in a mapping
   -  trained   : evaluated as A*V*W, resulting in a dataset
    -  fixed     : evaluated as A*V*W, resulting in a dataset

 -  combiner  : evaluated as A*V*W, resulting in a dataset
        
Suppose V is an untrained mapping, then for the various possibilities of 
the mapping W holds:
  A*(V*W) - untrained : evaluated as A*V*(A*(A*V)*W), results in mapping

 -  trained   : evaluated as A*V*W, resulting in a mapping
 -  fixed     : evaluated as A*V*W, resulting in a mapping
 -  combiner  : evaluated as A*(V*W), resulting in a mapping     

Suppose V is a trained mapping, then for the various possibilities of the 
mapping W holds:
  A*(V*W) -  untrained : evaluated as V*(A*V*W), resulting in a mapping
   -  trained   : evaluated as A*V*W, resulting in a dataset

   -  fixed     : evaluated as A*V*W, resulting in a dataset
 -  combiner  : evaluated as A*(V*W), resulting in a dataset

The data fields stored in the MAPPING W = A*QDC can be found by STRUCT(W)
which may display:

MAPPING_FILE: ’normal_map’
MAPPING_TYPE: ’trained’
DATA        : [1x1 struct]
LABELS      : [2x1 double]
SIZE_IN     : 2
SIZE_OUT    : 2
SCALE       : 1
COST        : []
OUT_CONV    : 0
NAME        : []
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USER        : []
VERSION     : {1x2 cell  }

These fields have the following meaning:
MAPPING_FILE: Name of the m-file that executes the mapping.
MAPPING_TYPE: Type of mapping: ’untrained’,’trained’,’fixed’ or 

’combiner’.
DATA : Parameters or data for handling or executing the mapping.
LABELS : Label list used as FEATLAB for labeling the features of the 

output DATASET.
SIZE_IN  : Expected input dimensionality of the data to be mapped. If not 

set, it is neglected, otherwise it is used for the error 
checking and display of the mapping size on the command 
line.

SIZE_OUT : Dimensionality of the output space. It should correspond to 
the size of LABLIST. SIZE_OUT may be size vector, e.g. 
describing the size of an image. See also the FEATSIZE field 
of DATASET.

SCALE    : Output multiplication factor. If SCALE is a scalar all 
multiplied by it. SCALE may also be a vector with size as 
defined by SIZE_OUT to set separate scalings for each 
output.

COST     : Classification costs in case the mapping defines a classifier.
OUT_CONV : Defines for trained and fixed mappings the output conversion: 

0 - no conversion (to be used for mappings that output     
confidences or densities; 
1 - sigmoid (for discriminants that output distances); 
2 - normalization (for converting densities and confidences 
into posterior probability estimates; 
3 - for performing sigmoid as well as normalization.

NAME     : Name of the mapping, used for informing the user on the  
command line, as well as for annotating plots.

USER     : User field, not used by PRTools.
VERSION  : Some information related to the version of PRTools used for 

the mapping definition.

The fields can be set in the following ways:
1.At the end of the MAPPING construction command by a set of{ fieldname, 

value pairs}, e.g.
  W = MAPPING(’affine’,’trained’,DATA,LABELS,5,2,’NAME’,’PCA Mapping’)
2.For a given mapping W fields may be changed similarly by the SET 

command: W = SET(W,’NAME’,’PCA Mapping’);
3.By the commands SETMAPPING_FILE, SETMAPPING_TYPE, SETDATA, SETLABELS,  

SETSIZE, SETSIZE_IN, SETSIZE_OUT, SETSCALE, SETOUT_CONV, SETNAME and  
SETUSER.

4.Using the dot extension as for structures, e.g.  A.NAME = ’PCA MAPPING’

The information stored in a mapping can be retrieved as follows:
1.By DOUBLE(W) and by +W the content of the W.DATA is returned. 

DISPLAY(W) writes the size of the mapping, the number of classes and 
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the label type on the terminal screen.
 SIZE(W) returns dimensionalities of input space and output space.
 SCATTERD(A) makes a scatter-plot of a dataset.
 SHOW(W) may be used to display images that are stored in mappings with 
 the MAPPING_FILE ’affine’. 
2.By the GET command, e.g: [name,user] = GET(W,’NAME’,’USER’);
3.By the commands GETMAPPING_FILE, GETMAPPING_TYPE, GETDATA, GETLABELS,  

SIZE, GETSIZE, GETSIZE_IN, GETSIZE_OUT, GETSCALE, GETCOST, 
GETOUT_CONV, GETNAME and GETUSER.

4.Using the dot extension as for structures, e.g. NAME = W.NAME;
5.The routines ISAFFINE, ISCLASSIFIER, ISCOMBINER, ISEMPTY, ISFIXED,  

ISTRAINED and ISUNTRAINED test on some mapping types and states.

Some standard MATLAB operations have been overloaded for variables of the 
type MAPPING. They are defined as follows:

  W’       Defined for affine mappings only. It returns a transposed 
mapping.

  [W V]    Builds a combined classifier (see STACKED) operating in the 
same feature space. A * [W V] = [A*W A*V].

  [W;V]    Builds a combined classifier (see PARALLEL) operating in 
different feature spaces: [A B] * [W;V] = [A*W B*V]. W and V 
should be  mappings that correspond to the feature sizes of 
A and B.

  A*W      Maps a DATASET A by the MAPPING W. This is executed by 
MAP(A,W).

  V*W      Combines the mappings V and W sequentially. This is executed 
by SEQUENTIAL(V,W).

  W+c      Defined for affine mappings only. 
  W(:,K)   Output selection. If W is a trained mapping, just the features 

    listed in K are returned.

5.7 How to write your own mapping

Users can add new mappings or classifiers by a single routine that should support the following type 
of calls:

W = mymapm([], par1, par2, ...); Defines the untrained, empty mapping.
W = mymapm(A, par1, par2, ...); Defines the map based on the training dataset A.
B = mymapm(A, W); Defines the mapping of dataset A on W, resulting in a dataset B.

To see some examples list the routines kernelm or subsc. 

Below the subspace classifier subsc is listed. This classifier approximates each class by a linear 
subspace and assigns new objects to the class of the closest subspace found in the training set. The 
dimensionalities of the subspaces can be directly set by W = subsc(A,N), in which the integer N 
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determines the dimensionality of all class subspaces, or by W = subsc(A,alf), in which alf is 
the desired fraction of the retained variance, e.g. alf = 0.95. In both cases the class subspaces V 
are determined by a principle component analysis of the single class datasets.

The three possible types of calls, listed above are handled in the three main parts of the routine. If no 
input parameters are given (nargin < 1) or no input dataset is found (A is empty) an untrained 
classifier is returned. This is useful for calls like W = subsc([],N), defining an untrained classifier 
that can be used in routines like cleval(A,W,...) that operate on arbitrary untrained classifiers, 
but also to facilitate training by constructions as W = A*subsc or W = A*subsc([],N).

