Selected Papers and
Presentations of Robert P.W. Duin
On this page
selected papers and the sheets of some presentations are made available.
See also my home page for accessing all
publications.
Bob Duin
Pattern
Recognition in general
Sheets
- Ups and downs in
pattern recognition, Retirement talk, 28 October, 2011.
- Pattern
Recognition, steps in science and consciousness, Tutorial AERFAI Summer School on New Trends in
Pattern Recognition for Motion Analysis, Computer
Vision Center,
Bellaterra, Barcelona , 7th-11th July, 2008.
Related papers
- R.P.W. Duin, The
Origin of Patterns, Frontiers in Computer Science, 2021.
- R.P.W. Duin and
E. Pekalska, The Science of
Pattern Recognition; Achievements and Perspectives, in: W. Duch, J. Mandziuk (eds.), Challenges for Computational
Intelligence, Studies in Computational Intelligence, vol. 63,
Springer, 2007, 221-259.
- R.P.W. Duin and E. Pekalska, Structural inference of
sensor-based measurements, in: D.-Y. Yeung, J.T. Kwok, A. Fred, F. Roli and D. de Ridder (eds.), Structural, Syntactic, and Statistical Pattern Recognition, Proc. SSSPR2006, Lecture Notes in Computer Science,
vol. 4109, Springer Verlag, Berlin, 2006, 41-55.
e-Book
·
R.P.W. Duin and E. Pekalska, Pattern
Recognition: Introduction and Terminology, eBook, 37Steps, 2015, 1-78.
Representation
Sheets (Presentations
are similar, but gradually developing)
- Structural Pattern
Recognition in Dissimilarity Space, FEAST 2015, Lille, 10 July 2015.
- Non-Euclidean
Problems in Pattern Recognition, ACIT2013,
Khartoum 17-19 December 2013.
- The
Dissimilarity Representation for Non-Euclidean Pattern Recognition,
Tutorial, 2011.
- The Dissimilarity
Representation for Structural Pattern Recognition, CIARP 2011, DICTA
2011.
- Training classifiers for
non- Euclidean data, Seminar
Johns Hopkins University – AMS, Baltimore, 6 March 2008.
- The Dissimilarity
Representation for Pattern Recognition, Seminar
Johns Hopkins
University – CIS,
Baltimore , 4 March 2008.
- Structural Inference
of Sensor-Based Measurements, Pierre
Devijver Lecture, SSSPR, Hong
Kong, 2006.
- Prototype Selection for Dissimilarity-based
Classifiers ,
Conferenza Italiana sui Sistemi Intelligenti, Perugia, Italy, 15-17
September 2004.
- The dissimilarity
representation, a basis for domain based pattern recognition?, Workshop
on Pattern Representation and the Future of Pattern Recognition, Cambridge,
UK, 22 August 2004.
- Dissimilarity
Representations for Pattern Recognition, Meeting Spanish
Pattern Recognition Network, Madrid, September 4-5, 2003.
Tutorial
Related book
Related papers
- R.P.W. Duin,
E. Pekalska, and M. Loog,
Non-Euclidean
Dissimilarities: Causes, Embedding and Informativeness,
in: M. Pelillo (eds.), Similarity-Based
Pattern Analysis and Recognition, Advances in Computer Vision and
Pattern Recognition, Springer, 2013, 13-44.
- W.R. Lee, V. Cheplygina,
D.M.J. Tax, M. Loog, and R.P.W. Duin, Bridging
Structure and Feature Representations in Graph Matching, International Journal of Pattern
Recognition and Artificial Intelligence, vol. 26, no. 5, 2012.
- R.P.W. Duin and
E. Pekalska, The dissimilarity space: Bridging structural and
statistical pattern recognition, Pattern Recognition Letters,
vol. 33, no. 7, 2012, 826-832.
- R.P.W. Duin, Non- Euclidean Problems in Pattern Recognition Related to Human
Expert Knowledge, in: J. Filipe, J. Cordeiro
(eds.), Enterprise Information Systems, Revised Selected
Papers ICEIS 2010, Lecture Notes in Business Information
Processing, vol. 73, Springer, 2011, 15-28.
- E. Pekalska and
R.P.W. Duin, Beyond traditional
kernels: classification in two dissimilarity-based representation spaces,
IEEE Transactions on Systems, Man Cybernetics, vol. 38, no. 6,
2008, 729-744.
- R.P.W. Duin and
E. Pekalska, Structural inference of
sensor-based measurements, in: D.-Y. Yeung, J.T. Kwok, A. Fred, F. Roli and D. de Ridder (eds.), Structural, Syntactic, and Statistical Pattern Recognition, Proc. SSSPR2006, Lecture Notes in Computer Science, vol. 4109, Springer Verlag, Berlin, 2006,
41-55.
