| PRTools contents | 
PARZENC
   [W,H] = PARZENC(A)
   W = PARZENC(A,H,FID)
| Input | |
| A | dataset | 
| H | smoothing parameter (may be scalar, vector of per-class parameters, or matrix with parameters for each class (rows) and dimension (columns)) | 
| FID | File ID to write progress to (default [], see PRPROGRESS) | 
| Output | |
| W | trained mapping | 
| H | estimated smoothing (scalar value) | 
Computation of the optimum smoothing parameter H for the Parzen classifier between the classes in the dataset A. The leave-one-out Lissack & Fu estimate is used for the classification error E. The final classifier is stored as a mapping in W. It may be converted into a classifier by W*CLASSC. PARZENC cannot be used for density estimation.
In case smoothing H is specified, no learning is performed, just the discriminant W is produced for the given smoothing parameters H. Smoothing parameters may be scalar, vector of per-class parameters, or a matrix with individual smoothing for each class (rows) and feature directions (columns)
T. Lissack and K.S. Fu, Error estimation in pattern recognition via L-distance between posterior density functions, IEEE Trans. Inform. Theory, vol. 22, pp. 34-45, 1976.
datasets, mappings, parzen_map, parzenml, parzendc, classc, prprogress,
| PRTools contents |