The training section of the routine is accessed if A is not empty and N is either not supplied or set 
by the user as a double (i.e. the subspace dimensionality or the fraction of the retained variance). 
PRTools takes care that calls like W = A*subsc([],N) are executed as W = subsc(A,N). The 
first parameter in the mapping definitions W = mapping(mfilename, ... is substituted by 
Matlab as ’subsc’ (mfilename is a function that returns the name of the calling file). This string 
is stored by PRTools in the mapping_file field of the mapping W and used to call subsc 
whenever it has to be applied to a dataset.

The trained mapping W can be applied to a test dataset B by D = B*W or by D = map(B,W). 
Such a call is converted by PRTools to D = subsc(B,W). Consequently, the second parameter of 
subsc(), N is now substituted by the mapping W. This is executed in the final part of the routine. 
Here, the data stored in the data field of W during training is retrieved (class mean, rotation matrix 
and mean square distances of the training objects) and used to find normalized distances of the test 
objects to the various subspaces. Finally they are converted to a density, assuming a normal 
distribution of distances. These values are returned in a dataset using the setdata routine. This 
dataset is thereby similar to the input dataset: it contains the same object labels, object identifiers, 
etcetera. Just the data itself is changed and the columns refer now to classes instead of to features.

%SUBSC Subspace Classifier
%
%   W = SUBSC(A,N)
%   W = SUBSC(A,FRAC)
%
% INPUT
%   A          Dataset
%   N or FRAC  Desired model dimensionality or fraction of retained 
%              variance per class
%
% OUTPUT
%   W          Subspace classifier  
%
% DESCRIPTION
% Each class in the trainingset A is described by linear subspace of
% dimensionality N, or such that at least a fraction FRAC of its variance
% is retained. This is realised by calling PCA(AI,N) or PCA(AI,FRAC) for
% each subset AI of A (objects of class I). For each class a model is
% built that assumes that the distances of the objects to the class
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% subspaces follow a one-dimensional distribution. 
%
% New objects are assigned to the class of the nearest subspace.
% Classification by D = B*W, in which W is a trained subspace classifier
% and B is a testset, returns a dataset D with one-dimensional densities
% for each of the classes in its columns.
%
% If N (ALF) is NaN it is optimised by REGOPTC.
%
% REFERENCE
% E. Oja, The Subspace Methods of Pattern Recognition, Wiley, 1984.
%
% See DATASETS, MAPPINGS, PCA, FISHERC, FISHERM, GAUSSM, REGOPTC

% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands

function W = subsc(A,N)

  name = 'Subspace classf.';
  
  % handle default
  if nargin < 2, N = 1; end
  
  % handle untrained calls like subsc([],3);
  if nargin < 1 | isempty(A)
    W = mapping(mfilename,{N});
    W = setname(W,name);
    return
  end
  

if isa(N,'double') & isnan(N)    % optimize regularisation parameter
defs = {1};
parmin_max = [1,size(A,2)];
W = regoptc(A,mfilename,{N},defs,[1],parmin_max,testc([],'soft'),0);

elseif isa(N,'double')
    
  % handle training like A*subsc, A*subsc([],3), subsc(A)
  % PRTools takes care that they are all converted to subsc(A,N)
      
    islabtype(A,'crisp');   % allow crisp labels only
    isvaldfile(A,1,2);      % at least one object per class, two objects
                            % allow for datafiles
    A = testdatasize(A,'features'); % test whether they fit
    A = setprior(A,getprior(A));    % avoid many warnings
    [m,k,c] = getsize(A);     % size of the training set
    for j = 1:c               % run over all classes
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      B = seldat(A,j);        % get the objects of a single class only
      u = mean(B);            % compute its mean
      B = B - repmat(u,size(B,1),1); % subtract mean
      v = pca(B,N);           % compute PCA for this class
      v = v*v';               % trick: affine mappings in original space
      B = B - B*v;            % differences of objects and their mappings
      s = mean(sum(B.*B,2));  % mean square error w.r.t. the subspace
      data(j).u = u;          % store mean
      data(j).w = v;          % store mapping
      data(j).s = s;          % store mean square distance
    end
                              % define trained mapping,
                              % store class labels and size
    W = mapping(mfilename,'trained',data,getlablist(A),k,c);
    W = setname(W,name);
    
  elseif isa(N,'mapping')
    
  % handle evaluation of a trained subspace classifier W for a dataset A.
  % The command D = A*W is by PRTools translated into D = subsc(A,W)
  % Such a call is detected by the fact that N appears to be a mapping.
    
    W = N;                    % avoid confusion: call the mapping W
    m = size(A,1);            % number of test objects
    [k,c] = size(W);          % mappingsize: from K features to C classes
    d = zeros(m,c);           % output: C class densities for M objects
    
    for j=1:c                 % run over all classes
      u = W.data(j).u;        % class mean in training set
      v = W.data(j).w;        % mapping to subspace in original space
      s = W.data(j).s;        % mean square distance
      B = A - repmat(u,m,1);  % substract mean from test set
      B = B - B*v;            % differences objects and their mappings
      d(:,j) = sum(B.*B,2)/s; % convert to distance and normalise 
    end
    d = exp(-d/2)/sqrt(2*pi); % convert to normal density
    
    A = dataset(A);           % make sure A is a dataset 
    d = setdata(A,d,getlabels(W)); % take data from D and use 
                              % class labels as given in W
                              % other information in A is preserved   
    W = d;                    % return result in output variable W
    
  else     
    
    error('Illegal call')     % this should not happen
    
  end
  
return
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7. A review of the toolbox

We will now shortly discuss the PRTools commands group by group. The two basic structures of the 
toolbox can be defined by the constructors dataset and mapping. In a dataset the feature values of 
a set of objects are stored, together with their class labels, feature names, prior probabilities, 
classifications costs and various types of user annotation. There are many commands to store data in 
and retrieve data from a dataset. These commands can also be used to retrieve or redefine the data. It 
is thereby not necessary to use the general Matlab converter struct() for decomposing the 
structures. By getlabels and getfeatlab the labels assigned to the objects and features can be 
found. The generation and handling of data is further facilitated by genlab for the generation of 
labels and renumlab for the parsing of labels and coding them into natural numbers between one 
and the number of classes. These numerical labels can be retrieved by getnlab. They point into a list 
of class labels called lablist, which can be retrieved by getlablist. 