- E. Pekalska,
R.P.W. Duin, and P. Paclik,
Prototype selection
for dissimilarity-based classification, Pattern Recognition, vol. 39, no. 2, 2006, 189-208.
- R.P.W. Duin, E. Pekalska, P. Paclik, and
D.M.J. Tax, The
dissimilarity representation, a basis for domain based pattern
recognition?, in: L. Goldfarb (eds.), Pattern representation and the
future of pattern recognition, (ICPR 2004 Workshop Proceedings,
Cambridge UK, 22 August 2004), Faculty of Computer Science, Univ. of New
Brunswick, Fredericton, NB, Canada, 2004, 43-56.
- E. Pekalska, P. Paclik, and R.P.W. Duin, A Generalized Kernel
Approach to Dissimilarity-based Classification, Journal of Machine
Learning Research, Special Issue on Kernel Methods, vol. 2, no. 2,
2002, 175-211.
- E. Pekalska and R.P.W. Duin,
Dissimilarity
representations allow for building good classifiers, Pattern
Recognition Letters, vol. 23, no. 8, 2002, 943-956.
- E. Pekalska and
R.P.W. Duin, Automatic pattern recognition by
similarity representations, Electronics Letters, vol. 37, no.
3, 2001, 159-160.
- R.P.W. Duin, E. Pekalska, and D. de Ridder, Relational
discriminant analysis, Pattern Recognition Letters, vol.
20, no. 11-13, 1999, 1175-1181.
- R.P.W. Duin, D.
de Ridder, and D.M.J. Tax, Experiments with
object based discriminant functions; a featureless approach to pattern
recognition, Pattern Recognition Letters, vol. 18, no.
11-13, 1997, 1159-1166.
Compactness
and dataset complexity
Sheets
Related papers
- R.P.W. Duin and E. Pekalska, Object representation,
sample size and data complexity, in: M. Basu
and T.K. Ho (eds.), Data
Complexity in Pattern Recognition, Springer, London, 2006, 25-47.
- R.P.W. Duin, E. Pekalska, and D.M.J. Tax, The
characterization of classification
problems by classifier disagreements, in: J. Kittler, M. Petrou, M. Nixon (eds.), Proc. 17th International Conference on Pattern Recognition
(22-26 August 2004, Cambridge UK), vol. 2, IEEE Computer Society, Los
Alamitos, CA, 2004, 140-143.
- E. Pekalska,
R.P.W. Duin, and M. Skurichina,
A discussion on the
classifier projection space for
classifier combining, in: F. Roli, J.
Kittler (eds.), Multiple Classifier Systems,
Proceedings Third International Workshop MCS 2002 (Cagliari, Italy,
June 24-26), Lecture Notes in Computer Science, vol. 2364, Springer Verlag, Berlin, 2002, 137-148.
- R.P.W. Duin and
E. Pekalska, Complexity of
Dissimilarity based Pattern Classes, in: I. Austvoll
(eds.), Proc. of the 12th
Scandinavian Conference on Image Analysis, SCIA 2001 (Bergen,
Norway, June
11-14), NOBIM, Stavanger, Norway,
2001, 663-670.
- R.P.W. Duin, Compactness and Complexity of
Pattern Recognition Problems, in: C. Perneel
(eds.), Proc. Int. Symposium on
Pattern Recognition "In Memoriam Pierre Devijver"
( Brussels
, B, Feb.12), Royal
Military Academy
, Brussels
, 1999, 124-128.
Papers
- R.P.W. Duin, M. Loog, E. Pekalska, and
D.M.J. Tax, Feature-based
Dissimilarity Space Classification, in: D. ay, Z.taltepe,
and S. Aksoy (eds.), Recognizing Patterns in
Signals, Speech, Images, and Videos, ICPR 2010, Lecture Notes in
Computer Science, vol. 6388, Springer, 2010, 46-55. (This paper is based
on a contribution to the ICPR 2010 classifier landscape constest)
- R.P.W. Duin,
A note on comparing
classifiers, Pattern Recognition Letters, vol. 17, no. 5, 1996,
529-536.
Classifier combining
Sheets
- Combining Feature
Subsets in Feature Selection , MCS2005, Seaside, CA,
USA, June 13-15, 2005.
- The Combining
Classifier: To Train Or Not To Train, ICPR2002, Quebec City, August 11-15, 2002.
- Experiments with
Classifier Combining Rules, MCS2000, Cagliari , June21-23, 2000.
Related paper
- R.P.W. Duin, The Combining
Classifier: To Train Or Not To Train?, in: R. Kasturi,
D. Laurendeau, C. Suen
(eds.), ICPR16, Proceedings 16th International Conference on Pattern
Recognition (August
11-15, 2002, Quebec
City, Canada),
vol. II, IEEE Computer Society Press, Los Alamitos, 2002, 765-770.
