| PRTools contents |
PERLC
W = PERLC(A)
W = PERLC(A,MAXITER,ETA,W_INI,TYPE)
| Input | |
| A | Training dataset |
| MAXITER | Maximum number of iterations (default 100) |
| ETA | Learning rate (default 0.1) |
| W_INI | Initial weights, as affine mapping, e.g W_INI = NMC(A) (default: random initialisation) |
| TYPE | 'batch': update by batch processing (default) 'seq' : update sequentially |
| Output | |
| W | Linear perceptron classifier mapping |
Outputs a perceptron W trained on dataset A using learning rate ETA for a maximum of MAXITER iterations (or until convergence).
If ETA is NaN it is optimised by REGOPTC.
datasets, mappings, nmc, fisherc, bpxnc, lmnc, regoptc,
| PRTools contents |