Datasets and Mappings

dataset Define dataset from data matrix and labels
datasets List information on datasets
classsizes Retrieves sizes of classes
get Get fields from datasets or mappings
getlabels Retrieve object labels from dataset
getnlab Retrieve numeric object labels from dataset
getfeat Retrieve feature labels from datasets and mappings
getfeatlab Retrieve feature labels from dataset
getlablist Retrieve names of classes
genclass Generate class frequency distribution
genlab Generate dataset labels
remclass Remove a class from a dataset
seldat Retrieve part of a dataset
setdata Change data in dataset
addlabels Add additional labelling
setlabels Change labels of dataset or mapping
changelablist Change current active labeling
multi_labeling List information on multi-labeling
matchlab Match different labelings
renumlab Convert labels to numbers
primport Convert old datasets to present PRTools definition

mapping Define mapping and classifier from data
mappings List information on mappings
getlab Retrieve labels assigned by a classifier
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There is a large set of routines for the generation of arbitrary normally distributed classes (gauss), 
and for various specific problems (gendatc, gendatd, gendath, gendatm and gendats). 
There are two commands for enriching classes by noise injection (gendatk and gendatp). These are 
used for the general test set generator gendatt. A given dataset can be spit into a training set and a 
test set gendat. The routine gendat splits the dataset at random into two sets. Subsets of datasets 
can be created by seldat. A total overview of all commands to generate datasets and to read datasets 
from disk (provided they are available) is given by prdatasets.

These are the main specific datafile commands needed for the user: the definition, saving datafiles and 
operating on datafiles. Many mappings for datasets can be applied on datafiles as well. They are  
however just stored internally in the datafile administration and only executed when the datafile is 
converted to a dataset, OR when when it is stored by savedatafile.

Data Generation

circles3d Create a dataset containing 2 circles in 3 dimensions
lines5d Create a dataset containing 3 lines in 5 dimensions
gauss Generation of multivariate Gaussian distributed data
gencirc Generation of a one-class circular dataset
gendat Generation of subsets of a given data set
gendatb Generation of banana shaped classes
gendatc Generation of circular classes
gendatd Generation of two difficult classes
gendath Generation of Highleyman classes
gendati Generation of random windows from images
gendatk Nearest neighbor data generation
gendatl Generation of Lithuanian classes
gendatm Generation of many Gaussian distributed classes
gendatp Parzen density data generation
gendats Generation of two Gaussian distributed classes
prdata Read data from file and convert into a dataset
seldat Select classes / features / objects from dataset
prdataset Read existing dataset from file
prdatasets Overview of all datasets and data generators

Datafiles 

datafile  Define datafile from set of files in directory
savedatafile Save datafile, store intermediate result
filtm Mapping for arbitrary processing of datafile
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All routines operate in multi-class problems. labeld and testc are the general classification and 
testing routines. They can handle any classifier from any routine, including the ones to follow. 

Classifiers and mappings can be trained by a dataset using commands like W = fisherc(A), or W 
= knnc(A,3). Such commands may also be written as W = A*fisherc, and 
W = A*polyc([],[],3). The possibility to assign an untrained classifier to a variable like 
V = polyc([],[],3) allows for routines that have untrained classifiers as input, e.g. the general 
classifier evaluation routine cleval (see below). 

Some more examples, also showing the use of cell arrays of classifiers and datasets:
A = gendatb([100,100]); % Generate 2 classes of 100 objects each
                          % Generate 50% for training
[Train,Test] = gendat(A,0.5); % and 50% for testing
                          % Define set of untrained classifiers
W = {fisherc, loglc, nmc, polyc([],[],3)}; 
V = Train*W;              % Train them all and construct classifiers
D = Test*V;               % Test them by C

E = D*testc;              % Store classification errors 

Linear and Higher Degree Polynomial Classifiers 

klldc Linear classifier by KL expansion of common cov matrix
pcldc Linear classifier by PCA expansion on the joint data
loglc Logistic linear classifier
fisherc Minimum least square linear classifier
nmc Nearest mean classifier
nmsc Scaled nearest mean classifier
perlc Linear classifier by linear perceptron
quadrc Quadratic classifier

polyc Add polynomial features and run arbitrary classifier
subsc Subspace classifier

classc Converts a mapping into a classifier
labeld Find labels of objects by classification
logdens Convert density estimates to log-densities
testc Error estimation of classifiers from test objects
rejectc Creation of reject version of exisiting classifier
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Classifiers for normal distributed classes can be trained by ldc, qdc and udc, while nbayesc 
assumes known densities. The all follow the Bayes rule using the priors stored in the datasets.  The 
special purpose test routine testn can be used if the parameters of the normal distribution (means 
and covariances) are known or estimated by meancov.

knnc and parzenc are similar in the sense that the classifiers they build still include all training 
objects and that their parameter (the number of neighbors or the smoothing parameter) can be user 
supplied or can be optimized over the training set using a leave-one-out error estimation. For the 
Parzen classifier the smoothing parameter can also be estimated by parzenml using an optimization 
of the density estimation. The special purpose testing routines testk and testp are useful for 
obtaining leave-one-out error estimations. parzendc is based on a optimization of each of the class 
densities separately by parzenml. 

Normal Density Based Classification

distmaha Mahalanobis distance
meancov Estimation of means and covariance matrices 
nbayesc Bayes classifier for given normal densities
ldc Normal densities based linear classifier
qdc Normal densities based quadratic classifier
udc Normal densities based classifier(independent features)
mogc Mixture of gaussians classification
testn Error estimate of discriminant on normal distributions

Nonlinear Classification

knnc k-nearest neighbor classifier
testk Error estimation for k-nearest neighbor rule
edicon Edit and condense training sets

parzenc Parzen  classifier
parzendc Parzen density based classifier
testp Error estimation for Parzen classifier

treec Construct binary decision tree classifier
naivebc Naive Bayes classifier

bpxnc Train neural network classifier by back-propagation
lmnc Train neural network by Levenberg-Marquardt rule
perlc Linear perceptron 
rbnc Train radial basis neural network classifier
neurc Automatic neural network classifier
rnnc Random neural network classifier

svc Support vector classifier
nusvc Support vector classifier
rbsvc Radial basis SV classifier
kernelc General kernel/dissimilarity based classification
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Decision trees can be constructed by treec, using various criterion functions, stopping rules or 
pruning techniques. The resulting classifier can be used in labeld, testc and plotc.

PRTools offers three neural network classifiers (bpxnc, lmnnc and rbnnc) based on  Matlab’s 
Neural Network Toolbox, which should be available to run these routines. The resulting classifiers 
are ready to use by labeld, testc and plotc. The automatic neural network classifier neurc 
builds a network without any parameter setting by the user. Random neural network classifiers can be 
generated by rnnc. Its  first layer  is totally random, the second layer  is  optimized by a linear 
classifier.

The Support Vector Classifier (svc) can be called for various kernels as defined by kernelm. nusvm 
is a slightly different version in which the regularisation parameter can be defined in terms of the 
expected error. rbsvm optimizes parameter settings internally. The support vector classifiers are  
optimized by a quadratic programming procedure.

The feature selection routines featselb, featself, featseli, featselo and featselp 
generate subsets of features, calling feateval for evaluating the feature set. featselm offers a 
general entry for feature selection, calling one of the other methods. All routines produce a mapping 
W (e.g. W = featself(A,[],k)). So the reduction of a dataset A to B is done by B = A*W.