- R.P.W. Duin and
D.M.J. Tax, Experiments
with Classifier Combining Rules, in: J. Kittler, F. Roli (eds.), Multiple Classifier Systems (Proc.
First International Workshop, MCS 2000, Cagliari, Italy, June 2000),
Lecture Notes in Computer Science, vol. 1857, Springer, Berlin, 2000,
16-29.
Small
sample size classification
Sheets
Related paper
- R.P.W. Duin, Classifiers in Almost
Empty Spaces, in: A. Sanfeliu, J.J.
Villanueva, M. Vanrell, R. Alquezar,
A.K. Jain, J. Kittler (eds.), ICPR15, Proc. 15th Int. Conference on
Pattern Recognition (Barcelona, Spain, Sep.3-7), vol. 2, Pattern
Recognition and Neural Networks, IEEE Computer Society Press, Los
Alamitos, 2000, 1-7.
Neural networks
Sheets
Related papers
- R.P.W. Duin, Four Scientific
Approaches to Pattern Recognition, in: A.M. Vossepoel,
F.M. Vos (eds.), Fourth Quinquennial Review
1996-2001 Dutch Society for Pattern Recognition and Image Processing,
NVPHBV, Delft, 2001, 331-337.
- R.P.W. Duin, Learned from Neural
Networks (Theme Presentation), in: L.J. van Vliet, J.W.J. Heijnsdijk, T. Kielman,
P.M.W. Knijnenburg (eds.), Proc. ASCI
2000, 6th Annual Conf. of the Advanced School for Computing and Imaging
(Lommel, Belgium, June 14-16), ASCI, Delft,
2000, 9-13.
- R.P.W. Duin, Superlearning
and neural network magic (IAPR discussion pages), Pattern
Recognition Letters, vol. 15, no. 3, 1994, 215-217.
- R.P.W. Duin, Superlearning
capabilities of neural networks?, SCIA'93, Proc. of the 8th
Scandinavian Conf. on Image Analysis (Tromso,
Norway, May 25-28), NOBIM, Norwegian Society for Image Processing
and Pattern Recognition, Tromso, Norway, 1993,
547-554.
Pattern
recognition for spectral imaging
Sheets
- Research challenges in spectral and
spatial data analysis, 2nd
Spectral Imaging Workshop, Villach ,
19-20 September 2005.
- Pattern
recognition for hyperspecral images, Chemical Imaging Across the Scales:
From Microns to Miles, 22th Annual Symposium on
Chemometrics, Dutch Chemometrics Society, Nijmegen, 20 May 2005.
- Pattern recognition
for spectral imaging, Spectral Imaging Workshop, Graz, 3 April 2003.
Related papers
- P. Paclik, R. Leitner, and R.P.W. Duin, A study on design of
object sorting algorithms in the industrial application using
hyperspectral imaging, Journal of Real-Time Image Processing, vol. 1,
no. 2, 2006, 101-108.
- P. Paclik and
R.P.W. Duin, Designing multi-modal
classifiers of spectra: a study on industrial sorting application, in:
R. Leitner (eds.), Spectral Imaging (Proc. 2nd Int. Workshop of the Carinthian Tech Research AG, Villach, Austria, Sep
19-20,2005), Austrian Computer Society, 2005, 19-25.
- P. Paclik, S. Verzakov, and R.P.W. Duin, Multi-class extensions of
the GLDB feature extraction
algorithm for spectral data, in: J. Kittler, M. Petrou, M.
Nixon (eds.), Proc. 17th In.l Conf. on
Pattern Recognition (22-26 August 2004, Cambridge
UK), vol. 4, IEEE
Computer Society, Los Alamitos,
CA, 2004, 629-632.
- S. Verzakov, P. Paclik, and R.P.W. Duin, Feature shaving for
spectroscopic data, in: A. Fred, T. Caelli,
R.P.W. Duin, A. Campilho,
and D. de Ridder (eds.), Structural,
Syntactic, and Statistical Pattern Recognition, Proc. SSSPR2004
(Lisbon, Portugal, August 2004), Lecture Notes in Computer Science, vol.
3138, Springer Verlag, Berlin, 2004, 1026-1033.
- P. Paclik and
R.P.W. Duin, Dissimilarity-based
classification of spectra: computational issues, Real Time Imaging Journal,
vol. 9, no. 4, 2003, 237-244.
- P. Paclik,
R.P.W. Duin, G.M.P. van Kempen,
and R. Kohlus, Segmentation of
multi-spectral images using the combined classifier approach, Image
and Vision Computing Journal, vol. 21, no.6, 2003, 473-482.
Latest update: February 2007