Feature Selection

feateval Evaluation of a feature set
featrank Ranking of individual feature performances
featselb Backward feature selection
featself Forward feature selection
featsellr Plus-l-takeaway-r feature selection
featseli Individual feature selection
featselo Branch and bound feature selection
featselp Pudil’s floating forward feature selection
featselm Feature selection map, general routine
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A classifier maps, after training, objects from the feature space into its output space. For two-class 
discriminants these are sigmoids of distances, for neural networks their unnormalized outputs (i.e. 
they don’t necessarily sum to one) and for density based classifiers the densities. Discriminants are 
normalized such that their sigmoid outputs are optimal posterior probability estimates. The 
dimensionality of the classifier  output space equals the number of classes (an exception is possible 
for two-class classifiers, that may have a one-dimensional output space). This output space may be 
mapped on posterior probability for other classifiers than discriminants by classc, which takes care 
of normalization.  Classification (determining the class with maximum output) is done by labeld, 
which generates the labels of that class.

A general Bayes plug-in classification if offered by bayesc. This routine expects as inputs proper 
density estimating routine. Suppose we have one-class datasets A, B and C for which the densities are 
estimators are determined by WA = gaussm(A,3), WB = knnm(B,5) and WC = parzenm(C), 
then a Bayes classifier using class priors P = [0.3 0.3 0.4], can be built by 
W = bayesc(WA,WB,WC,[0.3 0.3 0.4],char(’apple’,’banana’,’coco’)).

In order to make various density based classifiers like ldc, udc, qdc, mogc, parzenc, 
parzendc and knnm comparable, they output the proper densities (e.g. D = B*qdc(A)). For high-
dimensional spaces this causes that in the tails of the distributions an exact zero density is returned, 
due to the finite numerical accuracy. This may even be the case for all classes, by which the posterior 
probabilities, computed after applying classc (D = B*qdc(A)*classc), become undefined. The 
routine logdens may be used to solve this problem. It forces the density based classifiers based on 
normal distributions and Parzen estimators (ldc,udec, qdc, mogc, parzenc, parzendc) to 
a direct computation of log-densities, followed by an appropriate rescaling and an immediate 

Classifiers and Tests (general)

bayesc Bayes classifier by combining density estimates
classim Classify image using a given classifier
classc Convert mapping to classifier
labeld Find labels of objects by classification
cleval Classifier evaluation (learning curve)
clevalb Classifier evaluation, bootstrap version
clevalf Classifier evaluation (feature size curve)
confmat Computation of confusion matrix
costm Cost mapping, classification using costs
crossval Error estimation by cross-validation
cnormc Normalization of discriminants
disperror Error matrix, information on classifiers and datasets
logdens Convert density estimates to log-densities
labelim Construct image of labeled pixels
mclassc Multi-class classifier from 2-class discriminants
reject Compute error-reject curve
roc Compute receiver-operator curve
testc Error estimation routine for trained classifiers
testauc Estimate error as area under the ROC
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normalization. Consequently W = qdc(A); D = B*logdens(W) computes better posterior 
probabilities in the tails of the distribution. This applies for lcd, udc, qdc, mogc, parzenc and 
parzendc.

Error estimates for test data are made by testc and confmat. More advanced techniques like 
rotating datasets over test sets and training sets, are offered by crossval, cleval and clevalb.

 

Classifiers are a special type of mapping, as their output spaces are related to class membership. In 
general a mapping converts data from one space to another. This may be done by a fixed procedure, 
not depending on a dataset, but controlled by at most some parameters. Most of these mappings that 

Mappings

affine Construct affine (linear) mapping from parameters
bhatm Two-class Bhattacharryya mapping
cmapm Compute some special maps
featselm Feature selection map, general routine
fisherm Fisher mapping
invsigm Inverse sigmoid map
gaussm Mixture of Gaussians density estimation
kernelm PCA based kernel mapping
klm Decorrelation and Karhunen Loève mapping (PCA)
klms Scaled version of klm, useful for pre-whitening
knnm k-Nearest neighbor density estimation
map General routine for computing and executing mappings
mclassm Computation of mapping from multi-class dataset
nlfisherm Nonlinear Fisher mapping
normm Object normalization map
parzenm Parzen density estimation
parzenml ML estimation of Parzen smoothing parameter.
pca Principle Component Analysis
proxm Proximity mapping and kernel construction
reducm Reduce to minimal space mapping
rejectm     Creates rejecting mapping
remoutl Remove outliers
scalem Compute scaling data
sigm Sigmoid mapping
spatm Augment image dataset with spatial label information
kernelm Kernel mapping, dissimilarity representation
userkernel  User supplied kernel definition

gtm Fit a Generative Topographic Mapping (GTM) by EM
plotgtm Plot a Generative Topographic Mapping in 2D
som Simple routine computing a Self-Organizing Map (SOM)
plotsom Plot a Self-Organizing Map in 2D

mds Non-linear mapping by multi-dimensional scaling
mds_cs Linear mapping by classical scaling
mds_init Initialization of multi-dimensional scaling
mds_stress Dissimilarity of distance matrices
- 39 -



don’t need training are collected by cmapm (e.g. shifting, rotation, deletion of particular features), 
another example is the sigmoidal mapping sigm. Some of the mappings that need training don’t 
depend on the object labels, e.g. the principal component analysis (PCA) by pca, klm and klms, 
object normalization by normm and scaling by scalem,  and nonlinear PCA or kernel PCA by 
kernelm. The other routines depend on object labels as they define the mapping such that the class 
separability is maximized in one way or another. The Fisher criterion is optimized by fisherm, the 
scatter by klm (if called by labelled data), density separability for normal distributions by nlfisherm 
and general class separability by lmnm.

Classifiers can be combined by horizontal and vertical concatenation, see section 5.5, e.g. 
W = [W1, W2, W3]. Such a set of classifiers can be combined by several rules, like majority voting 
(majorc), combining the posterior probabilities in several ways (maxc, minc, meanc, medianc and 
prodc), or by training an output classifier (traincc). The way classifiers are combined can be 
inspected by parsc.

Combining classification rules

averagec Combining linear classifiers by averaging coefficients
baggingc Bootstrapping and aggregation of classifiers
votec Voting combining classifier 
maxc Maximum combining classifier
minc Minimum combining classifier
meanc Averaging combining classifier
medianc Median combining classifier
prodc Product combining classifier
traincc Train combining classifier
parsc Parse classifier or map
parallel Parallel combining of classifiers
stacked Stacked combining of classifiers
sequential Sequential combining of classifiers

Regression

linearr     Linear regression
ridger      Ridge regression
lassor      LASSO
svmr        Support vector regression
ksmoothr    Kernel smoother
knnr        k-nearest neighbor regression
pinvr       Pseudo-inverse regression
plsr        Partial least squares regression
plsm        Partial least squares mapping

testr       Mean squared regression error
rsquared    R^2-statistic
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Images can be stored, either as features (im2feat), or as objects (im2obj) in a dataset. The first 
possibility is useful for segmenting images using a vector of values for each pixels (e.g. in case of 
multi-color images, or as a result of a filter bank). The second possibility enables the classification of 
entire images using their pixels as features. Such datasets can be displayed by show. The relation with 
image processing is established by dataim, enabling arbitrary image operations, Simple filtering can 
be sped up by  datfilt, datgauss and datunif.

Handling images in datasets and datafiles

classim Classify image using a given classifier
dataim Image operation on dataset images.
data2im Convert dataset to image
getobjsize Retrieve image size of feature images in datasets
getfeatsize Retrieve image size of object images in datasets
datfilt Filter dataset image
datgauss Filter dataset image by Gaussian filter
datunif Filter dataset image by uniform filter
im2obj Convert image to object in dataset
im2feat Convert image to feature in dataset
spatm Augment image dataset with spatial label information
show Display images stored in dataset
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For many of these operations the DipImage toolbox is needed, like for the following ones.

Operations on images in datasets and datafiles

classim     Classify image using a given classifier
dataim      Image operation on dataset images (features or objects)
doublem     Convert datafile images into double
filtim      Image operation on objects in datafiles/datasets
datfilt     Filter dataset image (outdated)
datgauss    Filter dataset image by Gaussian filter
datunif     Filter dataset image by uniform filter
hsv2rgb     Convert HSV to RGB images
rgb2hsv     Convert RGB to HSV images
spatm       Augment image dataset with spatial label information
im_bdilation Binary dilation
im_berosion  Binary erosion
im_box      Bounding box
im_bpropagation   Binary propagation
im_center    Center image
im_fft       FFT transform (and more)
im_gaussf    Gaussian filtering
im_gray      Multi-band to gray-value conversion
im_hist_equalize  Histogram equalization
im_invert    Invert image
im_label     Labeling binary images
im_maxf      Maximum filter
im_minf      Minimum filter
im_resize    Resize images
im_rotate    Rotate images
im_scale     Scale iamges
im_select_blob Select largest blob
im_stretch  Contrast stretching of images
im_threshold Threshold images

Feature extraction from images in datasets and datafiles

histm       Convert images to histograms
im_moments  Computes moments as features from object images
im_mean     Computes center of gravity
im_measure  Computes some measurements
im_profile  Computes image profiles
im_stat     Compute some simple statistics
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Clustering and Distances

distm Distance matrix between two data sets.
emclust Expectation - maximization clustering
proxm Proximity mapping and kernel construction
hclust Hierarchical clustering
kcentres k-centers clustering
kmeans k-means clustering
modeseek Clustering by mode seeking

mds         Non-linear mapping by multi-dimensional scaling (Sammon)
mds_cs      Linear mapping by classical scaling
mds_init    Initialisation of multi-dimensional scaling
mds_stress  Dissimilarity of distance matrices

Plotting

gridsize Set gridsize of scatterd, plotd and plotm plots
plotc Plot discriminant function in scatterplot
plote       Plot error curves
plotf Plot feature distribution
plotm Plot mapping in scatterplot
ploto       Plot object functions
plotr Plot error curves
plotdg Plot dendrogram (see hclust)
scatterd Scatterplot
scatterdui Scatterplot scatterplot with feature selection
scatterr    Scatter regression dataset

Examples

prex_cleval Learning curves
prex_combining Classifier combining
prex_confmat Confusion matrix, scatterplot and gridsize
prex_datafile Datafile usage
prex_datasets Show scatter plots of standard datasets
prex_density Various density plots
prex_eigenfacesUse of images and eigenfaces
prex_matchlab Clustering the Iris dataset
prex_mcplot Multi-class classifier plot
prex_plotc Dataset scatter and classifier plot
prex_som Self-organizing map
prex_spatm Spatial smoothing of image classification
prex_cost Cost matrices and rejection
prex_logdens Density based classifier improvement
prex_regr Regression example
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Various tests and support routines

cdats Support routine for checking datasets
iscolumn Test on column array
iscomdset Test on compatible datasets
isdataim Test on image dataset
isdataset Test on dataset
isfeatim Test on feature image dataset
ismapping Test on mapping
isobjim Test on object image dataset
isparallel Test on parallel mapping
isstacked Test on stacked mapping
issym Test on symmetric matrix
isvaldset Test on valid dataset
matchlablist Match entries of label lists
newfig Control of figures on the screen
newline Generate a new line in the command window
nlabcmp Compare two label lists and count the differences
prversion returns version information on PRTools
showfigs Distribute all open figures over screen
delfigs Delete all figures
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8. Examples

The following examples are available under PRTools. We present here the source codes and the 
output they generate.

8.1 PREX_CLEVAL Learning curves

help prex_cleval
echo on
                  % set desired learning sizes
     learnsize = [3 5 10 15 20 30];
                  % generate Highleyman's classes
     A = gendath([100,100]); 
                  % define classifiers (untrained)
     W = {ldc,qdc,knnc([],1),treec};
                  % average error over 10 repetitions
                  % test set is complement of training set
     E = cleval(A,W,learnsize,10);
                  % output E is a structure, specially designed for plotr
     plotr(E)
 
echo off
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8.2 PREX_COMBINING PRTOOLS example of classifier combining
help prex_combining
echo on
          % Generate 10-dimensional data
  A = gendatd([100,100],10);
          % Select the training set of 40 = 2x20 objects
          % and the test set of 160 = 2x80 objects
  [B,C] = gendat(A,0.2);
          % Define 5 untrained classifiers, (re)set their names
          % w1 is a linear discriminant (LDC) in the space reduced by PCA  
  w1 = klm([],0.95)*ldc;
  w1 = setname(w1,'klm - ldc');
         % w2 is an LDC on the best (1-NN leave-one-out error) 3 features 
  w2 = featself([],'NN',3)*ldc;
  w2 = setname(w2,'NN-FFS - ldc');
         % w3 is an LDC on the best (LDC leave-one-out error) 3 features 
  w3 = featself([],ldc,3)*ldc;
  w3 = setname(w3,'LDC-FFS - ldc');
         % w4 is an LDC 
  w4 = ldc;
  w4 = setname(w4,'ldc');
         % w5 is a 1-NN
  w5 = knnc([],1);
  w5 = setname(w5,'1-NN');
         % Store classifiers in a cell
  W = {w1,w2,w3,w4,w5};
         % Train them all
  V = B*W;
         % Test them all
  disp([newline 'Errors for individual classifiers'])
  testc(C,V);
         % Construct combined classifier
  VALL = [V{:}];
         % Define combiners
  WC = {prodc,meanc,medianc,maxc,minc,votec};
         % Combine (result is cell array of combined classifiers)
  VC = VALL * WC;
         % Test them all
  disp([newline 'Errors for combining rules'])
  testc(C,VC)
echo off

 
 Errors for individual 
classifiers

   klm - ldc            0.125
   NN-FFS - ldc         0.506
   LDC-FFS - ldc        0.100
   ldc                  0.094

 Errors for combining rules

 Product combiner     0.075
 Mean combiner        0.275
 Median combiner      0.113
 Maximum combiner     0.275
 Minimum combiner     0.094
 Voting combiner      0.088
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8.3 PREX_CONFMAT Confusion matrix, scatterplot and gridsize
%PREX_CONFMAT PRTools example confusion matrix, scatterplot and gridsize
% Prtools example code to show the use of confusion matrix, 
% scatterplot and gridsize.
help prex_confmat; echo on
                % Load 8-class 2D problem
  randn('state',1); rand('state',1); a = gendatm;
                % Compute the Nearest Mean Classifier
  w = nmc(a);
                % Scatterplot
  figure; gridsize(30); scatterd(a,'legend');
                % Plot the classifier
  plotc(w);
  title([getname(a) ', Gridsize 30']);
                % Set higher gridsize
  gridsize(100);
  figure; scatterd(a,'legend');
  plotc(w);
  title([getname(a) ', Gridsize 100']);
         % Classify training set
  d = a*w;
         % Look at the confusion matrix and compare it to the scatterplot
  confmat(d);

echo off
c = num2str(gridsize);
disp(' ')
disp('Classifier plots are inaccurate for small gridsizes.The standard');
disp('value of 30 is chosen because of the speed, but it is too low to');
disp('ensure good plots. Other gridsizes may be set by gridsize(n).')
disp('Compare the two figures and appreciate the difference.')
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8.4 PREX_DENSITY Various density plots

help prex_density
figure
echo on
      % Generate one-class data
     a = gencirc(200);

     % Parzen density estimation
     w = parzendc(a); 
     % scatterplot
     subplot(2,2,1);
     scatterd(a,[10,5]);
     plotm(w); 
     title('Parzen Density')
     % 3D density plot
     subplot(2,2,2);
     scatterd(a,[10,5]);
     plotm(w,3);

     % Mixture of Gaussians (5)
     w = mogc(a,5);
     % scatterplot
     subplot(2,2,3);
     scatterd(a,[10,5]);
     plotm(w);
     title ...
       ('Mixture of 5 Gaussians')
     % 3D density plot
     subplot(2,2,4);
     scatterd(a,[10,5]);
     plotm(w,3);
     drawnow
 
     disp('Study figure at full screen, shrink and hit return')
     pause
 
     figure
     % Store four density estimators
     W = {qdc udc parzendc mogc};
    % generate data
     a = +gendath;
     % plot densities and estimator name
     for j=1:4
          subplot(2,2,j)
          scatterd(a,[10,5])
          plotm(a*W{j})
          title([getname(W{j}) ' density estimation'])
     end
     echo on
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8.5 PREX_EIGENFACES Use of images and eigenfaces

help prex_eigenfaces
     echo on
                    % load one image for each subject (takes a while)
     a = faces([1:40],1);
                    % compute eigenfaces
     w = pca(a);
                    % show them
     newfig(1,3); show(w); drawnow
                    % project all faces on eigenface space
     b = [];
     for j = 1:40
     a = faces(j,[1:10]);
     b = [b;a*w];
                    % don't echo loops
     echo off
     end
     echo on
                    % show scatterplot of first two eigenfaces
     newfig(2,3)
     scatterd(b)
     title('Scatterplot on first two eigenfaces')
                    % compute leave-one-out error curve
     featsizes = [1 2 3 5 7 10 15 20 30 39];
     e = zeros(1,length(featsizes));
     for j = 1:length(featsizes)
     k = featsizes(j);
     e(j) = testk(b(:,1:k),1);
     echo off
     end
     echo on
               %plot error curve
     newfig(3,3)
     plot(featsizes,e)
     xlabel('Number of eigenfaces')
     ylabel('Error')
echo off
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8.6 PREX_MATCHLAB    Clustering the Iris dataset

help prex_matchlab
echo on
     rand('state',5);
     a = iris;
                        % Find clusters in Iris dataset.
     J1 = kmeans(a,3); 
                        % Finds about the same clusters but labels them
     J2 = kmeans(a,3); 
                        % differently due to random initialization.
     confmat(J1,J2);   
                        % 'best' rotation of label names as
     [J3,C] = matchlab(J1,J2); 
                        % confusion matrix is now almost diagonal.
     confmat(J1,J3);   
                        % Conversion from J2 to J3: J3 = C(J2,:);
     C                 
echo off

        | Estimated Labels
   True  |
  Labels |    1      2      3  | Totals
  -------|---------------------|-------
      1  |    0     38      0  |   38
      2  |   61      1      0  |   62
      3  |    0      0     50  |   50
  -------|---------------------|-------
  Totals |   61     39     50  |  150

         | Estimated Labels
   True  |
  Labels |    1      2      3  | Totals
  -------|---------------------|-------
      1  |   38      0      0  |   38
      2  |    1     61      0  |   62
      3  |    0      0     50  |   50
  -------|---------------------|-------
  Totals |   39     61     50  |  150
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8.7 PREX-MCPLOT Multi-class classifier plot

help prex_mcplot
echo on
     gridsize(100)
                                % generate 2 x 2 normal distributed 
classes
     a = +gendath([20,20]);% data only
     b = +gendath([20,20]);% data only
     A = [a; b + 5];% shift 2 over [5,5]
                                % generate 4-class labels
     lab = genlab([20 20 20 20],[1 2 3 4]');
     A = dataset(A,lab);% construct dataset
 A = setname(A,'4-class dataset')
                                % plot this 4-class dataset
     figure
     scatterd(A,'.'); drawnow;  % make scatter plot for right size
     w = qdc(A);% compute normal densities based quadratic classifier
     plotc(w,'col'); drawnow;   % plot filled classification regions
     hold on;
     scatterd(A);    % redraw scatter plot
     hold off
 
echo off
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8.8 PREX_PLOTC Dataset scatter and classifier plot

help prex_plotc
echo on
                             % generate Highleyman data
     A = gendath([100 100]); 
                             % split in training and test set
     [C,D] = gendat(A,[20 20]);

     % compute classifiers
     w1 = ldc(C);            % linear
     w2 = qdc(C);            % quadratic
     w3 = parzenc(C);        % Parzen
     w4 = lmnc(C,3);         % neural net

     % compute and display errors
     W = {w1,w2,w3,w4};      % store classifiers in cell
     disp(D*W*testc);        % plot errors
       % plot data and classifiers
     figure
     scatterd(A);            % scatterplot
     plotc({w1,w2,w3,w4});   % plot classifiers
 
echo off
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8.9 PREX_SPATM Spatial smoothing of image classification

help prex_spatm
echo on
                       % load EM image
     a = emim31;
                       % extract small training set
     b = gendat(a,500);
                       % use it for finding 3 clusters
     [d,w] = emclust(b,nmc,3);
                       % classify entire image and show it
     c = a*w;
     classim(c);
     title('Original classification')
                       % smooth image, 
                       % combine spectral and spatial classifier, show it
     e = spatm(c)*maxc;
     figure
     classim(e);
     title('Smoothed classification')
 
echo off
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8.10 PREX_COSTM PRTools example on cost matrices and rejection

  Prtools example code to show the use of cost matrices and how
  to introduce a reject class.

                % Generate a three class problem
  randn('state',1);
  rand('state',1);
  n = 30;
  class_labels = char('apple','pear','banana');
  a = [gendatb([n,n]);  gauss(n,[-2 6])];
  laba = genlab([n n n],class_labels);
  a = setlabels(a,laba);
                % Compute a simple ldc
  w = ldc(a);
                % Scatterplot and classifier
  figure;
  gridsize(30);
  scatterd(a,'legend');
  plotc(w);
                % Define a classifier with a new cost matrix,

 % which puts a high cost on misclassifying
 % pears to apples

  cost = [0.0  1.0  1.0;
          9.0  0.0  1.0;

    1.0  1.0  0.0];
  wc = w*classc*costm([],cost,class_labels);
  plotc(wc,'b');

 % Define a classifier with a cost matrix where
 % an outlier class is introduced. For this an
 % extra column in the cost matrix has to be defined.
 % Furthermore, the class labels have to be supplied
 % to give the new class a name.

  cost = [0.0  1.0  1.0  0.2;
          9.0  0.0  1.0  0.2;
          1.0  1.0  0.0  0.2];
  class_labels = char('apple','pear','banana','reject');
  wr = w*classc*costm([],cost,class_labels);
  plotc(wr,'--')
 
   The black decision boundary shows the standard ldc classifier
   for this data. When the misclassification cost of a pear to an
   apple is increased, we obtain the blue classifier. When on top
   of that a rejection class is introduced, we get the blue dashed
   classifier. In that case, all objects between the dashed lines
   are rejected.

  Cost of basic classifier  =  0.51
  Cost of cost classifier   =  0.24
  Cost of reject classifier =  0.10
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8.11 PREX_LOGDENS Improving density based classifiers
 
  This example shows the use and results of LOGDENS for improving
  the classification in the tail of the distributions

% Generate a small two-class problem
randn('state',1);
rand('state',1);
a = gendatb([20 20]);

% Compute two classifiers: Mixture of Gaussians and Parzen
w_mogc = mogc(a);    w_mogc = setname(w_mogc,'MoG');
w_parz = parzenc(a); w_parz = setname(w_parz,'Parzen');

% Scatterplot with MoG classifier
subplot(3,2,1);
scatterd(a);
plotc(w_mogc); xlabel(''); ylabel(''); 
set(gca,'xtick',[],'ytick',[])
title('MoG density classifier','fontsize',12)
drawnow

% Scatterplot with Parzen classifier
subplot(3,2,2);
scatterd(a);
plotc(w_parz); xlabel(''); ylabel(''); 
set(gca,'xtick',[],'ytick',[])
title('Parzen density classifier','fontsize',12)
drawnow

% Scatterplot from a distance : 
% far away points are inaccurately classified

subplot(3,2,3);
scatterd([a; [150 100]; [-150 -100]]);
plotc(w_mogc); xlabel(''); ylabel(''); 
set(gca,'xtick',[],'ytick',[])
title('MoG: bad for remote points','fontsize',12)
drawnow

% Scatterplot from a distance : 
% far away points are inaccurately classified

subplot(3,2,4);
scatterd([a; [20 12]; [-20 -12]]); 
plotc(w_parz); xlabel(''); ylabel(''); 
set(gca,'xtick',[],'ytick',[])
title('Parzen: bad for remote points','fontsize',12)
drawnow

% Improvement of MOGC by LOGDENS
subplot(3,2,5);
scatterd([a; [150 100]; [-150 -100]]);
plotc({w_mogc,logdens(w_mogc)},['k--';'r- ']); legend off
xlabel(''); ylabel(''); set(gca,'xtick',[],'ytick',[])
title('MoG improved by Log-densities','fontsize',12)
drawnow
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% Improvement of PARZEN by LOGDENS
subplot(3,2,6);
scatterd([a; [20 12]; [-20 -12]]);
plotc({w_parz,logdens(w_parz)},['k--';'r- ']); legend off
xlabel(''); ylabel(''); set(gca,'xtick',[],'ytick',[])
title('Parzen improved by Log-densities','fontsize',12)

echo off
 
    This example shows the use of the logdens() routine. It
    improves the classification in the tails of the distribution,
    which is especially important in high-dimensional spaces.
    To this end it is combined with normalization, generating
    posterior probabilities. Logdens() can only be applied to
    classifiers based on normal densities and Parzen estimates.
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9. PRTools 4.0 release notes

This is section supplies some  information about changes in PRTools4.0 with respect to the 
PRTools3.1 versions. Changes are major and sometimes incompatible. A number of changes only 
involve the fundamental definitions, but are not is not yet implemented on the user level.

9.1 Datasets

The dataset construct has been entirely redefined and rewritten. See datasets (section 5.2) for an 
online description. Many fields are added. There are separate commands for setting and getting each 
field separately like setlabels(A,labels).

The main change for the user is that there are three different types of labels supported: ’crisp’ (as 
it was), ’soft’ (on the [0,1] interval) and ’targets’ (a multidimensional vector for each object). 
In the present state all higher level commands work for crisp labels and some for soft labels (e.g. for 
normal distributions) but nothing for targets. Also checking for appropriate labels is not done yet. As 
long as crisp labels are most routines work like before.

A new system has been created for keeping track of images stored as features or objects. In the size 
fields of datasets the image sizes are stored.

Datasets, classes and features may have names that are used to annotate plots.

During creation of a dataset objects are given a unique identifier, that is not changed anymore by 
PRTools. This enables the user to retrieve the original object from, for instance, the classification 
dataset, also after random selection of a test set. See setident, getident, findident and 
seldat.

Objects may be unlabeled. Such objects are not used for training classifiers.

For features domains may be defined for their values. Checking is done when dataset values or 
domain definitions change. See setfeatdom.

Programmers have to take care that all needed information is passed from one dataset to the other. The 
best thing to do is to ‘copy’ old datasets and create a new one by changing the data, .e.g. B = 
setdata(A,data,featlab) creates B out of A with new data and new names for the features, 
assuming that we have the same objects, object labels, prior probabilities, etcetera.

9.2 Mappings

The mapping construct has been redefined and rewritten as well. See mappings for online 
information. Now a clear distinction is made between four types of mappings: untrained, 
trained, fixed and combiner. In the mapping definition the programmer has to specify the 
type explicitly. PRTools has to know about these types as they are treated differently:
- untrained mapping cannot map data, but define the choice of the mapping and contain some pa-

rameter choices, e.g. W = ldc([],1e-6) defines a regularization value. Untrained mappings 
are useful for routines like cleval and featself that evaluate or use arbitrary untrained classi-
fiers. V = A*W produces a ’trained’ mapping. How training (and also execution) of mappings 
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is done is not hidden anymore for the user. Each mapping definition contains a mapping_file 
field that points to the file by which this further processing is performed.

- trained mappings map a dataset form one space to another, so D = B*V maps the dataset B by 
a trained classifier V from the feature space to a ‘classification’ space: each object has values for 
each class, e.g. a distance, a density, a posterior probability, a membership, etcetera. Routines for 
trained mappings typically have three ways they are called by PRTools and thereby have three pro-
gram sections: the untrained call or definition, the training and the execution. See kernelm for a 
typical example. Sometimes execution is shared by some routines, e.g. normal_map handles all 
execution of normal densities based mappings.

- fixed mappings are like trained mappings but don’t find their parameter values by training. Instead, 
they are set by other routines or by the user. As a result they don’t a part for training. So if W = 
sigm([],p), defining the sigmoid mapping, then W is called fixed (and not untrained) as A*W 
results in a dataset (B = sigm(A,p)) and not in a trained mapping.

- combiners are mappings that know how to handle other mappings. If V is a mapping and W is a 
combiner (e.g. W = maxc) then V*W results in a call like U = maxc(V), in which U is an 
untrained or a trained mapping, dependent on V. If W is not a combiner, then V*W is stored as 
such in U (called a sequential mapping, which again can be trained or untrained) and 
execution is postponed until a dataset has to be processed by A*U = A*(V*W). How this is done 
depends on the mapping types of V and W.

All the above is not really of importance for the users of PRTools, but just for programmers that like 
to write new mappings. For some users it may be of interest that the overload of the ‘*’ operator can 
always be avoided by map(), e.g. V = A*W is identical to V = map(A,W).

The use of prior probabilities is now restricted to density based classifiers and the computation of 
means and covariance matrices over classes. If this has to be avoided, use A = setprior(A,[]), 
by which class priors are made identical to class frequencies.

9.3 The user level

The old set of user routines has been corrected for the new definitions of datasets and mappings. 
During this revision some old constructs have been upgraded or removed. Some routines have been 
simplified (like testc, the new version of testc). Also plotd has been renamed to plotc for more 
consistency: plotc plots classifiers, plotm mappings (densities). Plotting routines have been 
extended and another default font size is introduced. On the whole, PRTools should behave about the 
same as before on the user level . Existing macros, however, have to be checked for sure. 

Important for users is that mappings like B*fisherc(A) now output unnormalized posterior 
probability estimates (class memberships) or for density based classifiers (B*qdc(A)) the true 
density. So this output is always positive. The routine classc takes care of normalization, 
converting outputs into proper posterior estimates: B*lmnc(A)*classc, or B*qdc(A)*classc. 
This new implementation may result in accuracy problems as densities may suffer from underflows 
in large areas of the feature space. For the normal density based classifiers like ldc,qdc and udc this 
can be circumvented by the use of logdens in the classifier definition (e.g. B*(qdc(A)*logdens) 
). In that case log-densities are stored instead of densities.
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10. PRTools 4.1 release notes

This is section supplies some  information about changes in PRTools4.1 with respect to PRTools4.0 
A number of new possibilities has been created important for the handling of large datasets, multiple 
labels of objects, the optimisation of complexity and regularisation parameters and the handling of 
regression problems. 

10.1 Compatibility

Changes are generally upwards compatible. With a few exceptions old routines should still work. The 
main exception is that the undocumented feature of PRTools4.0 to obtain fields from dataset and 
mapping variables using the dot-construct (e.g. classnames = a.lablist) has been changed. 
From now on the official and guaranteed way to address fields is by using the get-commands (e.g. 
classnames = getlablist(a)). The reason is that for a number of fields subfields have been 
defined using structures, structure arrays and cell arrays. So users are  urged to use the get-and set-
commands as also in future releases the constructions may change. PRTools still recognizes datasets 
contructed in the old way and automatically converts them.

10.2 Datafiles

A new object class, datafile, has bee created. The datafile class inherits most of the fields and 
methods of the dataset class, but extends them by allowing data that is not in core but stored in files 
on disk. As these may be large, handling of datafiles is restricted to administration, like desired 
sampling of objects and features and preprocessing (e.g. filtering and resizing of images). At some 
moment a datafile has to be converted into a dataset and it should fit then in the available memory. 
Datafiles are important to the extend PRTools possibilities with preprocessing and feature 
measurements within the same framework. Thereby classifiers may be designed and trained that can 
directly operate on raw images or other signals without the need to convert them first to datasets. For 
more information read  datafiles help file.

10.3 Image processing routines

In relation with the above a large set of image processing routines operating on datafiles and datasets 
has been included. They are helpful to convert (sets of) images to features and datasets. A number of 
them assume that the dip_image toolbox is available.

10.4 Multiple labels

For some applications it is useful to have multiple labelings of the objects. For instance, pixels may 
be labeled according to the image region (grass, water, rock) as will as to the image category 
(mountains, seaside, city) as well as to some origin (France, England, Norway). A provision has been 
created to enable this. The various labelings and corresponding priors (and targets in case of soft 
labeling) are stored in the dataset, but just one of them is active and is accessed by getlablist, 
getlabels, getprior and getnlab. For more information read he multi_labeling help file.
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10.5 Optimisation of complexity parameters and regularisation

Many trainable classifiers and mappings depend on some parameter controlling its complexity or 
regularisation. A general routine has been created to optimise such parameters by cross-validation. 
This is always done in a standard way: 20 steps of 5-fold cross-validation. This increases the training 
time roughly by a factor 100. The automatic optimisation is activated (for the routines for which it is 
implemented) by using a NaN in the function call. So w=ldc(a) uses no regularisation, 
w=ldc(a,1e-6) uses a user defined value of 1e-6 and w=ldc(a,NaN) activates the automatic 
optimisation. The actually  used parameter value may be retrieved afterwards by the routine 
getopt_pars. 

10.6 Regression

PRTools has already for a long time the possibility of datasets consisting of feature based vectors with 
one or more desired target values (the have the label type ’targets’ instead of ’crisp’ or 
’soft’). Now a set of routines has been added to make use of this option, e.g. linearr for linear 
regression, svmr for support vector machine regression and testr of evalution.

10.7 Object and dataset annotation

Datasets and objects inside datasets have fields to annotate them (’user’ and ’ident’). They are 
now  structures and the routines for setting (setuser and setident) and reading (getuser and 
getident) can handle them. 

10.8 Kernels

A general routine has been added for defining kernels: kernelm. This routine may be used in the 
support vector classifiers svc and nusvc as well as in the general kernel based classifier kernelc.

10.9 Support vector classifiers

The call of the general support vector classifier svc has been upgraded such that it included a 
recognizable kernel definition. In addition two other support vector classifiers are added, nusvc for 
using a regularisation parameter based on the expected error and rbsvc, which is parameter free as 
it estimates automatically the optimal radial basis kernel and the regularisation parameter.

10.10 Rejects

Routines rejectc and rejectm have been added to facilitate the construction of rejecting 
classifiers. They add class labels on the output that are NaN or ’’ (empty string), the PRTools standard 
label for unlabeled objects.
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